%;% Utrecht University

Heterogenous binary random-access lists

Functional pearl

Wouter Swierstra

Utrecht University



« Lists are one of the very first data types that we teach undergraduates learning functional

programming.



« Lists are one of the very first data types that we teach undergraduates learning functional

programming.

+ Students that go on to industry use more efficient structures to store large amounts of data,

such as finite maps or balanced binary trees.



« Lists are one of the very first data types that we teach undergraduates learning functional

programming.

+ Students that go on to industry use more efficient structures to store large amounts of data,

such as finite maps or balanced binary trees.

+ Students that stay in academia to do a PhD use heterogeneous lists (aka HLists) to write

evaluators for lambda calculi.



Question: Can we define a data structure that is both heterogeneous and efficient?



Heterogeneous and efficient?

Question: Can we define a data structure that is both heterogeneous and efficient?
This is not a theoretical problem

Christiansen et al. wrote in their paper on Dependently Typed Haskell in Industry at ICFP last year:

the experience of profiling Crucible showed that linear access... imposed an unacceptable

overhead on the simulator



This pearl demonstrates how to implement heterogeneous binary random-access lists in Agda.

+ the same API as heterogeneous lists:

* an empty structure (Nil);
+ an operation to add a new element to the front (Cons);
+ an operation to access elements (Lookup or !'!)

All these operations are total and type-safe.

* no coercions or additional lemmas needed to type check.



| won't try to cover the whole paper in this talk - but instead present homogeneous binary

random-access lists, originally due to Okasaki.

The heterogeneous version follows naturally from this, by indexing a data structure with a binary
random-access list storing the types of all the values it contains.



To achieve super linear access, we need to shift from lists to trees.
In a perfect world, we only ever have to store 2" elements...

This is easy to do in a perfectly balanced binary tree of depth n



To achieve super linear access, we need to shift from lists to trees.
In a perfect world, we only ever have to store 2" elements...

This is easy to do in a perfectly balanced binary tree of depth n

NV ON

n=0

data Tree (a : Set) : Nat — Set where
Leaf : a — Tree a Zero

Node : Tree a n — Tree a n — Tree a (Succ n)



Accessing elements in a tree

To denote a particular value stored in a tree of depth n, we need to n steps telling us to continue in

the left subtree or the right subtree.

data Path : Nat — Set where
Here : Path Zero
Left : Path n — Path (Succ n)
Right : Path n — Path (Succ n)

lookup : Tree a n — Path n — a

lookup (Node tg ty) (Left p) = lookup tg p
lookup (Node tg tp) (Right p) = lookup t; p
lookup (Leaf x) Here =IPX

Note: the indices ensure we that this function is total.



YOU CAN'T ASSUME
E\IEII!THIHG IS A POWER OF 2!




A binary random-access list consists of a list of perfect binary trees of increasing depth.

At the i-th position in this list, there may or may not be a perfect binary tree of depth i.












Every number can be written as a sum of powers of two.

A number’s representation in binary determines the shape of the binary random-access list

storing that many elements.



Every number can be written as a sum of powers of two.

A number’s representation in binary determines the shape of the binary random-access list

storing that many elements.

data Bin : Set where
End : Bin
One : Bin — Bin
Zero : Bin — Bin

bsucc : Bin — Bin
bsucc End = One End
bsucc (One b) = Zero (bsucc b)

bsucc (Zero b) = One b



Random access lists

data RAL (a : Set) (n : Nat) : Bin — Set where
Nil : RAL a n End
Cons7; : Tree a n — RAL a (Succ n) b — RAL a n (One b)
Consg : RAL a (Succ n) b — RAL a n (Zero b)

+ the binary number counts the number of elements and uniquely determines the shape of
our random-access list

+ the number n increases as we go down the list - the next tree is going to have more
elements (unlike vectors, for example)

+ we usually start counting from n = Zero, but it's useful to be a bit more general.



We can now define a type Pos n b that denotes an element stored inaRAL a n b:

data Pos (n : Nat) : Bin — Set where
Here : Path n — Pos n (One b)
Thereg : Pos (Succ n) b — Pos n (Zero b)
There; : Pos (Succ n) b — Pos n (One b)

Each position traverses the outer list of trees, ending with a path of depth n.

lookup : RALanb — Posnb — a



Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:

cons : a — RAL a Zero b — RAL a Zero (bsucc b)



Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:
cons : a — RAL a Zero b — RAL a Zero (bsucc b)

But we quickly get stuck - we cannot make any recursive calls as the ‘tail’ of the binary

random-access list stores larger trees.



Adding elements

Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:
cons : a — RAL a Zero b — RAL a Zero (bsucc b)

But we quickly get stuck - we cannot make any recursive calls as the ‘tail’ of the binary

random-access list stores larger trees.

Instead, we need to define a more general operation that adds a tree of depth n to a binary

random-access list:

consTree : Tree a n — RAL anb — RAL a n (bsucc b)



+ We can extend this to the heterogeneous case:

data HRAL : RAL U n b — Set where ...

+ Despite the apparent complexity, writing an ‘efficient’ lambda calculus evaluator written

using heterogeneous binary random-access lists is no harder than using heterogeneous lists.

+ ‘Easy’ to port to Haskell in 130 lines of code...



+ We can extend this to the heterogeneous case:

data HRAL : RAL U n b — Set where ...

+ Despite the apparent complexity, writing an ‘efficient’ lambda calculus evaluator written

using heterogeneous binary random-access lists is no harder than using heterogeneous lists.

+ ‘Easy’ to port to Haskell in 130 lines of code...

+ ...of which 10% is language extensions pragmas



Conclusions

+ We can extend this to the heterogeneous case:

data HRAL : RAL U n b — Set where ...

+ Despite the apparent complexity, writing an ‘efficient’ lambda calculus evaluator written

using heterogeneous binary random-access lists is no harder than using heterogeneous lists.

+ ‘Easy’ to port to Haskell in 130 lines of code...

+ ...of which 10% is language extensions pragmas

Choose the right datastructure

- and ensure that your type indices capture the key invariants.



Recap

Question: Can we define a data structure that is both heterogeneous and efficient?
Results: This pearl demonstrates how to implement heterogeneous binary random-access lists in

Agda.

+ the same API as heterogeneous lists;

+ All these operations are total and type-safe; no coercions or additional lemmas needed to

type check.

Key insight: any number can be expressed as a sum of powers of two; any number of elements

can be stored in a series of perfect trees of increasing depth.



