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Model checking

Automatic
testing

Theorem proving

Static typing

Best software 
engineering practices

Static 
analysis
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Per Martin-Löf

• A foundation of constructive 
mathematics;
• a functional programming 
language.
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Really?



What about...
• mutable references?

• arrays?

• exceptions?

• concurrency?

• a GUI?

• a foreign function 
interface?

• network communication?

• a compiler?

• general recursion?

• file manipulation?

• random numbers?

• ...



PhD Thesis

• Goal: Reason about effectful programs.

• Solution: Implement a pure and total 
specification of effects in type theory. 
Replace specs with “real effects” on 
compilation.

• Result: Write and reason about effectful 
programs.



What’s missing?

• I’ve studied this approach for individual 
effects – but what is the common theme?

• Proofs in type theory can be hard – what 
reasoning principles can we use to make them 
easier.



This year: 
common theme



This year: 
common theme

• Study how Hancock-Setzer interaction 
structures can be used for effectful, 
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This year: 
common theme

• Study how Hancock-Setzer interaction 
structures can be used for effectful, 
dependently-typed programming.

• ... and find grant money to continue this line 
of research.



Today: 
reasoning principle



Relabelling a tree

Inductive Tree (a : Set) : Set := 

  | Leaf : a -> Tree a

  | Node : Tree a -> Tree a -> Tree a

relabel : forall a, Tree a -> Tree nat



relabel
3

1 2

a

a b



Relabelling 1.0
Fixpoint relabel (a : Set)

 (t : Tree a) (s : nat) : Tree nat * nat



Relabelling 1.0

 := match t with

     | Leaf _ => (Leaf s, s + 1)

     | Node l r => 

        let (l’, s’) := relabel l s

        in let (r’, s’’) := relabel r s’

        in (Node l’ r’, s’’)

    end

Fixpoint relabel (a : Set)

 (t : Tree a) (s : nat) : Tree nat * nat



Recursive step

 | Node l r => 

    let (l’, s’) := relabel l s

    in let (r’, s’’) := relabel r s’

    in (Node l’ r’, s’’)



Recursive step

 | Node l r => 

    let (l’, s’) := relabel l s

    in let (r’, s’’) := relabel r s’

    in (Node l’ r’, s’’)

Easy to make a mistake!



The state monad

(* For some fixed type s *)

Definition State (a : Set) : Type 

   := s -> a * s

return : a -> State a

bind : State a 

  -> (a -> State b) 

  -> State b



Return

Definition State (a : Set) : Type 

   := s -> a * s

Definition return (a : Set) 

  : a -> State a :=

      fun x => fun s => (x, s)



Bind

Definition State (a : Set) : Type 

   := s -> a * s

Definition bind (a b : Set) 

(c1 : State a) (c2 : a -> State b) : State b

  := fun s => let (x, s’) := c1 s 

              in c2 x s’



Bind

Definition State (a : Set) : Type 

   := s -> a * s

Definition bind (a b : Set) 

(c1 : State a) (c2 : a -> State b) : State b

  := fun s => let (x, s’) := c1 s 

              in c2 x s’

I’ll use an infix operator, >>= , instead of bind 



Relabelling 2.0

 | Node l r => 

    relabel l >>= fun l’ =>

    relabel r >>= fun r’ => 

    return (Node l’ r’)



Relabelling 2.0

 | Node l r => 

    relabel l >>= fun l’ =>

    relabel r >>= fun r’ => 

    return (Node l’ r’)

No more passing around the state explicitly!



Challenge: 
verify the relabelling function, 
without expanding the 
definitions of return and bind.



Strong specifications

• Strong specifications: 

• define a value;

• together with a proof that that value 
satisfies the spec.

• Notation in Coq:

     {n : nat | n > 7}



Program

• Coq’s Program framework for working with 
strong specifications

• let’s you define functions manipulating 
strongly specified values,

• and collects assumptions and obligations.

• You need to prove any proof obligations 
(using tactics) before Program generates a 
complete Coq term.



Idea:
Decorate the state monad with 
pre- and postconditions.



Pre- and postconditions

Define the following types:

Pre := s -> Prop

Post (a : Set) := s -> a -> s -> Prop



The Hoare State Type

Define the following type:

  HoareState P a Q := 

    {i : s | P i} -> 

      {(x,f) : a * s | Q i x f}



Remaining questions

• How can we define return?

• How can we define bind?

• How can we use these functions to verify 
our relabelling function?



Return

Definition return (x : a) : 

  HoareState 

    (fun i => True) 

  a 

  (fun i y f => i = f /\ x = y)

:= fun i => (x,i)



Return

Definition return (x : a) : 

  HoareState 

    (fun i => True) 

  a 

  (fun i y f => i = f /\ x = y)

:= fun i => (x,i)

Need to complete one trivial proof.



Bind - I

  HoareState P1 A Q1 ->

  (A -> HoareState P2 B Q2) ->

  HoareState ... B ...

What should the pre- and postconditions be?



Bind - II

  HoareState P1 A Q1 ->

  ((x:A) -> HoareState (P2 x) B (Q2 x)) ->

  HoareState ... B ...

What should the pre- and postconditions be?



Bind’s precondition

\s1 -> P1 s1

   /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The initial state must satisfy 
the first computation’s precondition
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Bind’s precondition
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The intermediate state satisfies 
the second computation’s precondition.



Bind’s precondition

\s1 -> P1 s1

   /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The intermediate state satisfies 
the second computation’s precondition.



Bind’s postcondition

\s1 y s3 -> exists x, exists s2,

    Q1 s1 x s2 /\ Q2 x s2 y s3

There is an intermediate result and an intermediate state 
relating the two computations.



Implementing bind

• The definition of bind is exactly the same 
as for the state monad...

• ...but we need to fulfill one or two proof 
obligations.



Using the 
Hoare State Monad

To verify programs in the state monad, all we 
need to do is change the type signature, that 
is, choose the pre- and postconditions.

The program remains unchanged.



Relabelling revisited

  HoareState 

    (fun i => True)

    (Tree nat) 

    (fun i t f => 

       flatten t = [i .. i + size t])



Relabelling revisited

  HoareState 

    (fun i => True)

    (Tree nat) 

    (fun i t f => 

       flatten t = [i .. i + size t]

       /\ f = i + size t)



The proof

• The definition gives rise to two proof 
obligations, one for every case branch.

• We’ve automated away all work involved 
in keeping track of the state;

• The proof for the recursive case is only 
about 5 lines long (but uses some fancy 
Program tactics).



Discussion

• Other choices for pre- and postconditions?

• Is the HoareState type a monad?

• Further automation using Ltac?


