
The semantics of version control

Wouter Swierstra

March 31, 2014

1



VERSION CONTROL IS HARD

I There is a variety of complex version control systems:
I Dropbox
I CVS
I Subversion
I Git
I Mercurial
I Darcs
I . . .

I How do these systems work?

2



GIT FOR COMPUTER SCIENTISTS

3



DARCS PATCH THEORY

4



A QUESTION FROM A COLLEAGUE

Why work on the semantics of version control? There are
plenty of existing tools out there that work just fine.

5



A QUESTION FROM A COLLEAGUE

Why work on the semantics of programming languages?
There are plenty of existing languages out there that work
just fine.

6



VERSION CONTROL AND PROGRAMMING LANGUAGES

I Version control systems manage shared mutable state;
I We have plenty of logics for reasoning about (programs

using) shared mutable state:
I Hoare logic;
I Separation logic;
I Refinement calculus;
I . . .

I Version control systems should be designed with such a
logic in mind.

7



TERMINOLOGY

I Version control systems manage a repository, consisting of
some data stored on disk;

I This data exists on two levels:
I the raw data stored on disk;
I the internal model of this data that is managed by the

version control system;

I For example, many version control systems have the
following internal model:
I text files are a (linked) list of lines;
I binary files are a blob of bits.
I but timestamps are ignored.

8



MORE TERMINOLOGY

I Users can edit the raw data stored in a repository. The
version control system may observe these changes to the
raw data.

I The corresponding change to the internal model will be
called a patch.

I A version control system maintains a history, the sequence
of patches that have lead to the current state.

I Patches may be communicated across repositories – but
this does not always work.

9



A TRIVIAL VERSION CONTROL SYSTEM

Suppose we want to define the semantics of a trivial version
control system managing a single binary file.

I Define the internal model – how to represent the file?
I Define predicates observing properties of this model –

what can we observe?
I Define operations on this model as Hoare triples:

I initialize the repository;
I modify the file;
I delete the file.

10



INTERNAL MODEL

We define the type of our internal model M, assuming some
valid set of file names F:

M := ε | (F,Bits)
Bits :=(0 | 1) ∗

11



PREDICATES

I If (the internal model of) the repository is (f ,c) then we say
the predicate f 7→ c holds;

I If (the internal model of) the repository is ε then we say the
predicate ∅ holds.

We will write M � p when the predicate p holds in the
repository M.

12



OPERATIONS

{∅} create f {f 7→ ε }
{f 7→ c} replace f c d {f 7→ d}
{f 7→ ε } remove f {∅}

13



SEQUENTIAL COMPOSITION

We can reason about the sequential composition of two patches
c0 and c1 using the usual rule from Hoare logic:

{P} c0 {Q} {Q} c1 {R}
{P} c0;c1 {R}

Example:

{∅} create f ; replace f ε 010 {f 7→ 010}

14



EXAMPLE

Another example:

{∅} create f ; replace f ε 010; replace f 010 ε; remove f {∅}

Is this the same as skip?

15



CONFLICTS

I Suppose we start with a repository satisfying f 7→ 00;
I Programmer A modifies (his local copy of) f , pushes his

patch so the repository now satifies f 7→ 10;
I Programmer B modifies (his local copy of) f to 01. What

happens when he tries to push his patch, replace 00 01?
I The precondition of his patch is not satisfied – we have a

conflict.

16



HANDLING CONFLICTS

I Programmer B can discard his patch;
I Programmer B can remove Programmer A’s patch from

their shared repository;
I Programmer B can update his patch to replace 10 01;
I or update his patch to replace 10 11.

17



BEYOND HOARE LOGIC

I What if we want to have multiple files in our repositories?
I Patches now refer to the complete state of the repository. . .
I which means that you can only share changes if you agree

on everything. . .

18



MULTIPLE FILES IN A SINGLE DIRECTORY

I Define the internal model – how to represent the files?
I Define predicates observing properties of this model –

what can we observe?
I Define operations on this model as Hoare triples:

I add an empty file;
I modify a file;
I delete a file.

19



INTERNAL MODEL

We can model the repository as a partial map from file names
to their contents:

M :=F ⇀ Bits

Now we define a pair of predicates on such finite maps:

M � f 7→ c iff M(f ) = c
M � f 67→ iff f 6∈ dom (M)

20



OPERATIONS

{f 67→} add f {f 7→ ε }
{f 7→ ε } remove f {f 67→}
{f 7→ c} replace f c d {f 7→ d}

21



FRAME RULE

The predicate P ∗Q holds if we can split a repository into two
disjoint parts that satisfy P and Q respectively.

The frame rule from separation logic now states:

{P} c {Q}
{P ∗ R} c {Q ∗ R}

Provided mod(c)∩ fv(R) = /0

22



LOCAL REASONING

Suppose one programmer modifies a file f and wants to
commit his patch. In the meantime, a second programmer has
committed a new empty file g. Do we have a conflict?

{f 7→ 1} replace f 1 0 {f 7→ 0}
{f 7→ 1 ∗ g 7→ ε } replace f 1 0 {f 7→ 0 ∗ g 7→ ε }

23



‘FREE VARIABLES’

We can now define the ‘free variables’ mentioned by our
predicates:

fv (f 67→) = {f }
fv (f 7→ c) = {f }

Variables is a bad choice of name. In practice, these will not be
variables in the programming language sense, but rather
concrete addresses – such as filenames, directory paths, or
linenumbers.

24



MODIFIED ‘VARIABLES’

Next, we define the sets of files modified by the various
patches:

mod (add f ) = {f }
mod (remove f ) = {f }
mod (replace f c d) = {f }
mod (c0;c1) = mod (c0)∪mod (c1)

25



DERIVED OPERATIONS

We may want to group a series of related patches into one
atomic patch:

{P} c {Q}
{P} atomic c {Q}

This way we can avoid rolling back into any intermediate state.

Using such an operation we can define new operations:

rename f g c
= atomic (add g; replace g ε c; replace f c ε; remove f )

and calculate their associated semantics.

26



WHAT ELSE?

I In the same style we can model:
I text files as linked lists of lines;
I (nested) directories;
I structured data, such as CSV.

I Using control structures, we can model the branching and
merging of repositories.

27



FURTHER WORK

I What is the relationship with bidirectional
transformations?

I What are the metatheorems that we can (or should) prove?
I How does this relate to existing revision control systems?
I . . .

28


