Heterogenous binary random-access lists

Functional pearl

Wouter Swierstra

Utrecht University
• Lists are one of the very first data types that we teach undergraduates learning functional programming.
Lists

- Lists are one of the very first data types that we teach undergraduates learning functional programming.

- Students that go on to *industry* use more efficient structures to store large amounts of data, such as finite maps or balanced binary trees.
• Lists are one of the very first data types that we teach undergraduates learning functional programming.

• Students that go on to *industry* use more efficient structures to store large amounts of data, such as finite maps or balanced binary trees.

• Students that stay in *academia* to do a PhD use heterogeneous lists (aka HLists) to write evaluators for lambda calculi.
Heterogeneous and efficient?

Question: Can we define a data structure that is both heterogeneous and efficient?
Question: Can we define a data structure that is both heterogeneous and efficient?

This is not a theoretical problem

Christiansen et al. wrote in their paper on Dependently Typed Haskell in Industry at ICFP last year:

the experience of profiling Crucible showed that linear access... imposed an unacceptable overhead on the simulator
This pearl demonstrates how to implement *heterogeneous binary random-access lists* in Agda.

- the same API as heterogeneous lists:
 - an empty structure (`Nil`);
 - an operation to add a new element to the front (`Cons`);
 - an operation to access elements (`lookup` or `!`)

All these operations are total and type-safe.

- no coercions or additional lemmas needed to type check.
I won’t try to cover the whole paper in this talk – but instead present *homogeneous* binary random-access lists, originally due to Okasaki.

The heterogeneous version follows naturally from this, by indexing a data structure with a binary random-access list storing the types of all the values it contains.
To achieve super linear access, we need to shift from lists to trees.

In a perfect world, we only ever have to store 2^n elements...

This is easy to do in a perfectly balanced binary tree of depth n
To achieve super linear access, we need to shift from lists to trees.

In a perfect world, we only ever have to store 2^n elements...

This is easy to do in a perfectly balanced binary tree of depth n

data Tree (a : Set) : Nat → Set where
Leaf : a → Tree a Zero
Node : Tree a n → Tree a n → Tree a (Succ n)
Accessing elements in a tree

To denote a particular value stored in a tree of depth n, we need to n steps telling us to continue in the left subtree or the right subtree.

```haskell
data Path : Nat → Set where
  Here   : Path Zero
  Left   : Path n → Path (Succ n)
  Right  : Path n → Path (Succ n)

lookup : Tree a n → Path n → a
lookup (Node t₁ t₂) (Left p) = lookup t₁ p
lookup (Node t₁ t₂) (Right p) = lookup t₂ p
lookup (Leaf x)     Here       = x
```

Note: the indices ensure we that this function is total.
YOU CAN'T ASSUME EVERYTHING IS A POWER OF 2!

ANY NUMBER CAN BE WRITTEN AS A SUM OF POWERS OF 2
A *binary random-access list* consists of a list of perfect binary trees of increasing depth. At the i-th position in this list, there may or may not be a perfect binary tree of depth i.
Binary random-access lists storing three elements
Binary random-access lists storing four elements
Binary random-access lists storing five elements
Every number can be written as a sum of powers of two.

A number’s representation in binary determines the shape of the binary random-access list storing that many elements.
Binary numbers

Every number can be written as a sum of powers of two.

A number’s representation in binary determines the shape of the binary random-access list storing that many elements.

```haskell
data Bin : Set where
  End   : Bin
  One   : Bin → Bin
  Zero  : Bin → Bin

bsucc : Bin → Bin
bsucc End   = One End
bsucc (One b) = Zero (bsucc b)
bsucc (Zero b) = One b
```
Random access lists

\[
\text{data } \text{RAL} (a : \text{Set}) (n : \text{Nat}) : \text{Bin} \rightarrow \text{Set} \ \text{where}
\]

\[
\begin{align*}
\text{Nil} & : \text{RAL} a n \text{ End} \\
\text{Cons}_1 & : \text{Tree} a n \rightarrow \text{RAL} a (\text{Succ} n) b \rightarrow \text{RAL} a n (\text{One} b) \\
\text{Cons}_0 & : \text{RAL} a (\text{Succ} n) b \rightarrow \text{RAL} a n (\text{Zero} b)
\end{align*}
\]

• the binary number counts the number of elements and uniquely determines the shape of our random-access list
• the number \(n \) increases as we go down the list – the next tree is going to have more elements (unlike vectors, for example)
• we usually start counting from \(n = \text{Zero} \), but it’s useful to be a bit more general.
We can now define a type \(\text{Pos} \ n \ b \) that denotes an element stored in a RAL \(a \ n \ b \):

\[
\text{data} \ \text{Pos} \ (n : \text{Nat}) : \text{Bin} \to \text{Set} \ \text{where} \\
\text{Here} : \text{Path} \ n \to \text{Pos} \ n \ (\text{One} \ b) \\
\text{There}_0 : \text{Pos} \ (\text{Succ} \ n) \ b \to \text{Pos} \ n \ (\text{Zero} \ b) \\
\text{There}_1 : \text{Pos} \ (\text{Succ} \ n) \ b \to \text{Pos} \ n \ (\text{One} \ b)
\]

Each position traverses the outer list of trees, ending with a path of depth \(n \).

\[
\text{lookup} : \text{RAL} \ a \ n \ b \to \text{Pos} \ n \ b \to a
\]
Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:

```
cons : a → RAL a Zero b → RAL a Zero (bsucc b)
```
Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:

\[
\text{cons} : \ a \to \text{RAL} \ a \ \text{Zero} \ b \to \text{RAL} \ a \ \text{Zero} \ (\text{bsucc} \ b)
\]

But we quickly get stuck – we cannot make any recursive calls as the ‘tail’ of the binary random-access list stores larger trees.
Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:

\[
\text{cons} : a \rightarrow \text{RAL } a \text{ Zero } b \rightarrow \text{RAL } a \text{ Zero } (\text{bsucc } b)
\]

But we quickly get stuck – we cannot make any recursive calls as the ‘tail’ of the binary random-access list stores larger trees.

Instead, we need to define a more general operation that adds a tree of depth \(n \) to a binary random-access list:

\[
\text{consTree} : \text{Tree } a \ n \rightarrow \text{RAL } a \ n \ b \rightarrow \text{RAL } a \ n \ (\text{bsucc } b)
\]
Conclusions

• We can extend this to the heterogeneous case:

```haskell
data HRAL : RAL U n b → Set where ...
```

• Despite the apparent complexity, writing an ‘efficient’ lambda calculus evaluator written using heterogeneous binary random-access lists is no harder than using heterogeneous lists.

• ‘Easy’ to port to Haskell in 130 lines of code...
Conclusions

• We can extend this to the heterogeneous case:

```haskell
data HRAL : RAL U n b → Set where ...
```

• Despite the apparent complexity, writing an ‘efficient’ lambda calculus evaluator written using heterogeneous binary random-access lists is no harder than using heterogeneous lists.

• ‘Easy’ to port to Haskell in 130 lines of code...

• ...of which 10% is language extensions pragmas
Conclusions

• We can extend this to the heterogeneous case:

```haskell
data HRAL : RAL U n b → Set where ...
```

• Despite the apparent complexity, writing an ‘efficient’ lambda calculus evaluator written using heterogeneous binary random-access lists is no harder than using heterogeneous lists.

• ‘Easy’ to port to Haskell in 130 lines of code...

• ...of which 10% is language extensions pragmas

Choose the right datastructure

- and ensure that your type indices capture the key invariants.
Question: Can we define a data structure that is both heterogeneous and efficient?

Results: This pearl demonstrates how to implement heterogeneous binary random-access lists in Agda.

- the same API as heterogeneous lists;
- All these operations are total and type-safe; no coercions or additional lemmas needed to type check.

Key insight: any number can be expressed as a sum of powers of two; any number of elements can be stored in a series of perfect trees of increasing depth.