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The enumeration problem

Problem: Given the declaration of an algebraic data type, list all its inhabitants.

Enumerating the booleans may return a finite list:

True, False

Whereas enumerating binary trees should result in an infinite list:

Leaf, Node Leaf Leaf, Node (Node Leaf Leaf) Leaf, ^^.

Enumerating polymorphic or dependent data types requires a bit more work.
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Why enumerate?

Property-based testing libraries, such as QuickCheck or SmallCheck in Haskell, try to falsify a given

statement by passing (random) inputs to a function and observing its outputs.

For this to work, we need a way to generate values of (arbitrary) data types.

Some libraries (such as QuickCheck) generate random values; others enumerate all possible inputs

up to some fixed size.

Can we define a data type generic enumeration algorithm?
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What is the type of an enumeration?

To enumerate the elements of some data type amounts to listing its elements. A first

approximation might be:

Enumerator a = List a

However, recursive data types typically have infinitely many inhabitants. If we want to reason

about our enumerators – the inhabitants obviously don’t fit in a finite list.
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What is the type of an enumeration?

We often model a datatype T as the (least) fixpoint of a functor:

µX . F X

• F 0 corresponds to the non-recursive parts of this data type (where 0 is the empty type):

e.g. the Leaf of a binary tree.

• F(F 0) corresponds to the inhabitants that unroll a single layer of recursion:

e.g. the tree Node Leaf Leaf (or just Leaf)

• F(F(F 0)) corresponds to trees at most ‘three constructors deep’

e.g. Node (Node Leaf Leaf) Leaf, …

Idea: We can exhaustively enumerate all the inhabitants by considering increasingly large finite

approximations.
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What is the type of an enumeration?

Consequently, we might consider the more general type for our enumerations:

Enumerator a = List a → List a

The intuition here is that, given a list of ‘smaller’ inhabitants we have already constructed, we

should be able to produce a new list of ‘bigger’ values.

Each data type declaration gives rise to such an enumerator.

But it’s useful to separate the co- and contravariant occurrences of a and define:

Enumerator : Set → Set → Set
Enumerator a b = List a → List b

When a and b coincide, we can iterate this function (starting with an empty list) to enumerate

increasingly ‘large’ inhabitants.
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Today’s program(me)

• Construct a collection of enumerator combinators – what properties should they satisfy?

• Use these to define an enumeration of all regular types

• Sketch how this approach also works for indexed functors

We will use Agda to define, specify and verify our enumerators.
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Atomic enumerations

Let’s start with 0 and 1 – the basic building blocks of our enumerations:

∅ : Enumerator A B
∅ = const []

pure : B → Enumerator A B
pure x = const [ x ]
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Combining enumerations

Next we may want to combine two enumerations somehow:

_⟨∣⟩_ : Enumerator A B → Enumerator A B → Enumerator A B
e1 ⟨∣⟩ e2 = λ as → (e1 as) ^+ (e2 as)

But different choices exist! What properties do we expect of this function?
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Combining enumerations: specification

Obviously, we should not discard elements:

inl : x ∈ xs → x ∈ (xs ^+ ys)
inr : y ∈ ys → y ∈ (xs ^+ ys)

But typically such enumeration combinators should alse be fair – in that they should not favour

elements drawn from either of its arguments.

Question: How should formulate this notion of fairness?
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Fairness

When considering completeness, we use the membership relation:

data _∈_ : A → List A → Set where
Here : x ∈ (x ∷ xs)
There : x ∈ xs → x ∈ (y ∷ xs)

Each such proof can readily be mapped to a natural number:

∣_∣ : x ∈ xs ^> Nat
∣ Here ∣ = Zero
∣ There p ∣ = Succ ∣ p ∣

This induces an ordering on membership proofs, written p ≺ q.

A fair enumeration respects this ordering.
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Fairness

Remember that we proved the following completeness properties:

inl : x ∈ xs → x ∈ (xs ^+ ys)
inr : y ∈ ys → y ∈ (xs ^+ ys)

Read constructively, they map positions in the input list to positions in the output list.

We can use these to formulate the property that inl and inr respect the ordering:

(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → inl p ≺ inr q
(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → inr p ≺ inl q

Note: that p and q need not refer to elements the same list.

The list append function satisfies the first property, but not the second.
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A fair combination

The usual interleave function does satisfy these two properties.

As a result, we define the combination of enumerators in terms of interleaving:

_⟨∣⟩_ : (e1 e2 : Enumerator A B) → Enumerator A B
e1 ⟨∣⟩ e2 = λ as → interleave (e1 as) (e2 as)

And we can write (obviously trivial) enumerators:

bools : Enumerator Bool Bool
bools = pure true ⟨∣⟩ pure false

But we’ll need more than just choice…
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Applicative enumerators

One useful combinator is the ‘applicative star’:

_⊛_ : Enumerator C (A → B) → Enumerator C A → Enumerator C B
(e1 ⊛ e2) = λ cs → concat (map (λ f → map f (e2 cs)) (e1 cs))

But this is defined by mapping and concatenating results—this is not fair!

A fairer definition flattens the transposed values:

_⊛_ : Enumerator C (A → B) → Enumerator C A → Enumerator C B
e1 ⊛ e2 = λ cs → merge (map (λ f → map f (e2 cs)) (e1 cs))

where
merge = concat . transpose

We can still show this definition respects the ordering on positions – only now we have to talk

about elements of a list-of-lists.
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Cartesian products

We can use the applicative star to compute the cartesian product of elements drawn from two

enumerators:

pairs : Enumerator C A → Enumerator C B → Enumerator C (A × B)
pairs e1 e2 = pure _,_ ⊛ e1 ⊛ e2
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Recursion

Now the hardest problem is—unsurprisingly–handling recursion.

Suppose we have the following Haskell data type for binary trees:

data Tree = Leaf | Node Tree Tree

If we naively try to compute the list of all trees up to a given depth, we might write:

trees : Nat ^> [Tree]
trees 0 = []
trees (n+1) = [ Leaf ] ^+ [Node l r | l <- trees n, r <- trees n]

But this is very inefficient!

In the same way the ‘naive’ Fibonacci definition fails to share recursive calls.
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Better recursion

Recall that our enumerators have the following type:

Enumerator a b = List a → List b

In the special case where a and b coincide, we can refer to all the previously generated elements:

rec : Enumerator a a
rec = id

We can now write a more efficient enumerator, that recycles the previously enumerated trees:

trees = pure Leaf ⟨∣⟩ pure Node ⊛ rec ⊛ rec
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Producing values

We can iteratively apply an enumerator to an initially empty list:

enumerate : Enumerator a a → Nat → List a
enumerate e n = iterate n e []

Or produce a stream of infinite values. Or count the number of finite binary trees of a given size.
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Generic enumerators

The enumerator for trees closely follows the data type declaration:

data Tree = Leaf | Node Tree Tree

trees = pure Leaf ⟨∣⟩ pure Node ⊛ rec ⊛ rec

This is no coincidence – we can define a datatype generic enumeration algorithm:

• we define a uniform represention for a family of data types;

• define an algorithm over this representation type.
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Generic programming

In Agda, we can write such generic programs by defining a universe:

data Desc : Set where
zero one var : Desc
_⊗_ _⊕_ : Desc → Desc → Desc

These descriptions correspond to the regular types: the empty type (zero), unit type (one),
recursion (var), products (⊗) and coproducts (⊕).

It is straightforward to map each such description to its corresponding functor:

J_K : Desc → (Set → Set)

And finally, we tie the recursive know, computing the fixpoint of such functors:

data Fix (D : Desc) : Set where
In : J D K (Fix D) → Fix D

20
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Generic enumerators

The generic enumerator is (almost) simple enough to fit on a single slide:

genumerate : (D : Desc) → Enumerator (Fix D) (J D K (Fix D))
genumerate zero = ∅
genumerate one = pure unit
genumerate var = rec
genumerate (D1 ⊕ D2) = (pure inj1 ⊛ genumerate D1)

⟨∣⟩ (pure inj2 ⊛ genumerate D2)
genumerate (D1 ⊗ D2) = pairs (genumerate D1) (genumerate D2)

This is reassuringly simple – but is it correct?
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Complete enumeration

We call an enumerator e : Enumerator a a complete if it eventually produces each possible

value. More formally:

Complete : (e : Enumerator a a) ^> Set
Complete e = ∀ (x : a) ^> ∃ n (x ∈ enumerate e n)

Is this generic enumerator complete?
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Completeness proof - sketch

Given x : Fix D we can compute the depth of x – this is the obvious candidate for n (the

number of iterations we apply the enumerating function).

But this proof requires strong induction – we need the completeness of all smaller depths, for

instance, when handling the case for products.

∀ (D : Desc) (x : Fix D) (n : Nat) ^> depth x ≤ n ^> x ∈ genumerate D n
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Enumerating dependent types

Somewhat surprisingly, defining a generic enumerator for dependent types (or more precisely,

indexed families) follows the same pattern and is not much harder:

• define a universe closed under zero, one, recursion, coproducts, products and sigma types

(dependent products);

• map descriptions to indexed functors (I → Set) → Set;

• define a generic enumeration function that unfolds one level of recursion - note that our

type for indexed enumerators changes:

((i : I) → List (A i)) → List B
If I is a (regular) algebraic data type, we can memoise such functions using a generic trie.

• iterate this function to produce a list of A i for a given index i.

• prove completeness by computing the (generic) depth and using strong induction.

24



Discussion

• Bad news: When enumerating dependent types – such as the well-typed lambda terms –

you may need to ‘invent’ indices. We can do this (assuming we know how to enumerate

values of the index set) – but it’s not very efficient.

• Good news: On the other hand, enumerating ‘index-first’ dependent types (where the value

of the index determines the constructors) is no harder than enumerating the regular types.

• And at least this generic definition makes precise where such choices arise – and allows

different heuristics to traverse the search space.
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Discussion

• Fairness is a property of our combinators; completeness is a property of our enumerators.

• There’s a huge body of related work on LeanCheck, QuickCheck, QuickChick, SmallCheck,

FEAT and many others – none are quite this simple.
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