A correct-by-construction conversion to combinators

AIM Delft

Wouter Swierstra

Utrecht University

Lambda calculus

The syntax of the lambda calculus should be familiar:

$$
\begin{gathered}
t:=x \\
\mid t t \\
\mid \lambda x . t
\end{gathered}
$$

There is one key reduction rule, describing evaluation:

$$
(\lambda x . t) t^{\prime} \rightarrow_{\beta} t\left[x \backslash t^{\prime}\right]
$$

Lambda calculus

The syntax of the lambda calculus should be familiar:

$$
\begin{gathered}
t:=x \\
\mid t t \\
\mid \lambda x . t
\end{gathered}
$$

There is one key reduction rule, describing evaluation:

$$
(\lambda x . t) t^{\prime} \rightarrow_{\beta} \quad t\left[x \backslash t^{\prime}\right]
$$

The lambda calculus has many applications!

Combinatory logic

$$
c:=x|c c| S|K| I
$$

- Variables, application and three combinators;
- Crucially, there is no lambda abstraction.

Combinatory logic

$$
c:=x|c c| s|k| \iota
$$

- Variables, application and three combinators;
- Crucially, there is no lambda abstraction.

Yet given the following reduction rules, this language is 'equally expressive' as lambda calculus:

- $K c_{1} c_{2} \rightarrow c_{1}$
- $S c_{1} c_{2} c_{3} \rightarrow\left(c_{1} c_{3}\right)\left(c_{2} c_{3}\right)$
- IC \rightarrow C
(And congruence rules for evaluating applications)

Bracket abstraction

To show that these two calculi are equally expressive, we can translate from lambda terms to combinators:

$$
\begin{aligned}
& \text { convert }: \text { Term } \rightarrow \text { Comb } \\
& \text { convert }\left(t_{1} t_{2}\right)=\left(\operatorname{convert} t_{1}\right)\left(\text { convert } t_{2}\right) \\
& \text { convert } x=x \\
& \text { convert }(\lambda x . t)=\operatorname{abs} x(\operatorname{convert} t)
\end{aligned}
$$

Bracket abstraction

To show that these two calculi are equally expressive, we can translate from lambda terms to combinators:

$$
\begin{aligned}
& \text { convert }: \text { Term } \rightarrow \text { Comb } \\
& \text { convert }\left(t_{1} t_{2}\right)=\left(\text { convert } t_{1}\right)\left(\text { convert } t_{2}\right) \\
& \text { convert } x=x \\
& \text { convert }(\lambda x . t)=\operatorname{abs} x(\text { convert } t)
\end{aligned}
$$

The process of 'bracket abstraction' modifies the (combinatory) term corresponding to the body of a lambda to have the same reduction behaviour:

$$
\begin{aligned}
a b s x x & =1 \\
a b s x c & =K c \quad \text { if } x \notin F V(c) \\
a b s x\left(c c^{\prime}\right) & =S(\operatorname{abs} x c)\left(a b s x c^{\prime}\right)
\end{aligned}
$$

Why?

- Reduction in combinatory logic no longer requires substitution.
- In the 1920's, there was a great deal of interest in 'logical minimalism' - finding the smallest foundations for mathematics.
- Combinators have been used as the target language for the compiling functional languages.

Why?

- Reduction in combinatory logic no longer requires substitution.
- In the 1920's, there was a great deal of interest in 'logical minimalism' - finding the smallest foundations for mathematics.
- Combinators have been used as the target language for the compiling functional languages.

Today's challenges

- How can we implement this translation?

Why?

- Reduction in combinatory logic no longer requires substitution.
- In the 1920's, there was a great deal of interest in 'logical minimalism' - finding the smallest foundations for mathematics.
- Combinators have been used as the target language for the compiling functional languages.

Today's challenges

- How can we implement this translation?
- How do we use types to ensure it is correct?

Naive implementation in Haskell

```
data Term = Var String
    | App Term Term
    | Lambda String Term
convert :: Lambda }->\mathrm{ SKI
convert (Var x) = Var x
convert (App t1 t2) = (convert t1) `App` (convert t2)
convert (Lam x t) = abs x (convert t)
```


Bracket abstraction

```
abs :: Var }->\mathrm{ SKI }->\mathrm{ SKI
abs x c
    | not (x `elem` fv c) = K c
abs x (Var y)
    x == y = I
abs x (App c1 c2) =
    S `App` (remove x c1)
        `App` (remove x c2)
```

But two bound variables can have the same name - yet refer to different binding sites...

De Bruijn indices (1972)

data Term = Var Int
App Term Term
Lambda Term

Now we no longer have named variables, but instead need to do bookkeeping with integers.

De Bruijn indices (1972)

data Term = Var Int
| App Term Term
| Lambda Term

Now we no longer have named variables, but instead need to do bookkeeping with integers.
This is still all too easy to get wrong.

Well scoped (Altenkirch-Reus 1999; Bird-Paterson 1999)

```
data Term a = Var a
    | App (Term a) (Term a)
    | Lambda (Term (Maybe a))
convert :: Term a > Comb a
abst :: Comb (Maybe a) -> Comb a
```

This is clearly better - but the type signature is not (yet) a specification.

Well typed terms（around 2005）

```
data Term : Ctx \(\rightarrow\) Type \(\rightarrow\) Set where
    app : Term「 \((\sigma \rightarrow \tau) \rightarrow\) Term「 \(\sigma \rightarrow\) Term「 \(\tau\)
    lam : Term ( \(\sigma::\) 「) \(\tau \rightarrow\) Term「 \((\sigma \rightarrow \tau)\)
    var : Ref \(\sigma\) 「 \(\rightarrow\) Term「 \(\sigma\)
convert : Term「 a \(\rightarrow\) Comb 「 a
abst : Comb (a : 「) b \(\rightarrow\) Comb「 (a \(\rightarrow\) b)
```

We can use this to establish that the translation to combinators is type preserving．．．．
But does it also preserve the intended semantics？

Semantics preservation in three easy steps

1. Define an evaluator for well-typed lambda terms;
2. Define a type for combinator terms that are also indexed by their semantics;
3. Show that the we can define the translation to combinators:
convert : (t : Term「 \quad) \rightarrow Comb 「 $\sigma($ eval t$)$
And achieve all of the above without writing any proof terms or type coercions.

Evaluating well typed lambda terms

There is a well known evaluator for well typed lambda terms:

```
eval : Term 「 \sigma -> (Env 「 -> Val \sigma)
eval (App f x) env = (eval f env) (eval x env)
eval (Lam t) env = \lambda x eval t (Cons x env)
eval (Var i) env = lookup i env
```


Combinatory terms－indexed by their semantics

```
data Comb : \((\Gamma: C t x) \rightarrow(\sigma:\) Type \() \rightarrow(\) Env \(\Gamma \rightarrow \sigma) \rightarrow\) Set where
    \(S: C o m b 「 \ldots(\lambda\) env \(x y z \rightarrow(x z)(y z))\)
    K : Comb「... ( \(\lambda\) env \(x\) y \(\rightarrow x\) )
    I : Comb 「 ... ( \(\lambda\) env \(x \rightarrow x\) )
    Var : (i : Ref \(\sigma\) 「) \(\rightarrow\) Comb 「 \(\sigma\) (lookup i)
    App : Comb「 \((\sigma \rightarrow \tau) f \rightarrow\) Comb「 \(\sigma x \rightarrow\) Comb「 \(\tau(\lambda\) env \(\rightarrow(f\) env) ( \(x\) env))
```


Combinatory terms－indexed by their semantics

```
data Comb : \((\Gamma: C t x) \rightarrow(\sigma:\) Type \() \rightarrow(E n v \Gamma \rightarrow \sigma) \rightarrow\) Set where
    S : Comb 「 ... ( \(\lambda\) env x y z \(\rightarrow(x z)(y z))\)
    K : Comb 「 ... ( \(\lambda\) env \(x\) y \(\rightarrow x\) )
    I : Comb 「 ... ( \(\lambda\) env \(x \rightarrow x\) )
    Var : (i : Ref \(\sigma\) 「) \(\rightarrow\) Comb 「 \(\sigma\) (lookup i)
    App : Comb「 \((\sigma \rightarrow \tau) f \rightarrow\) Comb「 \(\sigma x \rightarrow\) Comb「 \(\tau(\lambda\) env \(\rightarrow(f\) env) ( x env))
```

Now all that we still need to do is define the desired conversion：

```
convert : (t : Term「 \sigma) -> Comb 「 \sigma (eval t)
```


Conversion to combinators

```
convert : (t : Term 「 \sigma) > Comb 「 \sigma (eval t)
```



```
convert (Var i) = Var i
convert (Lam t) = abs (convert t)
```

The first two cases are easy and 'obviously correct'.
What about the abs function?

Correct by construction bracket abstraction

```
abs : Comb (\sigma :: Г) \tau f -> Comb 「 ( }\sigma->\tau)(\lambda\mathrm{ env x }->\textrm{f}(\mathrm{ (Cons x env))
abs S = App K S
abs K = App K K
abs I = App K I
abs (App f x) = App (App S (abs f)) (abs x)
abs (Var Top) = I
abs (Var (Pop i)) = App K (Var i)
```

The abs function turns the body of lambda into a combinator that behaves precisely as the desired lambda abstraction!

Why does this work?

This seems like a parlour trick - a correct by construction conversion without doing any proofs.
This only works because the direct proof appeals only to induction hypotheses and a lemma about abs - which we rolled into the correct by construction definition of the abs function.

As a result, we can fold the proof into the entire development.
But surely this breaks for anything more complicated?

Beyond SKI

The SKI combinators are not the only choice of combinators.
Alternatives are more careful about handling applications:
$\operatorname{abs}\left(\operatorname{App} t_{1} t_{2}\right)=\operatorname{App}\left(\operatorname{App} S\left(\operatorname{abs} t_{1}\right)\right)\left(a b s t_{2}\right)$
If t_{1} or t_{2} do not use the most recently bound variable, we can short-cut the translation and discard it immediately.

We can introduce two new combinators:

B $f \mathrm{~g} x=(\mathrm{f} x) \mathrm{g}$
$C f g x=f(g x)$

The problem

We need to test which combinator (S, B, or C) to use for every application.
Using named variables, we might write:

```
abs x (App th t 
    | x `elem' (fv th)
        && x `elem' fv t }\mp@subsup{t}{2}{\prime}=\ldots\mathrm{ use S
    | 'elem' (fv t t ) = ... use B
    | 'elem' (fv t 2) = ... use C
    | otherwise = ... use K
```

But why does this preserve types? Let alone semantics...

co-de Bruijn

We don't just care about which variables may be in scope - but also need to know whether they are used or not.

In Agda, it's better to shift to a different representation of variables:
data Term (Γ : Ctx) : Subset $\Gamma \rightarrow$ Type \rightarrow Set where

What are the constructors?

co－de Bruijn

We don＇t just care about which variables may be in scope－but also need to know whether they are used or not．

In Agda，it＇s better to shift to a different representation of variables：
data Term（ Γ ：Ctx）：Subset $\Gamma \rightarrow$ Type \rightarrow Set where
What are the constructors？


```
Var : (i : Ref \sigma「) -> Term 「 (singleton i) \sigma
Lam : Term (\sigma :: 「) \Delta \tau -> Term「 (pop \Delta) ( \sigma -> \tau)
```


Choosing the best combinator

Using this representation，we know exactly which variables are used in both branches of the application：

App ：Term「 $\Delta_{1}(\sigma \rightarrow \tau) \rightarrow$ Term「 $\Delta_{2} \sigma \rightarrow \operatorname{Term} 「\left(\Delta_{1} \cup \Delta_{2}\right) \tau$
By inspecting Δ_{1} and Δ_{2} ，we distinguish four cases：
－both Δ_{1} and Δ_{2} use the bound variable of type σ－use S
－Δ_{1} uses the freshly bound variable of type σ ，but Δ_{2} does not－use B
－Δ_{2} uses the freshly bound variable of type σ ，but Δ_{1} does not－use C
－neither Δ_{1} nor Δ_{2} use the freshly bound variable－use K
We can define a type preserving＇optimising＇translation in the same style．

Choosing the best combinator

Using this representation，we know exactly which variables are used in both branches of the application：

App ：Term「 $\Delta_{1}(\sigma \rightarrow \tau) \rightarrow$ Term「 $\Delta_{2} \sigma \rightarrow \operatorname{Term} 「\left(\Delta_{1} \cup \Delta_{2}\right) \tau$
By inspecting Δ_{1} and Δ_{2} ，we distinguish four cases：
－both Δ_{1} and Δ_{2} use the bound variable of type σ－use S
－Δ_{1} uses the freshly bound variable of type σ ，but Δ_{2} does not－use B
－Δ_{2} uses the freshly bound variable of type σ ，but Δ_{1} does not－use C
－neither Δ_{1} nor Δ_{2} use the freshly bound variable－use K
We can define a type preserving＇optimising＇translation in the same style． And establish correctness without using an（external）proof．

Conclusions

- Such correct by construction 'proofs' work - but it took me more than one try to find the right definitions;
- This presentation loses how these definitions are found.
- I typically found myself ensuring type preservation first, checking my definitions and starting a proof of correctness, before folding this back into the types themselves.
- The choice of variable binding makes this problem either trivial or very hard.

Self advertisement

If you liked this talk, check out:

- How to write a lambda calculus evaluator with logarithmic lookup times (Hetergeneous binary random access lists JFP 2020)
- How to calculate datastructures from their specification using type isomorphisms (with Ralf Hinze, MPC 2022) - leading to even more?

