Xmonad in Cogq;:

Programming a window
manager in a proof assistant

Wouter Swierstra
FP Dag 6/1/2012

Coq Extraction

At its heart, Coq has a (simply) typed, total
functional programming language Gallina.

Extraction lets you turn Gallina programs
into Caml, Haskell, or Scheme code.

Extraction discards proofs, but may
introduce ‘unsafe’ coercions.

Extraction in action

® There are a only handful of ‘serious’ verified
software developments using Coq and

extracted code — CompCert being a
notable example.

® Why isn’t it more widely used?

Xmonhnad

Xmohnad

® A tiling window manager for X:
® tiles windows over the whole screen;
® automatically arranges windows;

® written, configured, and extensible in
Haskell;

® has several tens of thousands of users.

: . ' N\ orfF
| [*12]1g-m|=[3]r=~s | | [6]im| | [9)winMay| [6] | : T RO hJ_LI_LLJ Thu Feb 26, 7:51 PM '("/, c‘
File Edit Tools Syntax Buffers Window Help

:ﬁmﬁ | ; | -4hﬁﬁﬂm1T0DO
namsd "l (Horid.Grad

named ile 2 LGG6 1/2 ‘
{HT.HintedTile 2 {3/100) {) JopLeftL KT. Tal

i e ~ Ixmonad.errors
T.HintedTile 2 { a2y rcenter it Bymonad L hi

namad
(Hl.Fintedlile

mamed I ‘ { Q] Xmonad . 0

Tatl}
[KT . HintedTile ()) 11/2) HT.TopLeft HT.Wid

named =
T HinteaT:le {)) HT.Center HT.Wide

namad

WHAT YOU'VE J0ME

. - , T ‘ . . P \ Y
(HI.=intedlile (37160} (: tom vhatzm) Most Visited . @ g GN2 A M C = X seq
Wide) NEATEMY T1WAT YELL R WtAA TF AT Canget yo'es -~ = o =2 A) \ i
= Th A YOU© wOrRirg copy Lhet lwwen't — }v AMONac/>Cr. 0'__” a COM.. oo Oclree .., x
mamed " - 2 5 ' O N ecded . The crarge: are dizatayed n d o =
(mastered ¢) | J HGr1d . G6rid True;} DFCs pATCh orwat. Arte that OoH

Batered {17200} 378 et e SRR 10 B8 | Octree example

THER (MG
(mastared 18}) Mirror redert Swwert ix umed to s clurges rade to bw wzrban
\ Q) Capy wiadh lewe ot st e

L ' ecorted Yo wt] e peowptrd for shoch chogen y
named "M | (Mo saicAlt s Aanh t3 wrea. (b Laxt revers car
x ounon o afuly wiyg Un urvmrt comed 4 s
NerkITg COry W Mt Pocifiar in the
weantirs

UV
rrsvers 1 e to urdo the resnlts
2o wily Sudrantesd Lo v b
regecly A you faven' s wde 2y domgrs sinoe the
T partormwed

- - - -} -1 \)) Lol
clay < ecizable
sLayouts Resizablelall (1 () e ot T
named - 1 | 1 » Us Jurges ftos pelclus acliw
(spiral (. |] SRrges again NHECT you Koy record oF e
. v Tt aarkimg copy tteal® ol nat]
mamed

+5qrti15)::0ouble)))) {3 Example of Use)

AR srrd-raceed =
named

S

|y

(namad " B (XMonad. Tall

1

mmed 1/1 1 " {ThreeCo
)

PR a free atocund ar 20 e ihveufre already a merer)
namad "Twof | TwaPane |

namad "M oPal } ‘ (Mar
ror lwoPane (3/190) (1])
simpleTabbed

borHintLayouls

xmonad , hs [hasxell] [umix] 211/416,85 52%

http: //www. flickr.com/photos/et [3/3]

Xmonad:
design principles

Evil X Server 1O monad

Design principles

® Keep the core pure and functional.

® Separate X server calls from internal data
types and functions (Model-view-
controller).

® Strive for highest quality code.

Current best practices

® Combining QuickCheck and HPC:
® VWrite tests;

® Find untested code;

® Repeat.

Can we do better?

® Re-implement core xmonad data types and
functions in Cogq,

® and ensure that the ‘extracted’ code is a

drop-in replacement for the existing
Haskell module,

® and formally prove (some of) the
QuickCheck properties in Coaq.

BT

/delete :: /delete :: Ord a3 => /g
fremovel :: Jremove@ ;. Ord al = g

finsert :: /finsert :: Ord al

/sink :: /sink :: Ord a3 => /g

/float ::/float :: Ord a3=> /g88d87
ra

ghc-options: -Werr

AP I ¥ B I ¥ I P

109cles
type WindowsSet = StackSet Workspaceld (Layout Window) Window Screenld Scree
nbetail

type WindowsSet
115,117d114

-- | Physical screen indices

hewtype Screenld = 5 Int deriving (Eq.,Ord,Show,Read, Enum, Num, Integral.R

StackSet Workspaceld (Layout Window) Window ScreenDetail

1]
al
-t

131,132¢131,132

= Y, filter ("M.notMember™ W.floating ws)

W.filter (notElem” vis)

Shell script

VVhat happens in the
functional core!?

Data types

data Zipper a = Zipper

{ left :: [a]
, focus :: la
, right :: [a]

}

Example - |

focusLeft :: Zipper a -> Zipper a

focusLeft (Zipper (l:1ls) x rs) =
Zipper 1ls 1 (x : rs)

focusLeft (Zipper [] X rs) =

let (y : ys) = reverse (X : rs)

in Zipper ys v []

Example - I

reverse :: Zlpper a -> Zipper a

reverse (Zipper 1ls x rs)

Zipper rs X 1ls

focusRight :: Zipper a -> Zipper a

focusRight =

reverse . focusleft . reverse

Did | change the
program!?

lToo general types

® The core data types are as polymorphic as
possible: Zipper a not Zipper Window.

® This is usually, but not always a good thing.

® For example, each window is tagged with a
‘polymorphic’ type that must be in Haskell’s
Integral class.

® But these are only ever instantiated to Int.

Totality

® This project is feasible because most of the
functions are structurally recursive.

® But there’s still work to do.Why is this
function total?

focusLeft (Zipper [] X rs) =

let (y : ys) = reverse (X : rs)

in Zipper [] VYV VS

More totality

® One case which required more work.

® One function finds a window with a given
id, and then move left until it is in focus.

® Changed to compute the number of moves
necessary and move that many steps.

Extraction problems

® [he basic extracted code is a bit rubbish:
® uses unsafeCoerce (too much);

® uses Peano numbers, extracted Cogq
booleans, etc.

® uses extracted Coq data types for
Zippers;

® generates ‘non-idiomatic’ Haskell.

Customizing extraction

® [here are various hooks to customize the
extracted code:

® inlining functions;

® using Haskell data types;

® realizing axioms.

Danger!

® Using (a =b) v (a # b) is much more
informative than Bool.

® But we'd like to use ‘real’ Haskell booleans:

Extract Inductive sumbool =>
"Bool" ["True" "False"].

® Plenty of opportunity to shoot yourself
in the foot!

User defined data types

® Coq generated data types do not have the
same names as the Haskell original.

® The extracted file exports ‘too much’.

® Solution:

® Customize extraction.

® Write a sed script that splices in a new
module header & data types.

Interfacing with Haskell

® |'d like to use Haskell’s data structures for
finite maps and dictionaries.

® Re-implementing them in Coq is not an
option.

® Add the APl as Axioms to Cogq...

® .. but also need to postulate properties.

¢ Diagnhosis: axiom addiction!

Type classes

® Haskell’s function to check if an element
occurs in a list:

elem :: Eq a => a -> [a] -> Bool.
® A Coq version might look like:

Variable a : Set.

Variable cmp : forall (x y : a),

{x =y} + {x <> y}.

Definition elem : a -> list a ->

Extracted code

® Extracting this Coq code generates functions
of type:

_elem :: (a -> a -> Bool) ->
a -> [a] -> bool.
® Need a manual ‘wrapper function’

elem :: Eq a => a -> [a] -> Bool

elem = elem (==)

More type class
headaches

® \We need to assume the existence of
Haskell’s finite maps:

Axiom FMap : Set -> Set -> Set.
Axiom 1insert : forall (k a : Set),

k -> a -> FMap k a -> FMap k a.

® |n reality, these functions have additional type
class constraints...

Another dirty fix

® Need another sed script to patch the types
that Coq generates:

s/insert :: /insert :: Ord al => /g

® Not pretty...

® Lesson: Gallina is not the same as Haskell.

And now...

® Extraction & post-processing yields a drop-
in replacement for the original Haskell

module.

® [hat passes the xmonad test suite.

Verification

® So far, this gives us totality (under certain
conditions).

® |'ve proven a few QuickCheck properties
in Cogq.

® Some properties are trivial; some are more
work. But this we know how to do!

Conclusions

® Formal verification can complement, but
not replace a good test suite.

® Extraction can introduce bugs!

® |f you want to do formal verification, but
need sed to fix’ your code, something is

wrong...

Looking ahead

® There is plenty of work to be done on
tighter integration between proof assistants
and programming languages.

® You don’t want to write all your code in
Cogq; but interacting with another

programming language all happens through
extraction.

® \What are the alternatives?

