
A well-known representation of monoids and its application to the

function “vector reverse”

A pearl for JFP; presented at ICFP

Wouter Swierstra

Utrecht University

1



What is a definition?

2



Natural numbers and addition

data ℕ : Set where

zero : ℕ

succ : ℕ → ℕ

_+_ : ℕ → ℕ → ℕ

zero + m = m

(succ k) + m = succ (k + m)

3



Natural numbers and addition

data ℕ : Set where

zero : ℕ

succ : ℕ → ℕ

_+_ : ℕ → ℕ → ℕ

zero + m = m

(succ k) + m = succ (k + m)

3



Vectors

data Vec (A : Set) : ℕ → Set where

nil : Vec A zero

cons : A → Vec A n → Vec A (succ n)

append : Vec A n → Vec A m → Vec A (n + m)

append nil ys = ys

append (cons x xs) ys = cons x (append xs ys)

Why does this typecheck?

4



Vectors

data Vec (A : Set) : ℕ → Set where

nil : Vec A zero

cons : A → Vec A n → Vec A (succ n)

append : Vec A n → Vec A m → Vec A (n + m)

append nil ys = ys

append (cons x xs) ys = cons x (append xs ys)

Why does this typecheck?

4



Vectors

data Vec (A : Set) : ℕ → Set where

nil : Vec A zero

cons : A → Vec A n → Vec A (succ n)

append : Vec A n → Vec A m → Vec A (n + m)

append nil ys = ys

append (cons x xs) ys = cons x (append xs ys)

Why does this typecheck?

4



Why does this type check?

append : Vec A n → Vec A m → Vec A (n + m)

append nil ys = {ys}

Goal: Vec A (zero + m)

Have: Vec A m

By definition, zero + m is equal to m.

5



Why does this type check?

append : Vec A n → Vec A m → Vec A (n + m)

append (cons x xs) ys = {cons x (append xs ys)}

Goal: Vec A ((succ k) + m)

Have: Vec A (succ (k + m))

By definition, (succ k) + m is equal to succ (k + m).

The inductive structure of addition and append line up precisely.

The only equalities we get ‘for free’ are those that hold definitionally.

6



Why does this type check?

append : Vec A n → Vec A m → Vec A (n + m)

append (cons x xs) ys = {cons x (append xs ys)}

Goal: Vec A ((succ k) + m)

Have: Vec A (succ (k + m))

By definition, (succ k) + m is equal to succ (k + m).

The inductive structure of addition and append line up precisely.

The only equalities we get ‘for free’ are those that hold definitionally.

6



Why does this type check?

append : Vec A n → Vec A m → Vec A (n + m)

append (cons x xs) ys = {cons x (append xs ys)}

Goal: Vec A ((succ k) + m)

Have: Vec A (succ (k + m))

By definition, (succ k) + m is equal to succ (k + m).

The inductive structure of addition and append line up precisely.

The only equalities we get ‘for free’ are those that hold definitionally.

6



Vector reverse

snoc : Vec A n → A → Vec A (succ n)

snoc nil y = cons y nil

snoc (cons x xs) y = cons x (snoc y xs)

reverse : Vec A n → Vec A n

reverse nil = nil

reverse (cons x xs) = snoc (reverse xs) x

Taking quadratic time to reverse a list is bad…

7



Vector reverse

snoc : Vec A n → A → Vec A (succ n)

snoc nil y = cons y nil

snoc (cons x xs) y = cons x (snoc y xs)

reverse : Vec A n → Vec A n

reverse nil = nil

reverse (cons x xs) = snoc (reverse xs) x

Taking quadratic time to reverse a list is bad…

7



8



A different difference list reversal

reverse-list : List A → List A

reverse-list xs = go xs nil

where

go : List A → (List A → List A)

go nil = id

go (cons x xs) = go xs . cons x

We can represent a list as a function from lists to lists, appending its elements to argument.

Eta expanding this definition gives rise to the ‘usual’ definition using an accumulating parameter.

\begin{shameless-self-promotion} And if you want to know how to reverse a list in constant

space, don’t miss Anton’s talk tomorrow. \end{shameless-self-promotion}

9



A different difference list reversal

reverse-list : List A → List A

reverse-list xs = go xs nil

where

go : List A → (List A → List A)

go nil = id

go (cons x xs) = go xs . cons x

We can represent a list as a function from lists to lists, appending its elements to argument.

Eta expanding this definition gives rise to the ‘usual’ definition using an accumulating parameter.

\begin{shameless-self-promotion} And if you want to know how to reverse a list in constant

space, don’t miss Anton’s talk tomorrow. \end{shameless-self-promotion}

9



Reversing vectors

reverse : Vec A n → Vec A m → Vec A (n + m)

reverse nil acc = acc

reverse (cons x xs) acc = {!reverse xs (cons x acc)!}

Error

Goal: Vec A ((succ k) + m))

Have: Vec A (k + (succ m))

This definition of reverse is a tail-recursive, using accumulating parameter – the structure is very

differently from addition!

What definition of addition lines up with this reversal function?

10



Reversing vectors

reverse : Vec A n → Vec A m → Vec A (n + m)

reverse nil acc = acc

reverse (cons x xs) acc = {!reverse xs (cons x acc)!}

Error

Goal: Vec A ((succ k) + m))

Have: Vec A (k + (succ m))

This definition of reverse is a tail-recursive, using accumulating parameter – the structure is very

differently from addition!

What definition of addition lines up with this reversal function?

10



Accumulating addition

addAcc : ℕ → ℕ → ℕ

addAcc zero m = m

addAcc (succ k) m = addAcc k (succ m)

reverseAcc : Vec A n → Vec A m → Vec A (addAcc n m)

reverseAcc nil acc = acc

reverseAcc (cons x xs) acc = reverseAcc xs (cons x acc)

11



Not quite…

reverse : Vec A n → Vec A n

reverse xs = {!reverseAcc xs nil!}

Error

Goal: Vec A n

Have: Vec A (addAcc n zero)

Remember the definition of addAcc:

addAcc : ℕ → ℕ → ℕ

addAcc zero m = m

addAcc (succ k) m = addAcc k (succ m)

12



Not quite…

reverse : Vec A n → Vec A n

reverse xs = {!reverseAcc xs nil!}

Error

Goal: Vec A n

Have: Vec A (addAcc n zero)

Remember the definition of addAcc:

addAcc : ℕ → ℕ → ℕ

addAcc zero m = m

addAcc (succ k) m = addAcc k (succ m)

12



Showing Agda who’s the boss

reverse : Vec A n → Vec A n

reverse xs = coerceVec proof (reverseAcc xs nil)

where

proof : addAcc n zero ≡ n

coerceVec : n ≡ m → Vec A n → Vec A m

13



Showing Agda who’s the boss

reverse : Vec A n → Vec A n

reverse xs = coerceVec proof (reverseAcc xs nil)

where

proof : addAcc n zero ≡ n

coerceVec : n ≡ m → Vec A n → Vec A m

13



14



Difference naturals

DNat : Set

DNat = Nat → Nat

J_K : ℕ → DNatJ n K = λ m → m + n

reify : DNat → ℕ

reify dn = dn zero

15



Difference naturals are monoidal

dzero : DNat

dzero = id

_+_ : DNat → DNat → DNat

dn + dm = dm . dn

And three properties:

unit-right : ∀ dn → reify dn ≡ reify (dn + dzero)

unit-left : ∀ dn → reify dn ≡ reify (dzero + dn)

+-assoc : ∀ dn dm dk → reify (dn + (dm + dk)) ≡ reify ((dn + dm) + dk)

Each of these properties holds by definition.

16



Difference naturals are monoidal

dzero : DNat

dzero = id

_+_ : DNat → DNat → DNat

dn + dm = dm . dn

And three properties:

unit-right : ∀ dn → reify dn ≡ reify (dn + dzero)

unit-left : ∀ dn → reify dn ≡ reify (dzero + dn)

+-assoc : ∀ dn dm dk → reify (dn + (dm + dk)) ≡ reify ((dn + dm) + dk)

Each of these properties holds by definition.

16



Difference naturals are monoidal

dzero : DNat

dzero = id

_+_ : DNat → DNat → DNat

dn + dm = dm . dn

And three properties:

unit-right : ∀ dn → reify dn ≡ reify (dn + dzero)

unit-left : ∀ dn → reify dn ≡ reify (dzero + dn)

+-assoc : ∀ dn dm dk → reify (dn + (dm + dk)) ≡ reify ((dn + dm) + dk)

Each of these properties holds by definition.

16



Proof by expanding definitions

reify dn

= -- definition of reify

dn zero

= -- definition of id

dn (id zero)

= -- definition of reify

reify (dn . id)

= -- definition of dzero

reify (dn . dzero)

= -- definition of addition

reify (dzero + dn)

17



Indexing with difference naturals

Can we define vector reverse using difference naturals?

We can almost complete the desired definition…

revAcc : (dm : DNat) → Vec A n → Vec A (reify dm) → Vec A (dm n)

revAcc dm nil acc = acc

revAcc dm (cons x xs) acc = revAcc (dsucc dm) xs {!cons x acc!}

Goal: Vec A (dm (succ zero))

Have: Vec A (succ (dm zero)

We are trying to extend the accumulator using cons – but we don’t know how dm and cons interact.

18



The type of cons

Adding new elements to a vector:

cons : ∀ n → A → Vec A n → Vec A (succ n)

But we would like to accumulate elements as follows:

dcons : ∀ n dm → A → Vec A (dm n) → Vec A (dm (succ n))

• But when we kick off the computation, dm is the identity function - cons would suffice.

• In each recursive step, we increment dm and decrement n - allowing us to (re)use cons.

19



The type of cons

Adding new elements to a vector:

cons : ∀ n → A → Vec A n → Vec A (succ n)

But we would like to accumulate elements as follows:

dcons : ∀ n dm → A → Vec A (dm n) → Vec A (dm (succ n))

• But when we kick off the computation, dm is the identity function - cons would suffice.

• In each recursive step, we increment dm and decrement n - allowing us to (re)use cons.

19



The type of cons

Adding new elements to a vector:

cons : ∀ n → A → Vec A n → Vec A (succ n)

But we would like to accumulate elements as follows:

dcons : ∀ n dm → A → Vec A (dm n) → Vec A (dm (succ n))

• But when we kick off the computation, dm is the identity function - cons would suffice.

• In each recursive step, we increment dm and decrement n - allowing us to (re)use cons.

19



Vector reverse

revAcc :

∀ dm → (∀ k → A → Vec A (dm k) → Vec A ((dsucc dm) k)) →
Vec A n → Vec A (reify dm) → Vec A (dm n)

revAcc dm dcons nil acc = acc

revAcc dm dcons (cons x xs) acc = revAcc (dsucc m) dcons xs (dcons x acc)

reverse : Vec A n → Vec A n

reverse xs = revAcc dzero cons xs nil

20



Vector reverse

revAcc :

∀ dm → (∀ k → A → Vec A (dm k) → Vec A ((dsucc dm) k)) →
Vec A n → Vec A (reify dm) → Vec A (dm n)

revAcc dm dcons nil acc = acc

revAcc dm dcons (cons x xs) acc = revAcc (dsucc m) dcons xs (dcons x acc)

reverse : Vec A n → Vec A n

reverse xs = revAcc dzero cons xs nil

20



Using foldl

Functions with accumulating arguments can be written in terms of left folds:

reverse-list : List A → List A

reverse-list = foldl (flip cons) nil

where

foldl : (B → A → B) → B → List A → B

Why won’t this work for vectors?

21



Left folding vectors

reverse-vec : Vec A n → Vec A n

reverse-vec = foldl (flip {!cons!} ) {!nil!}

Goal: A → Vec A n → Vec A n

Have: A → Vec A n → Vec A (succ n)

22



Left folding vectors

Generalise foldl to work over a ℕ indexed B:

foldl-vec : (B : ℕ → Set) → (B k → A → B (succ k)) → B zero → Vec A n → B n

foldl-vec B step acc nil = acc

foldl-vec B step acc (cons x xs) = foldl-vec (B ∘ succ) step (step acc x) xs

The second case is not so obvious…

It counts down over (by induction on xs) and up (by precomposing with succ) at the same time!

reverse : Vec A n → Vec A n

reverse = foldl-vec (Vec A) (flip cons) nil

23



Left folding vectors

Generalise foldl to work over a ℕ indexed B:

foldl-vec : (B : ℕ → Set) → (B k → A → B (succ k)) → B zero → Vec A n → B n

foldl-vec B step acc nil = acc

foldl-vec B step acc (cons x xs) = foldl-vec (B ∘ succ) step (step acc x) xs

The second case is not so obvious…

It counts down over (by induction on xs) and up (by precomposing with succ) at the same time!

reverse : Vec A n → Vec A n

reverse = foldl-vec (Vec A) (flip cons) nil

23



But wait… there’s more!

There is nothing particular about natural numbers.

The Cayley representation of monoids as endofunctions works for any monoid – it’s not quite as

novel as the title of Hughes’s paper suggests.

Example: indexing a (decision) tree by a list of variables in scope.

But if we can get the monoidal equalities to hold definitionally…

24



But wait… there’s more!

There is nothing particular about natural numbers.

The Cayley representation of monoids as endofunctions works for any monoid – it’s not quite as

novel as the title of Hughes’s paper suggests.

Example: indexing a (decision) tree by a list of variables in scope.

But if we can get the monoidal equalities to hold definitionally…

24



25



Proof sketch - part 0

Suppose we fix A : Set as (the carrier of) a monoid.

The monoidal expressions over A are given by:

data Expr : Set where

_⊕_ : Expr A → Expr A → Expr A

zero : Expr A

var : A → Expr A

We can evaluate these expressions readily enough:

eval : Expr A → A

26



Proof sketch - part succ zero

We can define the mappings to/from their Cayley representation:

⟦_⟧ : Expr A → (Expr A → Expr A)

reify : (Expr A → Expr A) → Expr A

And we can use these to normalise any expression:

normalise : Expr A → Expr A

normalise e = reify ⟦ e ⟧

27



Proof sketch - part succ zero

We can define the mappings to/from their Cayley representation:

⟦_⟧ : Expr A → (Expr A → Expr A)

reify : (Expr A → Expr A) → Expr A

And we can use these to normalise any expression:

normalise : Expr A → Expr A

normalise e = reify ⟦ e ⟧

27



Proof sketch - part succ (succ zero))

We need to prove one lemma:

soundness : (e : Expr a) → eval (normalise e) ≡ eval e

And use this to write our monoid solver:

solve : (l r : Expr A)

-- both sides of an equation

→ eval (normalise l) ≡ eval (normalise r)

-- hopefully just refl

→ eval l ≡ eval r

28



Proof sketch - part succ (succ zero))

We need to prove one lemma:

soundness : (e : Expr a) → eval (normalise e) ≡ eval e

And use this to write our monoid solver:

solve : (l r : Expr A)

-- both sides of an equation

→ eval (normalise l) ≡ eval (normalise r)

-- hopefully just refl

→ eval l ≡ eval r

28



Proof sketch - part (succ (succ (succ zero)))

To call our solver - we only need to ‘quote’ the two sides of the equality:

example : (xs ys zs : List A) →
((xs ++ []) ++ (ys ++ zs)) ≡ ((xs ++ ys) ++ zs )

example xs ys zs =

let e₁ = (var xs ⊕ zero) ⊕ (var ys ⊕ var zs) in

let e₂ = (var xs ⊕ var ys) ⊕ var zs in

solve e₁ e₂ refl

The quoting can be automated using Agda’s reflection mechanism.

29



Back to the beginning

This construction works for any monoid…

In particular, for the natural numbers using accumulating addition.

reverse : Vec A n → Vec A n

reverse xs = coerceVec proof (reverseAcc xs nil)

where

proof : addAcc n zero ≡ n

proof = solve (var n ⊕ zero) (var n) refl

30



Back to the beginning

This construction works for any monoid…

In particular, for the natural numbers using accumulating addition.

reverse : Vec A n → Vec A n

reverse xs = coerceVec proof (reverseAcc xs nil)

where

proof : addAcc n zero ≡ n

proof = solve (var n ⊕ zero) (var n) refl

30



Recap

• The Cayley representation of a monoid satisfies the monoid laws by definition.

• This observation may be useful when writing functions accumulating monoid-indexed

results (depending on your tolerance for complicated type signatures).

• We can use this to write a monoid solver for equations that follow (exclusively) from the

monoidal identities.

31



Recap

• The Cayley representation of a monoid satisfies the monoid laws by definition.

• This observation may be useful when writing functions accumulating monoid-indexed

results (depending on your tolerance for complicated type signatures).

• We can use this to write a monoid solver for equations that follow (exclusively) from the

monoidal identities.

31



Recap

• The Cayley representation of a monoid satisfies the monoid laws by definition.

• This observation may be useful when writing functions accumulating monoid-indexed

results (depending on your tolerance for complicated type signatures).

• We can use this to write a monoid solver for equations that follow (exclusively) from the

monoidal identities.

31



Thank you!

31


