
Programming with dependent types

Beyond evaluating the simply typed lambda calculus

Wouter Swierstra

Utrecht University

1

From languages to data types

Given a description of a formal language, such as the untyped lambda calculus:

𝑡 ::=   𝑥 |   𝑡 𝑡 | 𝜆 𝑥 𝑡

The corresponding data type is easy to define:

data Term = Var String | App Term Term | Abs String Term

We can readily define functions over such data types by induction.

2

From languages to data types

Given a description of a formal language, such as the untyped lambda calculus:

𝑡 ::=   𝑥 |   𝑡 𝑡 | 𝜆 𝑥 𝑡
The corresponding data type is easy to define:

data Term = Var String | App Term Term | Abs String Term

We can readily define functions over such data types by induction.

2

From languages to data types

Given a description of a formal language, such as the untyped lambda calculus:

𝑡 ::=   𝑥 |   𝑡 𝑡 | 𝜆 𝑥 𝑡
The corresponding data type is easy to define:

data Term = Var String | App Term Term | Abs String Term

We can readily define functions over such data types by induction.

2

From typed languages to data types…

𝑥 ∶ 𝜎 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝜎

Γ ⊢ 𝑡1 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑡2 ∶ 𝜎
Γ ⊢ 𝑡1 𝑡2 ∶ 𝜏

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑡 ∶ 𝜏
Γ ⊢ 𝜆 𝑥 𝑡 ∶ 𝜎 → 𝜏

How do we model such languages?

3

From typed languages to data types…

𝑥 ∶ 𝜎 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝜎

Γ ⊢ 𝑡1 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑡2 ∶ 𝜎
Γ ⊢ 𝑡1 𝑡2 ∶ 𝜏

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑡 ∶ 𝜏
Γ ⊢ 𝜆 𝑥 𝑡 ∶ 𝜎 → 𝜏

How do we model such languages?

3

Representing typed languages

There are several different ways to restrict ourselves to well typed lambda terms:

• define a type checker and (dynamically) assert this invariant;

• using dependent types, introduce a predicate, characterizing the untyped lambda terms that

may be assigned a valid type. We then only consider the terms that have a proof that they

satisfy this predicate;

• introduce a data type exactly characterizing the terms of the simply typed lambda calculus.

4

Representing typed languages

There are several different ways to restrict ourselves to well typed lambda terms:

• define a type checker and (dynamically) assert this invariant;

• using dependent types, introduce a predicate, characterizing the untyped lambda terms that

may be assigned a valid type. We then only consider the terms that have a proof that they

satisfy this predicate;

• introduce a data type exactly characterizing the terms of the simply typed lambda calculus.

4

Representing typed languages

There are several different ways to restrict ourselves to well typed lambda terms:

• define a type checker and (dynamically) assert this invariant;

• using dependent types, introduce a predicate, characterizing the untyped lambda terms that

may be assigned a valid type. We then only consider the terms that have a proof that they

satisfy this predicate;

• introduce a data type exactly characterizing the terms of the simply typed lambda calculus.

4

Towards the simply typed lambda calculus

𝜎, 𝜏 ::=   𝜄 |   𝜎 → 𝜏

Syntax of types:

data U : Set where

ι : U

⇒ : U → U → U

Semantics of types:

⟦_⟧ : U → Set

⟦ ι ⟧ = ℕ

⟦ σ ⇒ τ ⟧ = ⟦ σ ⟧ → ⟦ τ ⟧

Here we have taken the base type to be natural numbers, but the choice does not matter.

5

Towards the simply typed lambda calculus

𝜎, 𝜏 ::=   𝜄 |   𝜎 → 𝜏
Syntax of types:

data U : Set where

ι : U

⇒ : U → U → U

Semantics of types:

⟦_⟧ : U → Set

⟦ ι ⟧ = ℕ

⟦ σ ⇒ τ ⟧ = ⟦ σ ⟧ → ⟦ τ ⟧

Here we have taken the base type to be natural numbers, but the choice does not matter.

5

Towards the simply typed lambda calculus

𝜎, 𝜏 ::=   𝜄 |   𝜎 → 𝜏
Syntax of types:

data U : Set where

ι : U

⇒ : U → U → U

Semantics of types:

⟦_⟧ : U → Set

⟦ ι ⟧ = ℕ

⟦ σ ⇒ τ ⟧ = ⟦ σ ⟧ → ⟦ τ ⟧

Here we have taken the base type to be natural numbers, but the choice does not matter.

5

From typing rules to intrinsically typed syntax

𝑥 ∶ 𝜎 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝜎

Γ ⊢ 𝑡1 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑡2 ∶ 𝜎
Γ ⊢ 𝑡1 𝑡2 ∶ 𝜏

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑡 ∶ 𝜏
Γ ⊢ 𝜆 𝑥 𝑡 ∶ 𝜎 → 𝜏

data Term : Ctx → U → Set where

var : σ ∈ Γ → Term Γ σ

app : Term Γ (σ ⇒ t) → Term Γ σ → Term τ

lam : Term (σ ∷ Γ) τ → Term Γ (σ ⇒ τ)

Ctx = List U

6

What is still missing?

I haven’t defined how to prove σ ∈ Γ – but this is easy less complicated:

data _∈_: U → Ctx → Set where

top : σ ∈ (σ ∷ Γ)

pop : σ ∈ Γ → σ ∈ (τ ∷ Γ)

If you squint a bit and ignore the fancy types, there are two constructors – just like for Peano

naturals.

This representation is sometimes referred to as ‘well typed De Bruijn’.

7

Reflection

Why go through all this trouble?

Statically enforcing that our terms are well typed:

• guarantee that we do not create unbound variables or ill typed terms;

• makes it easier to define functions that only work on well typed values;

• most importantly, it is fun and rewarding to program in this style.

8

Reflection

Why go through all this trouble?

Statically enforcing that our terms are well typed:

• guarantee that we do not create unbound variables or ill typed terms;

• makes it easier to define functions that only work on well typed values;

• most importantly, it is fun and rewarding to program in this style.

8

Reflection

Why go through all this trouble?

Statically enforcing that our terms are well typed:

• guarantee that we do not create unbound variables or ill typed terms;

• makes it easier to define functions that only work on well typed values;

• most importantly, it is fun and rewarding to program in this style.

8

Reflection

Why go through all this trouble?

Statically enforcing that our terms are well typed:

• guarantee that we do not create unbound variables or ill typed terms;

• makes it easier to define functions that only work on well typed values;

• most importantly, it is fun and rewarding to program in this style.

8

Evaluating lambda terms

The evaluator for the simply typed lambda calculus maps terms to their corresponding value:

eval : Term Γ σ → ⟦ σ ⟧

eval (app t₁ t₂) = (eval t₁) (eval t₂)

eval (lam t) = λ x → eval t

eval (var i) = ...

This almost works…

9

Environments

To define our evaluator, we need to accumulate an environment, storing values for all the free

variables:

data Env : Ctx → Set where

nil : Env []

cons : ⟦ σ ⟧ → Env Γ → Env (σ ∷ Γ)

lookup : Env Γ → σ ∈ Γ → ⟦ u ⟧

This is not just a list – but a heterogeneous list, storing values of different types.

10

Finally, a tagless evaluator

With all these types and definitions, we can finally complete our ‘tagless’ evaluator:

eval : Term Γ σ → Env Γ → ⟦ σ ⟧

eval (app t₁ t₂) env = (eval t₁ env) (eval t₂ env)

eval (lam t) env = λ x → eval t (cons x env)

eval (var i) env = lookup env i

It is amazing that this works at all!

Could you imagine trying to infer the type of eval?

11

Finally, a tagless evaluator

With all these types and definitions, we can finally complete our ‘tagless’ evaluator:

eval : Term Γ σ → Env Γ → ⟦ σ ⟧

eval (app t₁ t₂) env = (eval t₁ env) (eval t₂ env)

eval (lam t) env = λ x → eval t (cons x env)

eval (var i) env = lookup env i

It is amazing that this works at all!

Could you imagine trying to infer the type of eval?

11

Simon Peyton Jones: show me an example of a pro-

gram with dependent types...

12

Simon Peyton Jones: show me an example of a pro-

gram with dependent types...

...but not the evaluator for the simply typed lambda

calculus!

13

Overview

In the remainder of this talk I want to discuss three such examples, drawn from my own recent

work:

• Data structures

• Combinatory logic

• Compiler calculation

All three relate to this ‘simple’ evaluator…

14

Better data structures

15

Better data structures

A colleague from the algorithms group might say:

Are you fully nerd? You are representing

environments as lists. These have linear

lookup time and are unsuitable for any

term with more than ten variables.

Any reasonable evaluator should have a

lookup time logarithmic in the number of

bound variables.

16

Problem specification

We need to find an alternative data structure:

• a ‘flexible array’ supporting cons and lookup operations;

• all these operations must be total;

• the lookup operation should be logarithmic in the total number of entries;

• finally, the data structure needs to be heterogeneous, storing values of different types.

17

From lists to trees

To achieve super linear access, we need to shift from lists to trees.

n = 0 n = 1 n = 2

data Tree (a : Set) : ℕ → Set

leaf : a → Tree a zero

node : Tree a n → Tree a n → Tree a (succ n)

18

From lists to trees

To achieve super linear access, we need to shift from lists to trees.

n = 0 n = 1 n = 2

data Tree (a : Set) : ℕ → Set

leaf : a → Tree a zero

node : Tree a n → Tree a n → Tree a (succ n)

18

Accessing elements in a tree

To denote a particular value stored in a tree of depth n, we need to n steps telling us to continue in

the left subtree or the right subtree.

data Path : ℕ → Set where

here : Path zero

left : Path n → Path (succ n)

right : Path n → Path (succ n)

lookup : Tree a n → Path n → a

lookup (node t₁ t₂) (left p) = lookup t₁ p

lookup (node t₁ t₂) (right p) = lookup t₂ p

lookup (leaf x) here = x

Note: the indices ensure we that this function is total.

19

20

21

Binary random-access lists

A binary random-access list consists of a list of perfect binary trees of increasing depth.

At the 𝑖-th position in this list, there may or may not be a perfect binary tree of depth 𝑖.
The idea is in Okasaki’s classic book on ‘Purely functional data structures’ – but let’s reimplement

them enforcing the key invariants using dependent types.

22

Binary random-access lists storing three elements

,

23

Binary random-access lists storing four elements

, ,

24

Binary random-access lists storing five elements

, ,

25

Binary numbers

Every number can be written as a sum of powers of two.

A number’s representation in binary determines the shape of the binary random-access list

storing that many elements.

data Bin : Set where

end : Bin

one : Bin → Bin

zero : Bin → Bin

bsucc : Bin → Bin

bsucc end = one end

bsucc (one b) = zero (bsucc b)

bsucc (zero b) = one b

26

Binary numbers

Every number can be written as a sum of powers of two.

A number’s representation in binary determines the shape of the binary random-access list

storing that many elements.

data Bin : Set where

end : Bin

one : Bin → Bin

zero : Bin → Bin

bsucc : Bin → Bin

bsucc end = one end

bsucc (one b) = zero (bsucc b)

bsucc (zero b) = one b

26

Random access lists

data RAL (a : Set) (n : Nat) : Bin → Set where

nil : RAL a n end

cons₁ : Tree a n → RAL a (succ n) b → RAL a n (one b)

cons₀ : RAL a (succ n) b → RAL a n (zero b)

• the binary number counts the number of elements and uniquely determines the shape of

our random-access list

• the number n increases as we go down the list – the next tree is going to have more elements

(unlike vectors, for example)

• we usually start counting from n = zero, but it’s useful to be a bit more general.

27

Positions and lookup

We can now define a type Pos n b that denotes an element stored in a RAL a n b:

data Pos (n : Nat) : Bin → Set where

here : Path n → Pos n (one b)

there₀ : Pos (succ n) b → Pos n (zero b)

there₁ : Pos (succ n) b → Pos n (one b)

Each position traverses the outer list of trees, ending with a path of depth n.

lookup : RAL a n b → Pos n b → a

28

Adding elements

Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:

add : a → RAL a zero b → RAL a zero (bsucc b)

But we quickly get stuck – we cannot make any recursive calls as the ‘tail’ of the binary

random-access list stores larger trees.

Instead, we need to define a more general operation that adds a tree of depth n to a binary

random-access list:

addTree : Tree a n → RAL a n b → RAL a n (bsucc b)

29

Adding elements

Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:

add : a → RAL a zero b → RAL a zero (bsucc b)

But we quickly get stuck – we cannot make any recursive calls as the ‘tail’ of the binary

random-access list stores larger trees.

Instead, we need to define a more general operation that adds a tree of depth n to a binary

random-access list:

addTree : Tree a n → RAL a n b → RAL a n (bsucc b)

29

Adding elements

Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:

add : a → RAL a zero b → RAL a zero (bsucc b)

But we quickly get stuck – we cannot make any recursive calls as the ‘tail’ of the binary

random-access list stores larger trees.

Instead, we need to define a more general operation that adds a tree of depth n to a binary

random-access list:

addTree : Tree a n → RAL a n b → RAL a n (bsucc b)

29

Benchmarking in Haskell (homogeneous)

30

Benchmarking in Haskell (homogeneous)

31

Heterogeneous binary random access lists

• We can extend this to the heterogeneous case:

data HRAL : RAL U n b → Set where ...

• Despite the apparent complexity, writing an ‘efficient’ lambda calculus evaluator written

using heterogeneous binary random-access lists is no harder than using heterogeneous lists.

• The only hard part is converting ‘linear’ positions, σ ∈ Γ, to their corresponding position in a

random access list.

• Almost no code needs to change, compared to our previous implementation.

32

Conversion to combinatory logic

33

Conversion to combinatory logic

A colleague from logic department might say:

Are you fully nerd? The lambda calculus

is a language with binding! Working with

first order term rewriting systems, such

as those given by combinatory logic, is

much easier.

Can’t you convert your well typed lambda

terms to combinatory logic? And prove

that the translation preserves types and

semantics?

34

Combinatory logic

A language without lambdas:

𝑡 ::=   𝑥 |   𝑡 𝑡 | S | K | I

Instead of beta reduction or substitution, we have three simple reduction rules:

I 𝑥 ⟶ 𝑥
K 𝑥 𝑦 ⟶ 𝑥

S 𝑥 𝑦 𝑧 ⟶ (𝑥 𝑧) (𝑦 𝑧)

Somewhat surprisingly, these three combinators suffice to mimic lambda abstraction!

35

Combinatory logic

A language without lambdas:

𝑡 ::=   𝑥 |   𝑡 𝑡 | S | K | I

Instead of beta reduction or substitution, we have three simple reduction rules:

I 𝑥 ⟶ 𝑥
K 𝑥 𝑦 ⟶ 𝑥

S 𝑥 𝑦 𝑧 ⟶ (𝑥 𝑧) (𝑦 𝑧)

Somewhat surprisingly, these three combinators suffice to mimic lambda abstraction!

35

Bracket abstraction

The translation from (untyped) lambda terms to

combinatory logic is well established (Chapter 7).

We map variables (in lambda calculus) to vari-

ables (in combinatory logic); we map applications

to applications.

What about lambda abstractions?

36

Bracket abstraction

To translate lambda abstractions to combinatory

logic, we need an auxiliary function, sometimes

referred to as bracket abstraction.

The key idea is that, after translating the body of a

lambda, we add additional combinators to ensure

the (bound) variable is replaced accordingly.

37

Datatype design

𝑡 ::=   𝑥 |   𝑡 𝑡 | S | K | I

What should the type of our combinatory terms be?

data CL : Set

var : String → CL

app : CL → CL → CL

S K I : CL

This representation is not wrong – but it doesn’t tell us anything about the types involved!

translate : Term Γ σ → CL

In particular, there is no guarantee that this function maps well typed terms to well typed

combinators.

38

Datatype design

𝑡 ::=   𝑥 |   𝑡 𝑡 | S | K | I

What should the type of our combinatory terms be?

data CL : Set

var : String → CL

app : CL → CL → CL

S K I : CL

This representation is not wrong – but it doesn’t tell us anything about the types involved!

translate : Term Γ σ → CL

In particular, there is no guarantee that this function maps well typed terms to well typed

combinators.

38

Type preserving translation

To ensure types are preserved, we instead define a datatype for well typed terms in combinatory

logic:

data CL (Γ : Ctx) : U → Set where

var : σ ∈ Γ → CL Γ σ

app : CL Γ (σ ⇒ τ) → CL Γ σ → CL Γ τ

I : CL Γ (σ ⇒ σ)

K : CL Γ (σ ⇒ τ ⇒ σ)

S : ...

Now it is clear that the translation preserves types:

translate : Term Γ σ → CL Γ σ

39

Type preserving translation

To ensure types are preserved, we instead define a datatype for well typed terms in combinatory

logic:

data CL (Γ : Ctx) : U → Set where

var : σ ∈ Γ → CL Γ σ

app : CL Γ (σ ⇒ τ) → CL Γ σ → CL Γ τ

I : CL Γ (σ ⇒ σ)

K : CL Γ (σ ⇒ τ ⇒ σ)

S : ...

Now it is clear that the translation preserves types:

translate : Term Γ σ → CL Γ σ

39

Translation to combinatory logic

Most of the translation is now trivial:

translate : Term Γ σ → CL Γ σ

translate (app t₁ t₂) = app (translate t₁) (translate t₂)

translate (var i) = var i

translate (lam t) = abs (translate t)

where

abs : CL (σ ∷ Γ) τ → CL Γ (σ ⇒ τ)

The only real work is done by the bracket abstraction function, abs.

40

Bracket abstraction - the theory

41

Bracket abstraction – the implementation

-- the 'same' type as the lam constructor

abs : CL (σ ∷ Γ) τ → CL Γ (σ ⇒ τ)

-- the most recently bound variable is replaced by I

abs (var top) = I

-- other variables/combinators are wrapped by K

abs (var (pop j)) = app K (var j)

abs S = app K S

abs K = app K K

abs I = app K I

-- application introduces S and recurses

abs (app t₁ t₂) = app (app S (abs t₁)) (abs t₂)

All the types go through easily enough…

What about proving correctness?

42

Bracket abstraction – the implementation

-- the 'same' type as the lam constructor

abs : CL (σ ∷ Γ) τ → CL Γ (σ ⇒ τ)

-- the most recently bound variable is replaced by I

abs (var top) = I

-- other variables/combinators are wrapped by K

abs (var (pop j)) = app K (var j)

abs S = app K S

abs K = app K K

abs I = app K I

-- application introduces S and recurses

abs (app t₁ t₂) = app (app S (abs t₁)) (abs t₂)

All the types go through easily enough…

What about proving correctness? 42

Correctness – take 1

We define an evaluator for combinatory terms:

evalCL : CL Γ σ → Env Γ → ⟦ σ ⟧

evalCL K env = λ x y → x

evalCL I env = λ x → x

evalCL (app f e) env = (evalCL f env) (evalCL e env)

...

Now we only need to prove the obvious correctness statement:

correctness : (t : Term Γ σ) (env : Env Γ) → evalCL (translate t) env ≡ eval t env

43

Correctness – take 1

The proof itself is not very interesting – it requires one additional lemma:

abs-correct : (t : CL (σ ∷ Γ) τ) (env : Env Γ) (v : ⟦ σ ⟧) →

evalCL (abs t) env v ≡ evalCL t (v ∷ env)

This lemma makes precise that ‘bracket abstraction behaves like lambda abstraction’.

The proof follows from immediate induction.

If the proof is so obvious – can we make our translation correct by construction?

44

Correctness – take 1

The proof itself is not very interesting – it requires one additional lemma:

abs-correct : (t : CL (σ ∷ Γ) τ) (env : Env Γ) (v : ⟦ σ ⟧) →

evalCL (abs t) env v ≡ evalCL t (v ∷ env)

This lemma makes precise that ‘bracket abstraction behaves like lambda abstraction’.

The proof follows from immediate induction.

If the proof is so obvious – can we make our translation correct by construction?

44

Correctness - take 2

Let’s redefine our datatype for terms in combinatory logic.

Now they not only carry their type but also their (dynamic) semantics, i.e., the result of evaluation:

data CL : (Γ : Ctx) → (σ : U) → (Env Γ → ⟦ σ ⟧) → Set where

K : CL Γ (σ ⇒ (τ ⇒ σ)) (λ env → λ x y → x)

I : CL Γ (σ ⇒ σ) (λ env → λ x → x)

app : CL Γ (σ ⇒ τ) f → CL Γ σ t → CL Γ τ (f t)

...

Now we can specify the translation to combinatory logic that is correct by construction:

translate : (t : Term Γ σ) → CL Γ σ (eval t)

How is this function defined?

45

Correctness - take 2

Let’s redefine our datatype for terms in combinatory logic.

Now they not only carry their type but also their (dynamic) semantics, i.e., the result of evaluation:

data CL : (Γ : Ctx) → (σ : U) → (Env Γ → ⟦ σ ⟧) → Set where

K : CL Γ (σ ⇒ (τ ⇒ σ)) (λ env → λ x y → x)

I : CL Γ (σ ⇒ σ) (λ env → λ x → x)

app : CL Γ (σ ⇒ τ) f → CL Γ σ t → CL Γ τ (f t)

...

Now we can specify the translation to combinatory logic that is correct by construction:

translate : (t : Term Γ σ) → CL Γ σ (eval t)

How is this function defined?

45

Correctness - take 2

Let’s redefine our datatype for terms in combinatory logic.

Now they not only carry their type but also their (dynamic) semantics, i.e., the result of evaluation:

data CL : (Γ : Ctx) → (σ : U) → (Env Γ → ⟦ σ ⟧) → Set where

K : CL Γ (σ ⇒ (τ ⇒ σ)) (λ env → λ x y → x)

I : CL Γ (σ ⇒ σ) (λ env → λ x → x)

app : CL Γ (σ ⇒ τ) f → CL Γ σ t → CL Γ τ (f t)

...

Now we can specify the translation to combinatory logic that is correct by construction:

translate : (t : Term Γ σ) → CL Γ σ (eval t)

How is this function defined?

45

Translation, revisited

The translation remains exactly the same – it is only the types that change!

translate : (t : Term Γ σ) → CL Γ σ (eval t)

translate (app t₁ t₂) = app (translate t₁) (translate t₂)

translate (var i) = var i

translate (lam t) = abs (translate t)

Of course, we still need to (re)define the bracket abstraction function…

46

Translation, revisited

The translation remains exactly the same – it is only the types that change!

translate : (t : Term Γ σ) → CL Γ σ (eval t)

translate (app t₁ t₂) = app (translate t₁) (translate t₂)

translate (var i) = var i

translate (lam t) = abs (translate t)

Of course, we still need to (re)define the bracket abstraction function…

46

Bracket abstraction - correct by construction

abs : ∀ {f} → CL (σ ∷ Γ) τ f → CL Γ (σ ⇒ τ) (λ env x → f (x ∷ env))

Do you recognize the right hand side of our evaluator in the type of abs?

But once again, the definition remains unchanged; it is only the types that are richer.

47

Bracket abstraction - correct by construction

abs : ∀ {f} → CL (σ ∷ Γ) τ f → CL Γ (σ ⇒ τ) (λ env x → f (x ∷ env))

Do you recognize the right hand side of our evaluator in the type of abs?

But once again, the definition remains unchanged; it is only the types that are richer.

47

Review

This defines a correct by construction conversion to combinators:

translate : (t : Term Γ σ) → CL Γ σ (eval t)

The function’s type specifies that it preserves types and semantics.

And we didn’t have to do any proofs to establish this!

We even extend the translation to use additional combinators, B and C, to reduce the number of

reduction steps required.

But why does this work at all?

48

Review

This defines a correct by construction conversion to combinators:

translate : (t : Term Γ σ) → CL Γ σ (eval t)

The function’s type specifies that it preserves types and semantics.

And we didn’t have to do any proofs to establish this!

We even extend the translation to use additional combinators, B and C, to reduce the number of

reduction steps required.

But why does this work at all?

48

Review

This defines a correct by construction conversion to combinators:

translate : (t : Term Γ σ) → CL Γ σ (eval t)

The function’s type specifies that it preserves types and semantics.

And we didn’t have to do any proofs to establish this!

We even extend the translation to use additional combinators, B and C, to reduce the number of

reduction steps required.

But why does this work at all?

48

Review

This defines a correct by construction conversion to combinators:

translate : (t : Term Γ σ) → CL Γ σ (eval t)

The function’s type specifies that it preserves types and semantics.

And we didn’t have to do any proofs to establish this!

We even extend the translation to use additional combinators, B and C, to reduce the number of

reduction steps required.

But why does this work at all?

48

Correct by construction

This seems like a ‘parlour trick’ – aren’t I clever!

But the meta-properties that makes this possible are:

• the translation is defined by simple induction, with one auxiliary function;

• the correctness proof proceeds by immediate induction, using one additional lemma about

this auxiliary function;

• the structure of the translation and correctness proof coincide exactly;

So why not do both at once?

49

Correct by construction

This seems like a ‘parlour trick’ – aren’t I clever!

But the meta-properties that makes this possible are:

• the translation is defined by simple induction, with one auxiliary function;

• the correctness proof proceeds by immediate induction, using one additional lemma about

this auxiliary function;

• the structure of the translation and correctness proof coincide exactly;

So why not do both at once?

49

Calculating compilers

50

Calculating compilers

A colleague from engineering department might

say:

By itself, the lambda calculus is not that

interesting. I want to have a compiler

from the lambda calculus to some (ab-

stract) machine!

Can you not derive a correct compiler

from its evaluator?

51

Existing work…

Calculating correct compilers, Bahr and Hutton (2015)

52

Existing work…

Calculating Dependently-Typed Compilers, Pickard and Hutton (2021)

53

Existing work…

Calculating compilers effectively, Garby, Hutton & Bahr (2024)
54

Erik Meijer’s PhD thesis (1992)

Explores, among other things, how to shift be-

tween stack-based and direct evaluation

55

More than one semantics…

Consider ‘the essence of stack computation’ (Eliott 2020):

𝑎 → 𝑏 ≃ ∀𝑐 . 𝑎 × 𝑐 → 𝑏 × 𝑐

Our previous semantics for types

⟦_⟧ : U → Set

⟦ ι ⟧ = ℕ

⟦ σ ⇒ τ ⟧ = ⟦ σ ⟧ → ⟦ τ ⟧

Can we define an alternative interpretation corresponding to the right hand side of this

isomorphism?

56

More than one semantics…

⟦_⟧ₛ : U → Set

⟦ σ ⟧ₛ = ∀ ξ → args σ ξ → result σ ξ

Where args and res collect the arguments and result type respectively:

args : U → Set → Set

args (σ ⇒ τ) ξ = ⟦ σ ⟧ₛ × args τ ξ

args ι ξ = ξ

res : U → Set → Set

res (σ ⇒ τ) ξ = res τ ξ

res ι ξ = ⟦ ι ⟧ × ξ

57

Example: addition

Many compiler calculation papers start with a language for simple arithmetic expressions:

𝑒 ::=   𝑛 |   𝑒 + 𝑒

We now have two different types to associate with an operator for addition, ι ⇒ ι ⇒ ι,

• the ‘regular’ semantics: ℕ → ℕ → ℕ

• the ‘stack based’ semantics: ∀ ξ → (ℕ × ℕ × ξ) → (ℕ × ξ)

The type of our stacks and stack-based operations are all computed directly.

58

Example: addition

Many compiler calculation papers start with a language for simple arithmetic expressions:

𝑒 ::=   𝑛 |   𝑒 + 𝑒
We now have two different types to associate with an operator for addition, ι ⇒ ι ⇒ ι,

• the ‘regular’ semantics: ℕ → ℕ → ℕ

• the ‘stack based’ semantics: ∀ ξ → (ℕ × ℕ × ξ) → (ℕ × ξ)

The type of our stacks and stack-based operations are all computed directly.

58

Conversions

Not only can we define a different interpretation for our types, we define generic conversions

between the two:

γ : ∀ σ → ⟦ σ ⟧ₛ → ⟦ σ ⟧

α : ∀ σ → ⟦ σ ⟧ → ⟦ σ ⟧ₛ

The two functions are defined by induction on the type σ, shuffling arguments to and from the

stack – essentially witnessing a generalized uncurry-curry isomorphism.

We show (under suitable assumptions) that these two are mutual inverses.

59

Conversions

Not only can we define a different interpretation for our types, we define generic conversions

between the two:

γ : ∀ σ → ⟦ σ ⟧ₛ → ⟦ σ ⟧

α : ∀ σ → ⟦ σ ⟧ → ⟦ σ ⟧ₛ

The two functions are defined by induction on the type σ, shuffling arguments to and from the

stack – essentially witnessing a generalized uncurry-curry isomorphism.

We show (under suitable assumptions) that these two are mutual inverses.

59

Beyond arithmetic…

• The same stack-based semantics and isomorphism works for other languages…

• Including the simply typed lambda calculus!

• Meijer’s thesis explores this idea, including several simple optimizations.

• Each of which follows naturally in this setting too.

60

Beyond arithmetic…

• The same stack-based semantics and isomorphism works for other languages…

• Including the simply typed lambda calculus!

• Meijer’s thesis explores this idea, including several simple optimizations.

• Each of which follows naturally in this setting too.

60

Beyond arithmetic…

• The same stack-based semantics and isomorphism works for other languages…

• Including the simply typed lambda calculus!

• Meijer’s thesis explores this idea, including several simple optimizations.

• Each of which follows naturally in this setting too.

60

Beyond arithmetic…

• The same stack-based semantics and isomorphism works for other languages…

• Including the simply typed lambda calculus!

• Meijer’s thesis explores this idea, including several simple optimizations.

• Each of which follows naturally in this setting too.

60

So what?

This lets us derive a compiler in several steps:

• Start with a intrinsically typed evaluator, like the one for the simply typed lambda calculus;

• Convert the evaluator to its stack-based equivalent;

• CPS transforming the stack based evaluator fixes evaluation order;

• Defunctionalising yields an abstract machine (à la Danvy);

• Reforestation yields (instructions for) a compiler (à la Hutton).

The second step requires a shift in types – we need to compute new types – a third example of

dependent types!

61

Summary

This gives three separate examples, all revolving around the evaluator for the simply typed

lambda calculus:

• using dependent types to enforce data structure invariants;

• using dependent types to develop a correct by construction translation function;

• using dependent types to compute new types.

62

Bibliography

1. Heterogeneous binary random-access lists; JFP, 2020, Vol. 30.

2. A correct-by-construction conversion to combinators; JFP, vol 33, 2023.

3. A type directed calculation of an intrinsically typed optimizing compiler; under review for JFP.

63

Questions?

63

	Better data structures
	Conversion to combinatory logic
	Calculating compilers

