A correct-by-construction conversion to combinators

Wouter Swierstra

Utrecht University

Executing combinator terms - Augustsson edition

```
exec :: Comb -> Any
exec (App f e) = (unsafeCoerce $ exec f) (unsafeCoerce $ exec e)
exec S = unsafeCoerce $\f g x > (f x) (g x)
exec K = unsafeCoerce $ const
exec I = unsafeCoerce $ id
```


Executing combinator terms - Augustsson edition

```
exec :: Comb -> Any
exec (App f e) = (unsafeCoerce $ exec f) (unsafeCoerce $ exec e)
exec S = unsafeCoerce $\f g x -> (f x) (g x)
exec K = unsafeCoerce $ const
exec I = unsafeCoerce $ id
```

What happened to static type safety?

Challenge

- Can we show that bracket abstraction is type preserving?
- Can we show that bracket abstraction is semantics preserving?

Challenge

- Can we show that bracket abstraction is type preserving?
- Can we show that bracket abstraction is semantics preserving?

And finally...

Can we establish this without writing any proofs?

Evaluation

Well typed lambda terms have a simple evaluator:

```
eval : }\forall{\Gamma s} -> Term「 s -> Env 「 -> Val s
eval (App f x) env = (eval f env) (eval x env)
eval (Lam t) env = \lambda x }->\mathrm{ eval t (x :: env)
eval (Var i) env = lookup i env
```


Problem (again)

- Can we show that this translation to combinators is type preserving?

Can we define a 'typed combinatory logic' and a translation that is obviously type preserving:
translate : forall $\{\Gamma \sigma\} \rightarrow(t: T e r m 「 \sigma) \rightarrow$ Comb 「 σ

Problem (again)

- Can we show that this translation to combinators is type preserving?

Can we define a 'typed combinatory logic' and a translation that is obviously type preserving:
translate : forall $\{\Gamma \sigma\} \rightarrow(t: T e r m$ 「 $\sigma) \rightarrow$ Comb 「 σ

- Can we show that this translation is also semantics preserving?

Can we prove that our translation is correct:
eval t env \equiv evalComb (translate t) env

Well typed combinator terms

```
data Comb ( \(\Gamma\) : Ctx) : U \(\rightarrow\) Set where
    \(S: C o m b\) 「 \(\left(\left(\sigma \Rightarrow\left(\tau \Rightarrow \tau^{\prime}\right)\right) \Rightarrow\left((\sigma \Rightarrow \tau) \Rightarrow\left(\sigma \Rightarrow \tau^{\prime}\right)\right)\right)\)
    K : Comb 「 \((\sigma \Rightarrow(\tau \Rightarrow \sigma))\)
    I : Comb「 \((0 \Rightarrow \sigma)\)
    App : Comb 「 ( \(\sigma=\tau\) ) \(\rightarrow\) Comb 「 \(\sigma \rightarrow\) Comb 「 \(\tau\)
    Var : Ref 「 \(\sigma \rightarrow\) Comb \(\sigma\) 「
translate : Term「 \(\sigma \rightarrow\) Comb「 \(\sigma\)
translate (App \(\left.\mathrm{t}_{1} \mathrm{t}_{2}\right)=A p p\left(\right.\) translate \(\left.\mathrm{t}_{1}\right)\left(\right.\) translate \(\left.\mathrm{t}_{2}\right)\)
translate \(\left(\operatorname{Lam} \mathrm{t}_{1}\right)=\) bracket (translate \(\left.\mathrm{t}_{1}\right)\)
translate (Var x) = Var x
```


Bracket abstraction

```
bracket : Comb (\sigma :: Г) \tau f -> Comb 「 ( }\sigma=> \tau
bracket (App t t t % ) = App (App S (bracket tr )) (bracket t t )
bracket S = App K S
bracket K = App K K
bracket I = App K I
bracket (Var Top) = I
bracket (Var (Pop j)) = App K (Var j)
All the types go through easily enough...
```


Bracket abstraction

```
bracket : Comb (\sigma :: Г) \tau f -> Comb 「 ( }\sigma=> \tau
bracket (App t t t % ) = App (App S (bracket tr )) (bracket t t )
bracket S = App K S
bracket K = App K K
bracket I = App K I
bracket (Var Top) = I
bracket (Var (Pop j)) = App K (Var j)
All the types go through easily enough...
What about proving correctness?
```


Correctness－take 1

We define an evaluator for combinatory terms：

```
evalComb : Comb 「 \sigma -> Env 「 -> Val \sigma
evalComb K env = \x y ->> x
evalComb I env = \x ->x
evalComb (App f e) env = (evalComb f env) (evalComb e env)
```

And prove the desired property－we need one lemma：

```
bracket-correct : (t : Comb (\sigma :: Г) \tau) (env : Env 「) (v : Val \sigma) ->
    evalComb (bracket t) env v \equiv evalComb t (v :: env)
```

The proof itself is not very interesting－it follows immediately from our induction hypotheses．

Correctness－take 1

We define an evaluator for combinatory terms：

```
evalComb : Comb 「 \sigma -> Env 「 -> Val \sigma
evalComb K env = \x y ->> x
evalComb I env = \x ->x
evalComb (App f e) env = (evalComb f env) (evalComb e env)
```

And prove the desired property－we need one lemma：

```
bracket-correct : (t : Comb (\sigma :: Г) \tau) (env : Env 「) (v : Val \sigma) ->
    evalComb (bracket t) env v \equiv evalComb t (v :: env)
```

The proof itself is not very interesting－it follows immediately from our induction hypotheses． If the proof is so obvious－can we make our translation correct by construction？

Correctness－take 2

```
data Comb : ( \(\Gamma\) : Ctx) \(\rightarrow(\mathrm{u}: \mathrm{U}) \rightarrow(\) Env \(\Gamma \rightarrow\) Val u) \(\rightarrow\) Set where
    \(\mathrm{K} \quad: \operatorname{Comb} \Gamma(\sigma \Rightarrow(\tau \Rightarrow \sigma))(\lambda\) env \(\rightarrow \lambda \times \mathrm{y} \rightarrow \mathrm{x})\)
    I : Comb 「 \((\sigma \Rightarrow \sigma)(\lambda\) env \(\rightarrow \lambda x \rightarrow x)\)
```

```
translate : (t : Term「 \sigma) -> Comb 「 \sigma (eval t)
```

```
translate : (t : Term「 \sigma) -> Comb 「 \sigma (eval t)
```



```
translate (lam t) = bracket (translate t)
```

translate (lam t) = bracket (translate t)
translate (var i) = var i

```
translate (var i) = var i
```


Correctness－take 2

```
data Comb : ( \(\Gamma\) : Ctx) \(\rightarrow(\mathrm{u}: \mathrm{U}) \rightarrow(\) Env \(\Gamma \rightarrow\) Val \(u) \rightarrow\) Set where
    \(\mathrm{K} \quad: \operatorname{Comb} \Gamma(\sigma \Rightarrow(\tau \Rightarrow \sigma))(\lambda\) env \(\rightarrow \lambda \mathrm{x}\) y \(\rightarrow \mathrm{x})\)
    I : Comb \(\Gamma(\sigma \Rightarrow \sigma)(\lambda\) env \(\rightarrow \lambda x \rightarrow x)\)
```

```
translate : (t : Term「 \sigma) -> Comb 「 \sigma (eval t)
```

translate : (t : Term「 \sigma) -> Comb 「 \sigma (eval t)
translate (app t t t t) = app (translate the (translate th2)
translate (app t t t t) = app (translate the (translate th2)
translate (lam t) = bracket (translate t)
translate (lam t) = bracket (translate t)
translate (var i) = var i

```
translate (var i) = var i
```

So what does the new version of the bracket function do？

Bracket abstraction - correct by construction

```
bracket : \forall {f} ->Comb (\sigma :: Г) \tau f }->\mathrm{ Comb 「 ( }\sigma=>\tau)(\lambda\mathrm{ env x }->\mathrm{ f (x :: env))
bracket (app t t t t ) = app (bracket t t ) (bracket t t )
bracket I = app K I
bracket (var zero) = I
bracket (var (succ i)) = app K (var i)
```

Note: the function in the type of bracket and the right-hand side of evaluation for lambda terms coincide precisely.

So what?

- These programs may seem like a bit of a 'parlour trick' - where you show off your dependently type trickery.

So what?

- These programs may seem like a bit of a 'parlour trick' - where you show off your dependently type trickery.
- But it's the nature of the proof - immediate induction - that guarantees we can roll the translation and its correctness proof into one.

So what?

- These programs may seem like a bit of a 'parlour trick' - where you show off your dependently type trickery.
- But it's the nature of the proof - immediate induction - that guarantees we can roll the translation and its correctness proof into one.
- TODO Port to Haskell.

So what?

- These programs may seem like a bit of a 'parlour trick' - where you show off your dependently type trickery.
- But it's the nature of the proof - immediate induction - that guarantees we can roll the translation and its correctness proof into one.
- TODO Port to Haskell.

Not quite so easy... Unsaturated type families, no type-level lambda, unclear reduction rules for type families, and many other headaches.

So what?

- These programs may seem like a bit of a 'parlour trick' - where you show off your dependently type trickery.
- But it's the nature of the proof - immediate induction - that guarantees we can roll the translation and its correctness proof into one.
- TODO Port to Haskell.

Not quite so easy... Unsaturated type families, no type-level lambda, unclear reduction rules for type families, and many other headaches.

- The end

Simple types

```
data \(U\) : Set where
i : U
\(\Rightarrow{ }_{-}: U \rightarrow U \rightarrow U\)
```

Ctx $=$ List U

Val : U \rightarrow Set
Val i = Bool
$\operatorname{Val}\left(u \Rightarrow u_{1}\right)=\operatorname{Val} u \rightarrow \operatorname{Val} u_{1}$

Well－typed lambda terms

```
data Ref (s : U) : Ctx \(\rightarrow\) Set where
    Top : \(\forall\{\Gamma\} \rightarrow \operatorname{Ref} \mathrm{s}\) ( \(\mathrm{s}:: \Gamma\) )
    Pop : \(\forall\{\Gamma \mathrm{t}\} \rightarrow \operatorname{Ref} \mathrm{s} \Gamma \rightarrow \operatorname{Ref} \mathrm{s}(\mathrm{t}:: \Gamma)\)
data Term : Ctx \(\rightarrow U \rightarrow\) Set where
    App : \(\forall\{\Gamma \mathrm{t} \mathrm{s}\} \rightarrow\) Term \(\Gamma(\mathrm{s} \Rightarrow \mathrm{t}) \rightarrow\) Term「 \(\mathrm{s} \rightarrow\) Term「 t
    Lam : \(\forall\{\Gamma \mathrm{t}\) s \(\rightarrow\) Term \((\mathrm{s}:: \Gamma) \mathrm{t} \rightarrow\) Term \(\Gamma(\mathrm{s} \Rightarrow \mathrm{t})\)
    Var : \(\forall\{\Gamma \mathrm{s}\} \rightarrow\) Ref \(\mathrm{s} \Gamma \rightarrow\) Term「 s
```

