
The Problem of the
Dutch National Flag

Wouter Swierstra
IFIP WG 2.1 #66

Jeremy’s Problem

The State Monad

State s a := s -> a * s

return : a -> State s a

(>>=) : State s a

 -> (a -> State s b)

 -> State s b

relabel : State nat (Tree nat)

relabel t = match t with

 | Leaf _ =>

 get >>= fun c =>

 put (c + 1) >>=

 return (Leaf c)

 | Node l r =>

 relabel l >>= fun l’ =>

 relabel r >>= fun r’ =>

 return (Node l’ r’)

 end

Idea:
Decorate the state monad with
pre- and postconditions.

Pre- and postconditions

Define the following types:

Pre := s -> Prop

Post (a : Set) := s -> a -> s -> Prop

The Hoare State Type

Define the following type:

 HoareState s P a Q :=

 {i : s | P i} ->

 {(x,f) : a * s | Q i x f}

Plan

• Define return and bind with a fancy
HoareState type.

• Choose a suitable type for our relabelling
function.

Relabelling revisited

 The type of relabel becomes:

 HoareState

 (fun i => True)

 (Tree nat)

 (fun i t f =>

 flatten t = [i .. i + size t])

Relabelling revisited

 The type of relabel becomes:

 HoareState

 (fun i => True)

 (Tree nat)

 (fun i t f =>

 flatten t = [i .. i + size t]

 /\ f = i + size t)

The Problem of the
Dutch National Flag

Wouter Swierstra
IFIP WG 2.1 #66

Type Theory
Per Martin-Löf

• A foundation of constructive
mathematics;
• a functional programming
language.

Type Theory
Per Martin-Löf

• A foundation of constructive
mathematics;
• a functional programming
language.

Really?

What about...
• mutable references?

• arrays?

• exceptions?

• concurrency?

• a GUI?

• a foreign function
interface?

• network communication?

• a compiler?

• general recursion?

• file manipulation?

• random numbers?

• ...

There is a row of buckets numbered from 1 to
n. It is given that:

• each bucket contains one pebble

• each pebble is either red, white, or blue.

A mini-computer is placed in front of this row
of buckets and has to be programmed in such
a way that it will rearrange (if necessary) the
pebbles in the order of the Dutch national
flag.

A Discipline of Programming, E.W. Dijkstra

Specification

• The mini-computer supports two
commands:

• swap (i,j) exchanges the pebbles in buckets
numbered i and j for 1 ≤ i,j ≤ n;

• read (i) returns the colour of the pebble in
bucket number i for 1 ≤ i ≤ n.

• Solution should use one pass only and
constant memory.

The Problem of the
Dutch National Flag

Wouter Swierstra
IFIP WG 2.1 #66

The Problem of the
Dutch National Flag

Wouter Swierstra
IFIP WG 2.1 #66Polish

Known to
be red

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Known to
be red

Known to
be white

Can we find a solution:

• that terminates on all inputs;

• satisfies the specification;

• and has machine verified proofs of both
these properties.

Plan of attack

• Use the dependently typed programming
language Agda to:

• implement the mini-computer;

• write an algorithm that sorts the pebbles;

• prove the algorithm correct.

The Mini-Computer

Pebbles

data Pebble : Set where
 Red : Colour
 White : Colour

Natural numbers

data Nat : Set where
 Zero : Nat
 Succ : Nat -> Nat

Buckets

data Buckets : Nat -> Set where
 Nil : Buckets Zero
 Cons : Pebble -> Buckets n ->
 Buckets (Succ n)

The state monad

State : Nat -> Set -> Set
State n a =
 Buckets n -> Pair a (Buckets n)

return : a -> State n a
>>= : State n a ->
 (a -> State n b) -> State n b

Indices

data Index : Nat -> Set where
 One : Index (Succ n)
 Next : Index n ->
 Index (Succ n)

Indices

data Index : Nat -> Set where
 One : Index (Succ n)
 Next : Index n ->
 Index (Succ n)

0 1 2 3

Next

Reading

read : Index n -> State Pebble
read i bs = (bs ! i , bs)
 where
 ! : Buckets n -> Index n
 -> Pebble
 (Cons p _) ! One = p
 (Cons _ ps) ! (Next i) = ps ! i

Swap

swap : Index n -> Index n
 -> State n Unit
swap i j =
 read i >>= \pi ->
 read j >>= \pj ->
 write i pj >>
 write j pi

Back to the problem

An approximation

sort :: Index n -> Index n
 -> State n Unit
sort r w =
 if w == r then return unit
 else case read r of
 Red -> sort (r + 1) w
 White -> swap r w >>
 sort r (w - 1)

An approximation

sort :: Index n -> Index n
 -> State n Unit
sort r w =
 if w == r then return unit
 else case read r of
 Red -> sort (r + 1) w
 White -> swap r w >>
 sort r (w - 1)

Why does th
is

terminate?

An approximation

sort :: Index n-> Index n
 -> State n Unit
sort r w =
 if r == w then return unit
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)

sort (r + 1) w

sort r (w - 1)

An approximation

sort :: Index n-> Index n
 -> State n Unit
sort r w =
 if r == w then return unit
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)

sort (r + 1) w

sort r (w - 1)

Only terminates
if r ≤ w

Manipulating Indices

 (r + 1)

 (w - 1)

sort :: Index n-> Index n
 -> State n Unit
sort r w =
 if r == w then return unit
 else case read r of

 White -> sort (r + i) w
 Red -> swap r w >>
 sort r (w - 1)

Two problems

• We need to increment and decrement
inhabitants of Index n ;

• We need to prove that our algorithm
terminates.

Next : Index n -> Index (Succ n)

Injection

inj : Index n -> Index (Succ n)
inj One = One
inj (Next i) = Next (inj i)

Next or inj

0 1 2 3

Next

0 1 2 3

inj

Idea

• Only increment the image of inj;

• Only decrement the image of Next.

Less than or equal

data _<=_ : (i j : Index n) -> Set where

 Base : (i : Index (Succ n)) -> One <= i

 Step : (i j : Index n) ->

 (i <= j) -> (Next i <= Next j)

Difference

data Diff : (i j : Index n) -> Set where

 Base : (i : Index n) -> Diff i i

 Step : (i j : Index n) ->

 Diff i j -> Diff (inj i) (Next j)

Sort

sort : (r w : Index n) ->
 Diff r w ->
 State n Unit

Sort – Base case

sort : (r w : Index n) ->
 Diff r w ->
 State n Unit
sort .i .i (Base i) = return unit

sort : (r w : Index n) ->
 Diff r w ->
 State n Unit

sort : (r w : Index n) ->
 Diff r w ->
 State n Unit
sort .(inj i) .(Next j) (Step i j d) =

sort : (r w : Index n) ->
 Diff r w ->
 State n Unit
sort .(inj i) .(Next j) (Step i j d) =
 read (inj i) >>= \p ->
 case p of
 Red ->
 White ->

sort : (r w : Index n) ->
 Diff r w ->
 State n Unit
sort .(inj i) .(Next j) (Step i j d) =
 read (inj i) >>= \p ->
 case p of
 Red ->
 White ->

 sort (Next i) (Next j) ?

sort : (r w : Index n) ->
 Diff r w ->
 State n Unit
sort .(inj i) .(Next j) (Step i j d) =

 swap (inj i) (Next j) >>
 sort (inj i) (inj j) ?

 read (inj i) >>= \p ->
 case p of
 Red ->
 White ->

 sort (Next i) (Next j) ?

Lemmas

• We need to prove a few useful lemmas:

• Diff i j -> Diff (Next i) (Next j)

• Diff i j -> Diff (inj i) (inj j)

Lemmas

• We need to prove a few useful lemmas:

• Diff i j -> Diff (Next i) (Next j)

• Diff i j -> Diff (inj i) (inj j)

...but even then the algorithm is not structurally recursive.

data Diff : (i j : Index n) -> Set where

 Base : (i : Index n) -> Diff i i

 Step : (i j : Index n) ->

 Diff (inj i) (inj j) ->
 Diff (Next i) (Next j) ->

 Diff (inj i) (Next j)

Difference, revisited

Verification

Verification
the easy part

Formalizing the Invariant

Invariant : (r w : Index n)
 -> Buckets n -> Set
Invariant r w bs =
 (∀ i -> w < i -> bs ! i = White)

 && (∀ i -> i < r -> bs ! i = Red)

Correctness Theorem

∀ r w bs,

Invariant r w bs ->

 ∃ m : Index n,

 Invariant m m (sort r w bs)

Proof sketch

• Proof proceeds by induction on Diff

• Distinguish three cases:

• Base case (trivial);

• No swap happens (not too hard);

• Swap happens (a bit trickier).

• In the latter two cases, we establish the
invariant holds and make a recursive call.

The Dutch National Flag

• The structure of the algorithm stays the same.

• similar invariant;

• similar termination proof.

• Program does more case analysis...

• ... and so do the proofs.

• Messier but no harder.

Conclusions

• You need a PhD to verify a four line C
program in Agda.

• ... but it is possible to verify non-structurally
recursive, ‘impure’ functions in type theory.

