
The Semantics of Version Control
Wouter Swierstra

With thanks to Andres Löh, Marco Vassena, and Victor Cacciari Miraldo

1

Robbert

2

Workshop on
Realistic Program Verification

3

Workshop on
Realistic Program Verification
• Programming

4

Workshop on
Realistic Program Verification
• Programming

• Verification

5

Workshop on
Realistic Program Verification
• Programming

• Verification

• Realistic

6

Workshop on
things Robbert likes
• Formalized metatheory in Coq

• Separation logic

• Collaborative open source software development

7

Who here uses version control?

8

Who here is happy with the
system they use?

9

Ask any seasoned developer about a long-delayed merge ...
and watch the blood drain out of his or her face.
 - Bryan O'Sullivan1

1 Making Sense of Revision-Control Systems, Communications of the ACM, Vol. 52 No. 9, Pages 56-62

10

Version control systems
Version control systems are like C compilers:2

2 With apologies to Xavier.

11

Version control systems
Version control systems are like C compilers:2

• they solve a hard problem

2 With apologies to Xavier.

12

Version control systems
Version control systems are like C compilers:2

• they solve a hard problem

• but it's hard to predict their exact behaviour

2 With apologies to Xavier.

13

Version control systems
Version control systems are like C compilers:2

• they solve a hard problem

• but it's hard to predict their exact behaviour

• their design can be ad-hoc

2 With apologies to Xavier.

14

Version control systems
Version control systems are like C compilers:2

• they solve a hard problem

• but it's hard to predict their exact behaviour

• their design can be ad-hoc

• and they don't have a formal semantics.

2 With apologies to Xavier.

15

Ancient history (circa 2005)
Before git and mercurial were as popular as they are today...

Darcs is a distributed revision control system, written in Haskell.

The darcs manual contains an appendix specifying The theory
of patches on which it is based.

16

Andres Löh
How can we describe

version control systems
more formally?

17

A principled approach to
version control

Submitted in 2007...

18

Rejection
A fine example of how to write a bad formal methods paper...

1. Ignore all previous notations and invent your own...

2. Make your new notation as misleading as possible...

3. Produce results that are mathematically impressive but
completely useless...

...

19

What do version control
systems do?

20

They manage access to
mutable state.

21

There are logics for
reasoning about this!

22

Terminology
Version control systems manage a repository, consisting of
data stored on disk.

This data exists on two levels:

1. The raw data stored on disk;

2. The internal model of this data, managed by the VCS

These are two different things.

23

Common models
For example, most VCS have the following internal model:

• text files are a (linked) list of lines;

• binary files are blobs of bits;

• each file has permissions (which are tracked)

• but timestamps are ignored.

24

Back to programming languages
• A VCS's internal model is a 'heap'

• A patch is some change to a repositories internal model,
that may shared between repositories.

• Patches modify the 'heap' – we should define their
semantics using a suitable logic.

25

A trivial version control system
Define a version control system that tracks a single binary file.

• What is the internal model?

• What predicates can we formulate that observe properties
of the model?

• What operations are there on this model?

26

Internal model

We define the type of our internal model , assuming some
valid set of file names :

27

Predicates

• If (the internal model of) the repository is then we say
the predicate holds;

• If (the internal model of) the repository is then we say the
predicate holds.

We will write when satisfies the predicate .

28

Operations
We can define three operations that manipulate the repository
as Hoare triples:

29

Sequential composition
We can now combine patches using the familiar rules for
sequential composition of statements:

Such a sequence of patches records the history of a repository.

30

Conflicts

When applying a patch to a repository , for which
 , we say that causes a conflict in the repository .

This definition does not mention Alice and Bob.

31

What about multiple files?

• Hoare logic requires the pre- and postconditions to specify
the entire heap.

• This does not scale to more complex repository models...

32

Separation logic

33

Internal model & predicates
Suppose we want to model a repository with multiple binary files.

The internal model is a partial map from filenames to bits:

There are two predicates:

34

Operations

These preconditions refer to the smallest possible footprint.

How can we add files to a non-empty repository?

35

Separating conjunction

The separating conjunction holds iff we can
partition into two disjoint parts, and , such that

 and .

36

The frame rule

Provided does not modify files mentioned by .

Of course, we need to prove soundness of the frame rule for
our system (and have formalized the proof in Coq).

37

The frame rule
We can use the frame rule to add new files to non-empty
repositories:

Provided does not mention – in other words, we can add a
file to any repository not yet containing .

38

Independence
Using the frame rule we can specify when two patches are
independent – that is they modify different parts of the
repository.

Lemma: Independent patches commute.

This formalizes the intuition that you can avoid conflicts by
working on different files.

39

Beyond binary files
Of course, restricting ourselves to binary files is unrealistic.

Realistic version control systems must handle text files, built
from individual lines.

Can we use the same mathematical structures to model this?

Let's start by restricting ourself to a single text file.

40

A dead end
We could model our file as a finite map from lines of text to
their contents:

But inserting or deleting lines require modifying all
subsequent lines – they need to be shifted up or down.

Such invasive changes are likely to cause unnecessary conflicts.

41

A better approach
Rather than model the lines as a 'fixed sized array', we want to
represent the file as a linked list.
Separation logic is specifically designed for reasoning about
pointers and complex memory structures.

42

Lines of text

Given some (abstract) type representing the labels for every line, we can
define a new model for our repository:

Every model associates with a line labelled by :

• the line contents at 'heap location'

• the next line at 'heap location' .
43

Predicates
As we saw previously, we can choose two basic predicates to describe
the internal model of a repository:

We will sometimes write:

44

Operations
We can define three operations to manipulate the file:

45

Observations
• Once we prove soundness of the frame rule, we can re-use

our previous results – independent patches still commute;

• This opens the door to more clever pointer tricks, such as
swapping the contents of two lines.

46

What else?
We can model:

• (nested) directories;

• metadata, such as file permissions;

• using control flow, like conditionals, we can mimic
branching and merging – even if I'd like a more convincing
story here.

47

What next?
• Does it scale?

• All these semantics have the same structure, can we exploit
this to define more realistic systems modularly?

• Can we define an algebraic semantics that is sound with
respect to the separation logic semantics?

48

Beyond lines of text
'All' version control systems are based around traditional Unix
tools such as diff.

These tools work very well if you're interested in tracking line-
based changes – such as changes to C programs.

But this can lead to strange behaviour...

49

Example: comma-separated-
values
Name, Mark
Alice, 8
Bob, 6
Carroll, 7

50

Example: comma-separated-
values
Name, Mark, Date
Alice, 8, 1/12/2015
Bob, 6, 1/12/2015
Carroll, 7, 1/12/2015

51

Example: comma-separated-
values
Name, Mark, Date
Alice, 8, 1/12/2015
Bob, 6, 1/12/2015
Carroll, 7.5, 1/12/2015

Conflict!

52

Version control of
(semi)structured data
Apply programming technology to this domain:

• A domain specific language for defining file formats

• Generate parser & pretty printer

• Generate diff and merge algorithms

Using datatype generic programming!

53

Closure
As the fruits of programming-language research become more
widely understood, programming is going to become a much
more mathematical craft.
 – John Reynolds

54

Closure
As the fruits of programming-language research become more
widely understood, programming is going to become a much
more mathematical craft.
 – John Reynolds

We would love the same to be true of software development.

55

Questions

56

