Calculating datastructures

Ralf Hinze and Wouter Swierstra

TU Kaiserslautern and Utrecht University

Calculating datastructures

There are tons of (purely functional) datastructures:

- binary random access lists;
- 2-3 trees;
- finger trees;
- binomial heaps;
- Braun trees;
- ...

Calculating datastructures

There are tons of (purely functional) datastructures:

- binary random access lists;
- 2-3 trees;
- finger trees;
- binomial heaps;
- Braun trees;
- ...

Who comes up with these?

Purely functional datastructures

...data structures that can be cast as numerical representations are surprisingly common, but only rarely is the connection to a number system noted explicitly.

Calculating datastructures

- We will fix a particular API, keeping the numerical representation we use abstract for the moment.
- We can then show how different choices of numerical representation lead to different implementations of this API.
- Using the properties our API must satisfy, we can apply familiar type isomorphisms to calculate the datastructure that implements the API.

All these calculations can be performed and verified in Agda.

Flexible arrays - the interface

```
Number : Set
Index : Number }->\mathrm{ Set
Array : Number }->\mathrm{ Set }->\mathrm{ Set
lookup : Array n elem }->\mathrm{ (Index n }->\mathrm{ elem)
tabulate : (Index n }->\mathrm{ elem) }->\mathrm{ Array n elem
nil : Array 0 elem
cons : elem }->\mathrm{ Array n elem }->\mathrm{ Array (1 + n) elem
head : Array (1 + n) elem }->\mathrm{ elem
tail : Array (1 + n) elem }->\mathrm{ Array n elem
```


Take 0 : Peano numbers

```
data Peano : Set where
    zero : Peano
    succ : Peano \(\rightarrow\) Peano
data Index : Peano \(\rightarrow\) Set where
    izero : Peano (succ n)
    isucc : Peano \(n \rightarrow\) Peano (succ n)
```


Towards calculation...

lookup : Array n elem \rightarrow (Index $n \rightarrow$ elem)
tabulate : (Index $\mathrm{n} \rightarrow$ elem) \rightarrow Array n elem

These two functions should form an isomorphism.
If we perform induction on n, we can calculate a definition of Array.

Index isomorphisms

$$
\begin{aligned}
\operatorname{Index}(0) & \cong \perp \\
\operatorname{Index}(1) & \cong \top \\
\operatorname{Index}(m+n) & \cong \operatorname{Index}(m) \uplus \operatorname{Index}(n) \\
\operatorname{Index}(m \cdot n) & \cong \operatorname{Index}(m) \times \operatorname{Index}(n) \\
\operatorname{Index}\left(n^{m}\right) & \cong \operatorname{Index}(m) \rightarrow \operatorname{Index}(n)
\end{aligned}
$$

Note - these isomorphisms are not unique! There are many different choices:

- interleaving vs appending
- column major vs row major
- ...

While these choices are all correct, they lead to different datastructures.

Calculating with generic tries

We'll try to find an isomorphism given by the lookup and tabulate functions to 'discover' an implementation of a datastructure.

If we 'calculate' this iso using familiar laws - we can hopefully use this to read off the datastructures that arise.

In particular, we'll use the laws of exponents:

$$
\begin{aligned}
x^{0} & \cong 1 \\
x^{1} & \cong X \\
X^{A+B} & \cong X^{A} \cdot X^{B} \\
X^{A \cdot B} & \cong\left(x^{B}\right)^{A}
\end{aligned}
$$

These should be familiar from high school - but can also be read as type isomorphisms.

Example: vectors - base case

```
proof
    (Index zero }->\mathrm{ elem)
    \cong -- Index-0 law
    ( }\perp->\mathrm{ elem)
    \cong -- law of exponents
    \top
    \cong -- use as definition
    Array zero elem
I
```


Example: vectors - inductive step

```
proof
    (Index (succ n) }->\mathrm{ elem)
    \cong -- definition of Index
    ((T \uplus Index n) }->\mathrm{ elem)
    \cong -- law of exponents
    (T }->\mathrm{ elem) }\times\mathrm{ (Index n }->\mathrm{ elem)
    \cong-- law of exponents
    elem × Array n elem
    \cong -- use as definition
    Array (succ n) elem
```

In this way, we have connected Peano naturals to vectors - but that's hardly interesting...

Binary numbers

```
data Leibniz : Set where
    0b : Leibniz
    _1 : Leibniz }->\mathrm{ Leibniz
    _2 : Leibniz -> Leibniz
convert : Leibniz }->\mathrm{ Peano
convert 0b = 0
convert (n 1) = convert n · 2 + 1
convert (n 2) = convert n · 2 + 2
```

This representation of binary numbers is unique.

From vectors to trees

I'll go through one of the two cases in some detail:

```
(Index (n 2) }->\mathrm{ elem)
\cong -- arithmetic on indices
( }\top\uplus\top\uplus| Index n \uplus Index n -> elem
\cong-- laws of exponents
elem }\times\mathrm{ elem }\times\mathrm{ (Index n }->\mathrm{ elem) }\times\mathrm{ (Index n }->\mathrm{ elem)
\cong -- recurse
elem }\times\mathrm{ elem }\times\mathrm{ Array n elem }\times\mathrm{ Array n elem
\cong -- use as definition
Array (n 2) elem
```


1-2 trees

In this style, we can (re)discover the type of 1-2 trees:

```
data Array : Leibniz \(\rightarrow\) Set \(\rightarrow\) Set where
    Leaf : Array 0b
    Node \(_{1}:\) elem \(\rightarrow\) Array n elem \(\rightarrow\) Array n elem \(\rightarrow\) Array ( n 1 ) elem
    \(\mathrm{Node}_{2}:\) elem \(\times\) elem \(\rightarrow\) Array n elem \(\rightarrow\) Array n elem \(\rightarrow\) Array ( n 2 2) elem
```

The construction of the isos give us the definition of lookup and tabulate for free.

1-2 trees

In this style, we can (re)discover the type of 1-2 trees:

```
data Array : Leibniz \(\rightarrow\) Set \(\rightarrow\) Set where
    Leaf : Array 0b
    Node \(_{1}:\) elem \(\rightarrow\) Array n elem \(\rightarrow\) Array n elem \(\rightarrow\) Array ( n 1 ) elem
    \(\mathrm{Node}_{2}:\) elem \(\times\) elem \(\rightarrow\) Array n elem \(\rightarrow\) Array n elem \(\rightarrow\) Array ( n 2 2) elem
```

The construction of the isos give us the definition of lookup and tabulate for free.
What about the other operations?

Example: a 1-2 tree with 17 elements

- Each node has 1 or 2 elements: just enough to ensure the remainding number of elements is even.
- Note that 'odd elements' are stored in one subtree and 'even elements' in the other.

Adding new elements

To add a new element to the 'front' of the tree, we distinguish three cases:

```
cons : elem }->\mathrm{ Array n elem }->\mathrm{ Array (succ n) elem
cons xo (Leaf) = Node }\mp@subsup{1}{1}{}\mp@subsup{x}{0}{}\mathrm{ Leaf Leaf
cons }\mp@subsup{x}{0}{}(\mp@subsup{N}{0Ne}{1}\mp@subsup{x}{1}{
cons }\mp@subsup{x}{0}{}(\mp@subsup{N}{Node}{2}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{\prime
```

- A Node ${ }_{1}$ becomes a Node 2 , with the new element at the front.
- A Node 2 becomes a Node_{1} - but we need to add the two elements to the respective subtrees.

Alternatives

Once we have this infrastructure, it is easy to explore variations..

```
(Index (n 2) }->\mathrm{ elem)
\cong -- arithmetic on indices
( }\rceil\uplus\mathrm{ Index (succ n) }\uplus\mathrm{ Index n }->\mathrm{ elem)
\cong-- laws of exponents
elem }\times\mathrm{ (Index (succ n) }->\mathrm{ elem) }\times\mathrm{ (Index n }->\mathrm{ elem)
\cong -- use as definition
Array (n 2) elem
```

Instead of having 1-2 nodes - we can have nodes with a single element.

Braun trees

```
data Array : Leibniz \(\rightarrow\) Set \(\rightarrow\) Set where
    Leaf : Array 0b elem
    Node \(_{1}:\) elem \(\rightarrow\) Array \(n \quad\) elem \(\rightarrow\) Array \(n\) elem \(\rightarrow\) Array (n 1) elem
    Node \(_{2} \quad:\) elem \(\rightarrow\) Array (succ n) elem \(\rightarrow\) Array \(n\) elem \(\rightarrow\) Array (n 2) elem
```

Each node stores a single element; the two subtrees may store a different number of elements, but differ by at most one.

Braun trees - example

For any given size, the shape of the tree is fixed.
Elements at 'odd' positions are in the left subtree; elements at 'even' positions in the right subtree.

Braun trees - origins ('92 and '83)

A Logarithmic Implementation of Flexible Arrays

Rob R. Hoogerwoord

Eindhoven University of Technology, department of Mathematics and Computing Science, postbus 513, 5600 MB Eindhoven, The Netherlands

References

[0] Braun, W., Rem, M.: A logarithmic implementation of flexible arrays. Memorandum MR83/4, Eindhoven University of Technology (1983).
[1] Dijkstra, Edsger W.: A discipline of programming. Prentice-Hall, Englewood Cliffs (1976).

Extending Braun trees

```
cons : elem }->\mathrm{ Array n elem }->\mathrm{ Array (succ n) elem
cons }\mp@subsup{x}{0}{}\mathrm{ (Leaf) = Node }\mp@subsup{1}{1}{}\mp@subsup{x}{0}{}\mathrm{ Leaf Leaf
```


The two subtrees swap! Every even element becomes odd and visa versa.

What else?

We go through a lot more details in the paper:

- explicit proofs of isomorphisms;
- computing index types for various structures;
- many more operations: cons, snoc, tail, lookup, etc.
- the calculation of other datastructures, such as random access lists;
- lots of pretty pictures

What next?

- Ko has already shown how to describe binary heaps as ornaments on skew binary numbers.

Can we reuse these ideas in this setting?

- Isomorphisms are quite a strong criteria - do weaker conditions suffice?
- Isomorphisms are quite a strong criteria - can we get more out of them by going cubical?
- Can the same kind of calculations be done for different datastructures, beyond flexible arrays?

Questions?

