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exec :: Comb —> Any

exec (App f e) (unsafeCoerce $ exec ) (unsafeCoerce $ exec e)

exec S = unsafeCoerce $ \f g x = (f x) (g x)
exec K = unsafeCoerce $ const
exec I = unsafeCoerce $ id
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What happened to static type safety?
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+ Can we show that bracket abstraction is semantics preserving?

And finally...
Can we establish this without writing any proofs?



Well typed lambda terms have a simple evaluator:

eval : V{l s} - Terml's - Env [ - Val s
eval (App f x) env = (eval f env) (eval x env)
eval (Lam t) env. =X x = eval t (x = env)
eval (Var 1) env = lookup i env
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+ Can we show that this translation to combinators is type preserving?
Can we define a ‘typed combinatory logic’ and a translation that is obviously type preserving:

translate : forall {I ¢} - (t : Term T o) = Comb [ ¢

+ Can we show that this translation is also semantics preserving?
Can we prove that our translation is correct:

eval t env = evalComb (translate t) env



data Comb (I : Ctx) : U - Set where
S :tComb Tl ((6 = (t=1)) = (s >1) = (60 =71")))
K :CombTl (¢ = (T =0))
I :CombTl (0= 0)
App : Comb T (0 = ©) - Comb [ ¢ = Comb I T
Var : Ref T ¢ = Comb o T

translate : Term I ¢ = Comb [ @

translate (App t; t;) = App (translate t;) (translate t,)
translate (Lam t;) bracket (translate t;)

translate (Var x) Var x



bracket : Comb (¢ =T) t f = Comb [ (o0 = 1)
bracket (App t; t;) = App (App S (bracket t;)) (bracket t,)

bracket S =App K S
bracket K = App K K
bracket I =App K I
bracket (Var Top) = 1

bracket (Var (Pop j)) = App K (Var j)

All the types go through easily enough...



bracket : Comb (¢ =T) t f = Comb [ (o0 = 1)
bracket (App t; t3) App (App S (bracket t;)) (bracket t;)

bracket S =App K S
bracket K = App K K
bracket I =App K I
bracket (Var Top) = 1

bracket (Var (Pop j)) = App K (Var j)

All the types go through easily enough...

What about proving correctness?



Correctness - take 1

We define an evaluator for combinatory terms:

evalComb : Comb ' 0 -> Env I ->Val ¢
evalComb K env =\Xy ->X
evalComb I env = \x ->X

evalComb (App f e) env = (evalComb f env) (evalComb e env)

And prove the desired property - we need one lemma:

bracket-correct : (t : Comb (o = T) t) (env : Env I) (v : Val o) ->
evalComb (bracket t) env v = evalComb t (v = env)

The proof itself is not very interesting - it follows immediately from our induction hypotheses.
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If the proof is so obvious - can we make our translation correct by construction?



data Comb : (I : Ctx) = (u : U) - (Env [ = Val u) - Set where
K :Comb T (0= (t=0) (Aenv = Axy — Xx)
1 :Comb I (0 = a) (Aenv — A X — X)

translate : (t : Term [ ¢) — Comb I ¢ (eval t)

translate (app t; t2) app (translate t;) (translate t,)
translate (lam t) bracket (translate t)

translate (var i) = var i
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So what does the new version of the bracket function do?



Bracket abstraction - correct by construction

bracket : V {f} — Comb (g =T) tf — CombTl (6 = 1) (Aenvx — f (x = env))

bracket (app t; t,) = app (bracket t;) (bracket t,)
bracket I =app K I
bracket (var zero) = I

bracket (var (succ i)) app K (var i)

Note: the function in the type of bracket and the right-hand side of evaluation for lambda terms

coincide precisely.
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+ Butit's the nature of the proof - immediate induction - that guarantees we can roll the

translation and its correctness proof into one.
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Not quite so easy... Unsaturated type families, no type-level lambda, unclear reduction rules for
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* The end



data U : Set where
iU

=>_::U=>U—=>1U

Ctx = List U

Val : U —+ Set
Val i = Bool
Val (u = u;) = Val u = Val u4



data Ref (s : U) : Ctx = Set where
Top : V {I} = Ref s (s =)
Pop : V{It} - Ref sT - Ref s (t =1T)

data Term : Ctx = U = Set where

App : V{Ttsy>TermT (s =>t) »>Terml s - Term  t
lam : V{l ts} > Term(s=T)t—>Term T (s > t)

Var : V {I s} - Ref sT - Term I s






