What is a proof?
How can I convince my proof assistant that a proposition holds?
Proof languages

• ‘Mizar’ – domain specific language.

• ‘HOL’ – a small core theory; tactics may be built into the proof assistant.

• ‘Coq’ – proof terms generated by tactics.

• ‘Agda’ – raw proof terms.
Even

data Even : N → Set where
 Base : Even 0
 Step : Even n → Even (suc (suc n))
Even

data Even : ℕ → Set where
 Base : Even 0
 Step : Even n → Even (suc (suc n))

even1024 : Even 1024
even1024 = ...

There’s a clear need for automation…
Type theory

Type theory is a language for \textit{computation} and \textit{proof}.

\textit{It no longer seems possible to distinguish the discipline of programming from constructive mathematics.}

Martin L"of; Constructive Mathematics and Computer Programming.
An alternative definition

data Empty : Set where

data True : Set where
 tt : True

even? : ℕ -> Set
even? zero = True
even? (suc zero) = Empty
even? (suc (suc n)) = even? n
An alternative definition

data Empty : Set where

data True : Set where
 tt : True

even? : ℕ -> Set
even? zero = True
even? (suc zero) = Empty
even? (suc (suc n)) = even? n

even1024 : even? 1024
even1024 = tt
Proof-by-reflection

\[
\text{even} : \text{even? \(n\)} \Rightarrow \text{Even \(n\)} \\
\text{soundness \(\text{zero, } e\)} = \text{Base} \\
\text{soundness \(\text{suc zero, } ()\)} \\
\text{soundness \(\text{suc (suc } n\), } e\) = \text{Step (soundness \(n\), } e\)} \\
\text{even1024} : \text{Even 1024} \\
\text{even1024} = \text{soundness 1024 } tt
\]
Even – again

even+ : Even n -> Even m -> Even (n + m)
even+ Base e2 = e2
even+ (Step e1) e2 = Step (even+ e1 e2)

simple : ∀ {n} → Even n → Even (n + 1024)
simple e = …
Proof-by-reflection

• Works well if you have single, fixed domain:
 • parity of constants;
 • equations over a ring;
 • propositions in first-order logic…

• But what if you don’t know this *a priori*?
Auto in Agda

• We’ve been thinking about how to provide general purpose lightweight proof automation – a bit like auto in Coq.

• Key ingredient: Agda’s reflection mechanism.
Reflection API

data Term : Set where
 -- Variable applied to arguments.
 var : (x : ℕ) (args : List (Arg Term)) → Term
 -- Constructor applied to arguments.
 con : (c : Name) (args : List (Arg Term)) → Term
 -- Identifier applied to arguments.
 def : (f : Name) (args : List (Arg Term)) → Term
 -- Different kinds of λ-abstraction.
 lam : (v : Visibility) (t : Term) → Term
 -- Pi-type.
 pi : (t₁ : Arg Type) (t₂ : Type) → Term
 -- A sort.
 sort : Sort → Term
 -- Anything else.
 unknown : Term
Demo
Proof automation

• A single function for proof automation:

 \texttt{auto : N \to HintDB \to Term \to Term}

• Implemented in ‘safe’ Agda;

• Even if it may fail to produce the Term you were hoping for…
How auto works

1. Quote the current goal;
2. Translate the goal to my own Term data type;
3. Run Prolog resolution with this Term as goal;
4. Build an Agda AST from this result;
5. Unquote the AST.
1. Quote the current goal;

2. Translate the goal to my own Term data type;

3. **Run Prolog resolution with this Term as goal**;

4. Build an Agda AST from this result;

5. Unquote the AST.
data Term (n : ℕ) : Set where
 var : (x : Fin n) → Term n
 con : (s : TermName) (ts : List (Term n)) → Term n

unify : (t₁ t₂ : Term m) → Maybe (Subst m)
Terms and unification

data Term (n : ℕ) : Set where
 var : (x : Fin n) → Term n
 con : (s : TermName) (ts : List (Term n)) → Term n

unify : (t₁ t₂ : Term m) → Maybe (Subst m)
unify t₁ t₂ = unifyAcc t₁ t₂ nil

unifyAcc : (t₁ t₂ : Term m) → Subst m → Maybe (Subst m)
Terms and unification

```
data Term (n : ℕ) : Set where
  var : (x : Fin n) → Term n
  con : (s : TermName) (ts : List (Term n)) → Term n

unify : (t₁ t₂ : Term m) → Maybe (Subst m)
unify t₁ t₂ = unifyAcc t₁ t₂ nil

unifyAcc : (t₁ t₂ : Term m) → Subst m → Maybe (Subst m)

(Ignoring details about number of variables)```
Prolog rules

record Rule (n : N) : Set where
  constructor rule
  field
    conclusion : Term n
    premises : List (Term n)

A ‘hint database’ is a list of rules
while there are open goals
  apply each rule to try to resolve the next goal
  if this succeeds
    add premises of the rule to the open goals
    continue the resolution
  otherwise fail and backtrack
Prolog resolution

while there are open goals
apply each rule to try to resolve the next goal
if this succeeds
add premises of the rule to the open goals
continue the resolution
otherwise fail and backtrack

Idea: encode this (possibly) infinite process as a coinductive data type
Resolution

data SearchSpace (m : ℕ) : Set where
  fail : SearchSpace m
  retn : Subst m → SearchSpace m
  step : (Rule → ∞ (SearchSpace m)) → SearchSpace m

resolveAcc : Maybe (Subst m) → List (Goal m) → SearchSpace m
resolveAcc nothing _ = fail
resolveAcc (just subst) [] = retn s
resolveAcc (just subst) (goal :: goals) = step next
  where
    next : Rule m → ∞ (SearchSpace m)
    next r =
      let subst' = unifyAcc goal (conclusion r) subst in
      resolveAcc subst' (premises r ++ goals)
Resolution

• It’s easy to kick off the resolution process:

\[
\text{resolve} : \text{Goal } m \rightarrow \text{SearchSpace } m \\
\text{resolve } g = \text{resolveAcc} (\text{just nil}) [ g ]
\]

• I’m ignoring the generation of free variables – which makes things pretty messy…

• I haven’t said anything about the hint database yet.
Search trees

data SearchTree (A : Set) : Set where
  fail : SearchTree A
  retn : A → SearchTree A
  fork : List (∞ (SearchTree A)) → SearchTree A

toTree : Rules → SearchSpace m → SearchTree (Subst m)
toTree hints fail = fail
toTree hints (retn s) = retn s
toTree hints (step f) = fork (map (\r → toTree (f r)) hints)

(Ignoring forcing and guardedness)
Alternatives

• Apply every rule at most once;

• Assign priorities to the order in which rules may be applied;

• Limit the applications of some rules – like transitivity.

• …
Finding solutions

• We can use a simple depth-bounded search

\[
\text{dbs} : (\text{depth} : \mathbb{N}) \rightarrow \text{SearchTree A} \rightarrow \text{List A}
\]

• Or implement breadth-first search;

• Or any other traversal of the search tree.
Missing pieces

• Conversion from AgdaTerms to our Term type;
• Constructing hint databases;
• Building an AgdaTerm from a list of rules that have been applied;
• Adding error messages.
Type classes for cheap!
Reflections

• Lots of limitations:
  • first-order;
  • no information from local context;
  • slowish.

• But it works!
Conclusion

It no longer seems possible to distinguish the discipline of programming from constructive mathematics
Conclusion

It no longer seems possible to distinguish the discipline of programming from the construction of mathematics.