
Xmonad in Coq:
Programming a window

manager in a proof assistant

Wouter Swierstra
FP Dag 6/1/2012

1

Coq Extraction

• At its heart, Coq has a (simply) typed, total
functional programming language Gallina.

• Extraction lets you turn Gallina programs
into Caml, Haskell, or Scheme code.

• Extraction discards proofs, but may
introduce ‘unsafe’ coercions.

2

Extraction in action

• There are a only handful of ‘serious’ verified
software developments using Coq and
extracted code – CompCert being a
notable example.

• Why isn’t it more widely used?

3

xmonad

4

xmonad

• A tiling window manager for X:

• tiles windows over the whole screen;

• automatically arranges windows;

• written, configured, and extensible in
Haskell;

• has several tens of thousands of users.

5

6

IO monad

ReaderT

StateT

Core

Evil X Server

xmonad:
design principles

7

Design principles

• Keep the core pure and functional.

• Separate X server calls from internal data
types and functions (Model-view-
controller).

• Strive for highest quality code.

8

Current best practices

• Combining QuickCheck and HPC:

• Write tests;

• Find untested code;

• Repeat.

9

Can we do better?

• Re-implement core xmonad data types and
functions in Coq,

• and ensure that the ‘extracted’ code is a
drop-in replacement for the existing
Haskell module,

• and formally prove (some of) the
QuickCheck properties in Coq.

10

Blood
11

Sweat
12

Shell script
13

What happens in the
functional core?

14

Data types

data Zipper a = Zipper

 { left :: [a]

 , focus :: !a

 , right :: [a]

 }

15

Example - I

focusLeft :: Zipper a -> Zipper a

focusLeft (Zipper (l:ls) x rs) =

 Zipper ls l (x : rs)

focusLeft (Zipper [] x rs) =

 let (y : ys) = reverse (x : rs)

 in Zipper ys y []

16

Example - II
reverse :: Zipper a -> Zipper a

reverse (Zipper ls x rs) =

 Zipper rs x ls

focusRight :: Zipper a -> Zipper a

focusRight =

 reverse . focusLeft . reverse

17

Did I change the
program?

18

Too general types

• The core data types are as polymorphic as
possible: Zipper a not Zipper Window.

• This is usually, but not always a good thing.

• For example, each window is tagged with a
‘polymorphic’ type that must be in Haskell’s
Integral class.

• But these are only ever instantiated to Int.

19

Totality

• This project is feasible because most of the
functions are structurally recursive.

• But there’s still work to do. Why is this
function total?

focusLeft (Zipper [] x rs) =

 let (y : ys) = reverse (x : rs)

 in Zipper [] y ys

20

More totality

• One case which required more work.

• One function finds a window with a given
id, and then move left until it is in focus.

• Changed to compute the number of moves
necessary and move that many steps.

21

Extraction problems

• The basic extracted code is a bit rubbish:

• uses unsafeCoerce (too much);

• uses Peano numbers, extracted Coq
booleans, etc.

• uses extracted Coq data types for
zippers;

• generates ‘non-idiomatic’ Haskell.

22

Customizing extraction

• There are various hooks to customize the
extracted code:

• inlining functions;

• using Haskell data types;

• realizing axioms.

23

Danger!

• Using (a = b) ∨ (a ≠ b) is much more
informative than Bool.

• But we’d like to use ‘real’ Haskell booleans:

Extract Inductive sumbool =>
"Bool" ["True" "False"].

• Plenty of opportunity to shoot yourself
 in the foot!

24

User defined data types

• Coq generated data types do not have the
same names as the Haskell original.

• The extracted file exports ‘too much’.

• Solution:

• Customize extraction.

• Write a sed script that splices in a new
module header & data types.

25

Interfacing with Haskell

• I’d like to use Haskell’s data structures for
finite maps and dictionaries.

• Re-implementing them in Coq is not an
option.

• Add the API as Axioms to Coq...

• ... but also need to postulate properties.

• Diagnosis: axiom addiction!

26

Type classes

• Haskell’s function to check if an element
occurs in a list:

elem :: Eq a => a -> [a] -> Bool.

• A Coq version might look like:

Variable a : Set.

Variable cmp : forall (x y : a),

 {x = y} + {x <> y}.

Definition elem : a -> list a -> ...

27

Extracted code

• Extracting this Coq code generates functions
of type:

_elem :: (a -> a -> Bool) ->

 a -> [a] -> bool.

• Need a manual ‘wrapper function’

elem :: Eq a => a -> [a] -> Bool

elem = _elem (==)

28

More type class
headaches

• We need to assume the existence of
Haskell’s finite maps:

Axiom FMap : Set -> Set -> Set.

Axiom insert : forall (k a : Set),

 k -> a -> FMap k a -> FMap k a.

• In reality, these functions have additional type
class constraints...

29

Another dirty fix

• Need another sed script to patch the types
that Coq generates:

s/insert :: /insert :: Ord a1 => /g

• Not pretty...

• Lesson: Gallina is not the same as Haskell.

30

And now...

• Extraction & post-processing yields a drop-
in replacement for the original Haskell
module.

• That passes the xmonad test suite.

31

Verification

• So far, this gives us totality (under certain
conditions).

• I’ve proven a few QuickCheck properties
in Coq.

• Some properties are trivial; some are more
work. But this we know how to do!

32

Conclusions

• Formal verification can complement, but
not replace a good test suite.

• Extraction can introduce bugs!

• If you want to do formal verification, but
need sed to ‘fix’ your code, something is
wrong...

33

Looking ahead

• There is plenty of work to be done on
tighter integration between proof assistants
and programming languages.

• You don’t want to write all your code in
Coq; but interacting with another
programming language all happens through
extraction.

• What are the alternatives?

34

