Applications of reflection in Agda

Wouter Swierstra & Paul van der Walt
University of Utrecht

IFL 2012
Intro

• Agda is a functional language with dependent types;

• Since version 2.2.8, Agda has a new reflection API;

• Paul is an MSc student at Utrecht;

• His thesis is about having some fun with this new feature.
Reflection API

data Term : Set where
 -- Variable applied to arguments.
 var : (x : ℕ) (args : List (Arg Term)) → Term
 -- Constructor applied to arguments.
 con : (c : Name) (args : List (Arg Term)) → Term
 -- Identifier applied to arguments.
 def : (f : Name) (args : List (Arg Term)) → Term
 -- Different kinds of \(\lambda \)-abstraction.
 lam : (v : Visibility) (t : Term) → Term
 -- Pi-type.
 pi : (t₁ : Arg Type) (t₂ : Type) → Term
 -- A sort.
 sort : Sort → Term
 -- Anything else.
 unknown : Term
Some applications of reflection

• Proof-by-reflection;
• (Well-typed) meta-programming;
• Generic programming;
• Program transformation.
Even

• Suppose we have the following predicate formalizing when a natural number is even:

```agda
data Even : ℕ → Set where
  Base : Even 0
  Step : \{n : ℕ\} → Even n → Even (2 + n)
```

• How can we prove 1024 is even?
(Example from Adam Chlipala’s CPDT)
The dumb approach
The not-so-dumb approach

\begin{align*}
even? &: \mathbb{N} \to \text{Set} \\
even? \; \text{zero} &= \text{Unit} \\
even? \; (\text{suc} \; \text{zero}) &= \text{Empty} \\
even? \; (\text{suc} \; (\text{suc} \; n)) &= even? \; n
\end{align*}

In contrast to the previous predicate, this function \emph{computes}.
Soundness

soundness : (n : ℕ) → {p : even? n} → Even n
soundness zero = Base
soundness (suc zero) {} =
 Step (soundness n {s})

This tells us that to prove \(n \) is Even, it suffices to show \(\text{even? } n \);
Soundness

\[
\text{soundness} : (n : \mathbb{N}) \rightarrow \{ p : \text{even? } n \} \rightarrow \text{Even } n
\]

\[
\text{soundness zero} = \text{Base}
\]

\[
\text{soundness} (\text{suc zero}) \{(())\}
\]

\[
\text{soundness} (\text{suc (suc n)}) \{s\} =
\]

\[
\text{Step} (\text{soundness } n \{s\})
\]

This tells us that to prove \(n \) is \text{Even}, it suffices to show \text{even? } n;

but proving \text{even? } n \) is easy for a closed number \(n \)
Example

\[
isEven28 : \text{Even } 1024 \\
isEven28 = \text{soundness } 1024
\]

(Agda fills in the implicit argument of type \text{Unit} for us)
Non-example

```haskell
isEven28 : Even 13
isEven28 = soundness 13
```

Unresolved implicit argument of type `Empty`

Or if we use an empty type with a more informative name: `Isn’tEven 13`
Proof-by-reflection recipe

- Define type of problem domain \(\mathbb{N}\);
- Define predicate of interest \(\text{Even}\);
- Define decision procedure \(\text{even}\));
- Prove soundness lemma;
- Profit!
More examples...

• A solver for equations over a some algebraic structure (monoids, rings, ...);

• Automatic procedures for solving problems in some decidable logic (propositional logic, ...)

• (In the paper) a decision procedure for boolean tautologies.
Boolean expressions

Suppose we want to prove:

\[(p_1 \land q_1 \land p_2 \land q_2 : \text{Bool}) \rightarrow\]
\[\text{So}((p_1 \lor q_1) \land (p_2 \lor q_2))\]
\[\Rightarrow (q_1 \lor p_1) \land (q_2 \lor p_2))\]
data BoolExpr (n : ℕ) → Set where

 Truth : BoolExpr n
 Falsehood : BoolExpr n
 And : BoolExpr n → BoolExpr n → BoolExpr n
 Or : BoolExpr n → BoolExpr n → BoolExpr n
 Not : BoolExpr n → BoolExpr n
 Imp : BoolExpr n → BoolExpr n → BoolExpr n
 Atomic : Fin n → BoolExpr n
Evaluation

\[_ \vdash _ : \forall \{n : \mathbb{N}\} (e : \text{Env } n) \to \text{BoolExpr } n \to \text{Bool}\]

\[\text{[env } \vdash \text{Truth }] = \text{true}\]
\[\text{[env } \vdash \text{Falsehood }] = \text{false}\]
\[\text{[env } \vdash \text{And be be}_1 \] = \text{[env } \vdash \text{be }] \land \text{[env } \vdash \text{be}_1 \]\]
\[\text{[env } \vdash \text{Or be be}_1 \] = \text{[env } \vdash \text{be }] \lor \text{[env } \vdash \text{be}_1 \]\]
\[\text{[env } \vdash \text{Not be }] = \neg \text{[env } \vdash \text{be }]\]
\[\text{[env } \vdash \text{Imp be be}_1 \] = \text{[env } \vdash \text{be }] \Rightarrow \text{[env } \vdash \text{be}_1 \]\]
\[\text{[env } \vdash \text{Atomic n }] = \text{lookup } n \text{ env}\]
Generating all environments

forallEnvs : {n : ℕ} → (b : BoolExpr n) → Env n → Set
forallEnvs {0} bexp env =
 if [] env ⊨ Nil [] then Unit else Empty
forallEnvs {suc n} bexp env =
 forallEnvs bexp (true :: env)
 × forallEnvs bexp (false :: env)

(Actual implementation is slightly different)
Soundness

• We can now show prove a soundness result that states that:

• if a boolean expression holds in every environment,

• then the boolean expression is a tautology.
Calling the solver

• Calling the soundness lemma is a bit more work than we saw previously:

$$\text{foo} : (p : \text{Bool}) \rightarrow \text{So} \ (p \Rightarrow p)$$

$$\text{foo} = \text{soundness} \ (\text{Imp} \ (\text{Var} \ Fz) \ ...)$$

• Even if the type already contains all the information we need...
Using reflection

- Agda’s `quoteGoal` gives us access to the `Term` representing the type of some unfinished definition;

- We can use this term to generate the required `BoolExpr`.
term2boolExpr : (n : ℕ) → (t : Term) → isBoolExprQ' n t → BoolExpr n

term2boolExpr n (con tf []) pf with tf ≟-Name quote true

term2boolExpr n (con tf []) pf | yes p = Truth

term2boolExpr n (con tf []) pf | no ¬p with tf ≟-Name quote false

term2boolExpr n (con tf []) pf | no ¬p | yes p = Falsehood

term2boolExpr n (con tf []) () | no ¬p₁ | no ¬p

term2boolExpr n (def f (arg a₁ b₁ x :: arg a b x₁ :: [])) pf | no p

 with f ≟-Name quote _∨_

term2boolExpr n (def f (arg a₁ b₁ x :: arg a b x₁ :: [])) (proj₁ , proj₂)
 | no ¬p | yes p = Or

 (term2boolExpr n x proj₁)
 (term2boolExpr n x₁ proj₂)

....
Using the prover

\[
\text{not} : (b : \text{Bool}) \to \text{So}(b \lor \neg b)
\]
\[
\text{not} = \text{quoteGoal} \; e \; \text{in} \; \text{proveTautology} \; e
\]

(Note Agda is filling in lots of implicit arguments for us again)
Reflection on reflection

• Some known limitations:
 • no access to function definitions;
 • limited access to data type definitions;
 • no way to generate top-level definitions;
 • untyped!
Can we program with reflection type safely?
Types and contexts

data Ty : Set where
 0 : Ty
 => : Ty -> Ty -> Ty

el : U -> Set
el 0 = Unit
el (s => t) = el s -> el t

Context : Set
Context = List Ty
data TypedTerm : Context -> Ty -> Set where
 Lam : TypedTerm (Cons u Γ) v
 -> TypedTerm Γ (u => v)
 App : TypedTerm Γ (u => v) -> TypedTerm Γ u
 -> TypedTerm Γ v
 Var : Ref Γ u -> TypedTerm Γ u
Type checking quoted terms

- We can quote an expression to untyped produce a Term;
- We can define a function that type checks a Term and produces a well-typed term;
- and then manipulate these well-typed terms in some structured way (CPS transform, SKI-translation, ...)

Saturday, September 1, 12
Drawbacks

• We need to write a type checker by hand (not too hard for the simply typed lambda calculus);

• We have to throw away all type information to unquote;

• We still don’t get as much type safety as we would like...
Future work

• Generic programming – programming with universes; ornamentation; ...

• Proving termination – well-founded relations, Bove-Capretta method, ...

• Improve the reflection API.