Adventures in
Extraction

Wouter Swierstra
Brouwer Seminar, 28/3/201 |

with some slides from Don Stewart

Wednesday, March 30, 2011

exXetracetion |ik'strak su on|
nounmn

1 the action of taking out something, esp. usin

nuneral extraction | a dental extraction.

Wednesday, March 30, 2011

Coq Extraction

® At its heart, Coq has a (simply) typed mini-
programming language Gallina.

® Extraction lets you turn Gallina programs
into Caml, Haskell, or Scheme code.

Inside every proof assistant, there’s a
functional language struggling to get out.

Wednesday, March 30, 2011 4

Idea: Extraction lets you write verified
software in a heterogeneous programming
environment.

Wednesday, March 30, 2011 5

Extraction in action

® There are a only handful of ‘serious’ verified
software developments using Coq and

extracted code — CompCert being a
notable example.

® Why isn’t it more widely used?

This talk

® An experience report documenting an
attempt at using extraction to replace a
non-trivial Haskell program.

® An attempt to identify the software
engineering principles of verification.

Wednesday, March 30, 2011

Xmonhnad

Wednesday, March 30, 2011 8

Xmohnad

® A tiling window manager for X:

Wednesday, March 30, 2011

tiles windows over the whole screen;
automatic arranges windows;

written, configured, and extensible in
Haskell;

had more than |10k downloads in 2010.

Wednesday, March 30, 2011

ressssneneenny TSR

| [“[2lg-m|=[3]r~s | | [6]im]| | [9)winHay]| [6] | : e TS :'_— il
File Edit Tools Syntax Buffers Window Help

LlL | Thurenze, 751PM) @ :

TODO

mamad "Hin ‘ 52" (HGrig.Grd

namad (Horid.Grad

named ile 2 LGG6 1/2 ‘
{HT.HintedTile 2 {3/10 { } HT.TopLefL HT. Tal

xmonad.errors
xmonad.hi

named
T HinteaTi1e

Center HT.Tall

named ’
(HT.Fintedlile 2 (| (1/2) HT.BottomRiq

ht HT.Tall)
mamed

[HT . HintecTile HT.TopLeflt KT.Wid

xmonad.o

named

T HinteadT:le {) {) HT.Center HT.Wide

, named . . 3R T WHAT YOU'VE J0ME
(HI.Rintedlile (3/7169) (] H7.BottomRig vhatsinm
WA T fll". JEU R 284 T AT CWmget el s

Most Visited . %: @ GN2 A H ©C =m X seq »

4 b | icier)
) A Xmonad/Scr..: @gmane.com... eeOclreee... x -

oy e 10 your worsirg o copy Lt wwen't
mnamed . O N ecded . The crarge: are dizatayed n d —_
(mastered ¢)] HGr1d . Grid True) o1 forwaT Are trat - -Tea =
satazd ‘ Far-sds insles - xarury wsscs Octree example
THES (G
(mastered ¢ 18) () Mirror redert Swwert ix umed to s clurges rade to bw wzrban
R Pt \ o - ,) Copy wiadh lewe ot owt e
ITwoPare | ! A ! ecorted Yoo wtl] e peorptrd for st chooges
named "M Lt" {MosaicAlt M.empty) e sanh sy - Thw- tant) revwek ey
X xNounom wafuly iy Un urvsmrt comed A U
'.I'I“'IJ CAUY AT Mt rcifsr Iin the
seantire
nrrawer
resyers 1n e to urdo the results of A revers o
mrured. 0 2 woly suarantesd Lo e b
repesly AF you faven'T wde 2oy dongrs since the
T partormwed
- N - . =% L \ ool
sLayouts ResizableTall 2 (18) (} [1] e e
named » Us Jurges ftos pelclus acliw
I: spiral ' 1) SRNges again NG you Koy econd o rewert Tau 1 I
. S g Al e T aarkang copry tooerl® il nat] r' ales .S
named { | (sparal (Lo s harce
Ratiomal [Z2/(1+sqrt15)::0cuble)))) { Example of Use \ﬂ Y Vayv
amed ‘ IStackT awsrd-raceed) o A L Vg
name! ‘ Stack P e S o =
' * «« Desktop
1)
(namad " B (XMonad. Tall
| J5 i
(1] named " 1/1 1 " {ThreeCo vis
I
| | men
pRra free acocunt ar 200 e ivaefre alrcady a meroer)
namad T | TwaPane |
named "I oPar } ((Mair
ror lwoPane (3/190) (1))
simpleTabbed
' e Yo
borHintLayouls = boringWiniows
~ Y Da 1 i I il y reatl
xmonad ., hs [hasxell] [umix] 211/416,85 52% unit . L f map | Helf nale=

http: //www. flickr.com/photos/et [3/3]

Wednesday, March 30, 2011

Testimonials

Xmonad fits right into how | think window
managers should be.

Testimonials

Xmonad is easily the fastest and has the
smallest memory footprint | have found yet.

Testimonials

Xmonad is by far the best window manager
around. It’s one of the reasons | stick with
Linux.

Wednesday, March 30, 2011

Comparison

tool fole Language
metacity > 50k C
ion 27k C
ratpoison | 3k C
wmii 7k C
dwm .7k C

xmohad 2.5k Haskell

Wednesday, March 30, 2011

xmonad

“That was easy. xmonad rocks!”

o> =

What is xmonad?

xmonad is a dynamically tiling X11 window manager that is written and
configured in Haskell. In a normal WM, you spend half your time aligning and
searching for windows. xmonad makes work easier, by automating this.

What's new?

= xmonad 0.9 is available from our download page.
« Report a bug and we'll squash it for you in the next release.
= Follow our blog or on twitter, or the xmonad reddit.

Why should | use xmonad?

xmonad is tiling.
xmonad automates the common task of arranging windows, SO you can
concentrate on getting stuff done.
xmonad is minimal.
out of the box, no window decorations, no status bar, no icon dock. just clean
ines and efficiency.
xmonad is stable.
haskell + smart programming practices guarantee a crash-free experience.
xmonad is extensible.
it sports a vibrant extension library, including support for window decorations,
status bars, and icon docks.
xmonad is featureful.
core features like per-screen workspaces, true xinerama support and
managehooks can't be found in any other wm.
xmonad is easy.
we work hard to make common configuration tasks one-liners.
xmonad is friendly.
an active, friendly mailing list and irc channel are waiting to help you get up
and running.

Search

download documentation community

screenshots

sSee more...

videos

screencast @ youtube screencast @ youtube

screencast @ youtube

view more...

Testimonials

“Multimonitor xmonad has to be the best Linux desktop experience ever” —
josephkern apr 09

“XMonad is by far the best Window Manager around. It's one of the reasons |
stick with Linux." — Tener, apr 09

“I have to say, the greatest thing about xmonad thus far is its insane stability... |
have zero issues with xmonad” — wfarr, mar 08

read more...

Wednesday, March 30, 2011

16

Xmonad:
design principles

Evil X Server 1O monad

Design principles

® Keep the core pure and functional.

® Separate X server calls from internal data
types and functions (Model-view-
controller).

® Strive for highest quality code.

VVhat happens in the
functional core!?

Data types

data Zipper a = Zipper
{ left :: [a]
, focus :: la
, right :: [a]
}

Wednesday, March 30, 2011

Example - |

focusLeft :: Zipper a -> Zipper a
focusLeft (Zipper (l:1ls) x rs) =
Zipper ls 1 (X : rs)
focusLeft (Zipper [] X rs) =
let (y : ys) = reverse (X : rs)

in Zipper [] V VS

Wednesday, March 30, 2011

Example - I

reverse :: Zlpper a -> Zipper a

reverse (Zipper 1ls x rs)

Zipper rs X 1ls

focusRight :: Zipper a -> Zipper a
focusRight =
reverse . focuslLeft . reverse

Wednesday, March 30, 2011

Simplification

® The “real” data types talk about several

workspaces, some of which may be hidden,
each with their own unique id.

® But these Zipper types are really at the
heart of xmonad.

How can we make sure
the code is reliable?

Reliability toolkit

® (Cabal build system;

® Jype system;

® -Wall compiler flags;
® QuickCheck;
e HPC.

QuickCheck

® Given properties that you expect your
function to satisfy, QuickCheck generates
random input and tries to find a counter
example. For instance:

zipLeftRight :: Zipper Int -> Zipper Int
zipLeftRight z =

focusRight (focusLeft z) == z

Wednesday, March 30, 2011

HPC

® The Haskell Program Coverage tool keeps
track of which expressions are evaluated
during execution.

® dead code;
® spurious conditionals;

® untested code;

Wednesday, March 30, 2011

Example report

67% expressions used (72/106)
14% boolean coverage (1/7)
16% guards (1/6), 2 always True, 2 always False, 1
unevaluated
0% 'if' conditions (0/1), 1 always True
100% qualifiers (0/0)
42% alternatives used (3/7)
88% local declarations used (8/9)
80% top-level declarations used (4/5)
unused declarations:
position
showRecip.p

Wednesday, March 30, 2011

R TML report

reciprocal :: In > (String, Int)

reciprocal n] | B L S R b R p g A R A e et
where
(digits,

divide :: Int -> Int -> n -> (String, Int)
divide n c cs position c cs)
0)

++ digits, recur)

where
(g, r) 0) “guotRem”
(digits, divide n

position :: Int -> [Int] =->
position n (x:xs) n==x
otherwise

showRecip :: Int -> String
showRecip n
'.-./'. . . S:"‘OMY :‘. .. " " . .
if ¥»=0 then d else take p d +
where
P length d - r
{(d, r) reciprocal

main do
number <- readLn
putStrLn (showRecip number)
main

Wednesday, March 30, 2011

Righ-assurance
software

® Combining QuickCheck and HPC:
® VWrite tests;

® Find untested code;

® Repeat.

Putting it in practice

® xmonad has:

e +]00% test coverage core functions and
data structures;

® More than 100 automatically checked
QuickCheck properties;

® No new patches accepted until all tests
pass and all code is tested.

Wednesday, March 30, 2011

But can we do better
still...

What I've done

® Re-implemented core xmonad data types
and functions in Cogq,

® Such that the ‘extracted’ code is a drop-in
replacement for the existing Haskell
module,

® And formally prove (some of) the
QuickCheck properties in Coaq.

Blood

Wednesday, March 30, 2011

Wednesday, March 30, 2011

Wednesday, March 30, 2011

,15d

/delete :: /delete :: Ord a3 => /g
fremovel :: Jremove@ ;. Ord al = g

finsert :: /finsert :: Ord al

/sink :: /sink :: Ord a3 => /g

ffloat :/float :: Ord a3=> /gd8d37
ra

LI P I P IV P P I

109cles
type WindowsSet = StackSet Workspaceld (Layout Window) Window Screenld Scree
nbetail

type WindowsSet
115,117d114

-- | Physical screen indices

hewtype Screenld = 5 Int deriving (Eq.,Ord,Show,Read, Enum, Num, Integral.R

StackSet Workspaceld (Layout Window) Window ScreenDetail

n
al
—

131,132¢131,132

= Y, filter ("M.notMember™ W.floating ws)
= W, filter ('notElem’ wvwis)

Shell script

What I've learned

® Extraction is not yet mature technology.

® Formal verification can complement, but
not replace a good test suite.

® There is plenty of work to be done on
tighter integration between proof assistants

and programming languages.

Wednesday, March 30, 2011

Did | change the
program!?

lToo general types

® The core data types are as polymorphic as
possible: Zipper a not Zipper Window.

® This is usually, but not always a good thing.

® For example, each window is tagged with a
‘polymorphic’ type that must be in Haskell’s
Integral class.

® But these are only ever instantiated to Int.

Wednesday, March 30, 2011

Totality

® This project is feasible because most of the
functions are structurally recursive.

® But there’s still work to do.Why is this
function total?

focusLeft (Zipper [] X rs) =
let (y : ys) = reverse (X : rs)

in Zipper [] VYV VS

Wednesday, March 30, 2011

More totality

® One case which required more work.

® One function finds a window with a given
id, and then move left until it is in focus.

® Changed to compute the number of moves
necessary and move that many steps.

Wednesday, March 30, 2011

Interfacing with Haskell

® |'d like to use Haskell’s data structures for
finite maps and dictionaries.

® Re-implementing them in Coq is not an
option.

® Add the APl as Axioms to Cogq...

® .. but also need to postulate properties.

¢ Diagnhosis: axiom addiction!

Extraction problems

® [he basic extracted code is a bit rubbish:

Wednesday, March 30, 2011

uses unsafeCoerce (too much);

uses Peano numbers, extracted Cogq
booleans, etc.

uses extracted Coq data types for
Zippers;

generates ‘non-idiomatic’ Haskell.

Customizing extraction

® [here are various hooks to customize the
extracted code:

® inlining functions;
® using Haskell data types;

® realizing axioms.

Wednesday, March 30, 2011

Danger!

® Using (a =b) v (a # b) is much more
informative than Bool.

® But we'd like to use ‘real’ Haskell booleans:

Extract Inductive sumbool =>
"Bool" ["True" "False"].

® Plenty of opportunity to shoot yourself
in the foot!

Wednesday, March 30, 2011

User defined data types

® Coq generated data types do not have the
same names as the Haskell original.

® The extracted file exports ‘too much’.

® Solution:

® Customize extraction.

® Write a sed script that splices in a new
module header & data types.

Type classes

® Haskell’s function to check if an element
occurs in a list:

elem :: Eg a => a -> [a] -> Bool.
® A Coq version might look like:
Variable a : Set.
Variable cmp : forall (x y : a),
X =y} + {x <> vy}.

Definition elem : a -> list a ->

Wednesday, March 30, 2011

Extracted code

® Extracting this Coq code generates functions
of type:

_elem :: (a -> a -> Bool) ->
a -> [a] -> bool.
® Need a manual ‘wrapper function’
elem :: Eq a => a -> [a] -> Bool

elem = elem (==)

Wednesday, March 30, 2011

More type class
headaches

® \We need to assume the existence of
Haskell’s finite maps:

Axiom FMap : Set -> Set -> Set.
Axiom 1insert : forall (k a : Set),

k -> a -> FMap k a -> FMap k a.

® |n reality, these functions have additional type
class constraints...

Wednesday, March 30, 2011

Another dirty fix

® Need another sed script to patch the types
that Coq generates:

s/insert :: /insert :: Ord al => /g

® Not pretty...

® Coq is not the same as Haskell/OCaml.

And now...

® Extraction & post-processing yields a drop-
in replacement for the original Haskell

module.

® [hat passes the xmonad test suite.

Wednesday, March 30, 2011

Verification

® So far, this gives us totality (under certain
conditions).

® Several QuickCheck properties have been
proven to hold in Cogq.

® Some properties are trivial; some are more
work. But this we know how to do!

Wednesday, March 30, 2011

Conclusions

® Extraction is nhot yet mature technology.

® |[f you want to do formal verification, sed
should not be a mandatory part of your

toolchain.

Wednesday, March 30, 2011

Conclusions

® Formal verification can complement, but
not replace a good test suite.

® Extraction can introduce bugs!

® Never trust formally verified code’ that
hasn’t been tested.

Wednesday, March 30, 2011

Conclusions

® There is plenty of work to be done on
tighter integration between proof assistants
and programming languages.

® You don’t want to write all your code in
Cogq; but interacting with another

programming language all happens through
extraction.

® \What are the alternatives?

Wednesday, March 30, 2011

