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Executing combinator terms – Augustsson edition

exec :: Comb -> Any

exec (App f e) = (unsafeCoerce $ exec f) (unsafeCoerce $ exec e)

exec S = unsafeCoerce $ \f g x -> (f x) (g x)

exec K = unsafeCoerce $ const

exec I = unsafeCoerce $ id

What happened to static type safety?
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Challenge

• Can we show that bracket abstraction is type preserving?

• Can we show that bracket abstraction is semantics preserving?

And finally…
Can we establish this without writing any proofs?
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Evaluation

Well typed lambda terms have a simple evaluator:

eval : ∀ {Γ s} -> Term Γ s -> Env Γ -> Val s

eval (App f x) env = (eval f env) (eval x env)

eval (Lam t) env = λ x -> eval t (x ∷ env)

eval (Var i) env = lookup i env
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Problem (again)

• Can we show that this translation to combinators is type preserving?

Can we define a ‘typed combinatory logic’ and a translation that is obviously type preserving:

translate : forall {Γ σ} -> (t : Term Γ σ) -> Comb Γ σ

• Can we show that this translation is also semantics preserving?

Can we prove that our translation is correct:

eval t env ≡ evalComb (translate t) env
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Well typed combinator terms

data Comb (Γ : Ctx) : U -> Set where

S : Comb Γ ((σ => (τ => τ')) => ((σ => τ) => (σ => τ')))

K : Comb Γ (σ => (τ => σ))

I : Comb Γ (σ => σ)

App : Comb Γ (σ => τ) -> Comb Γ σ -> Comb Γ τ

Var : Ref Γ σ -> Comb σ Γ

translate : Term Γ σ -> Comb Γ σ

translate (App t1 t2) = App (translate t1) (translate t2)

translate (Lam t1) = bracket (translate t1)

translate (Var x) = Var x
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Bracket abstraction

bracket : Comb (σ ∷ Γ) τ f -> Comb Γ (σ => τ)

bracket (App t1 t2) = App (App S (bracket t1)) (bracket t2)

bracket S = App K S

bracket K = App K K

bracket I = App K I

bracket (Var Top) = I

bracket (Var (Pop j)) = App K (Var j)

All the types go through easily enough…

What about proving correctness?
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Correctness – take 1

We define an evaluator for combinatory terms:

evalComb : Comb Γ σ -> Env Γ -> Val σ

evalComb K env = \x y -> x

evalComb I env = \x ->x

evalComb (App f e) env = (evalComb f env) (evalComb e env)

...

And prove the desired property – we need one lemma:

bracket-correct : (t : Comb (σ ∷ Γ) τ) (env : Env Γ) (v : Val σ) ->

evalComb (bracket t) env v ≡ evalComb t (v ∷ env)

The proof itself is not very interesting – it follows immediately from our induction hypotheses.

If the proof is so obvious – can we make our translation correct by construction?
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Correctness - take 2

data Comb : (Γ : Ctx) -> (u : U) -> (Env Γ -> Val u) -> Set where

K : Comb Γ (σ ⇒ (τ ⇒ σ)) (λ env → λ x y → x)

I : Comb Γ (σ ⇒ σ) (λ env → λ x → x)

...

translate : (t : Term Γ σ) → Comb Γ σ (eval t)

translate (app t1 t2) = app (translate t1) (translate t2)

translate (lam t) = bracket (translate t)

translate (var i) = var i

So what does the new version of the bracket function do?
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Bracket abstraction - correct by construction

bracket : ∀ {f} → Comb (σ ∷ Γ) τ f → Comb Γ (σ ⇒ τ) (λ env x → f (x ∷ env))

bracket (app t1 t2) = app (bracket t1) (bracket t2)

bracket I = app K I

bracket (var zero) = I

bracket (var (succ i)) = app K (var i)

...

Note: the function in the type of bracket and the right-hand side of evaluation for lambda terms

coincide precisely.
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So what?

• These programs may seem like a bit of a ‘parlour trick’ – where you show off your

dependently type trickery.

• But it’s the nature of the proof – immediate induction – that guarantees we can roll the

translation and its correctness proof into one.

• TODO Port to Haskell.

Not quite so easy… Unsaturated type families, no type-level lambda, unclear reduction rules for

type families, and many other headaches.

• The end
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Simple types

data U : Set where

i : U

_=>_ : U -> U -> U

Ctx = List U

Val : U -> Set

Val i = Bool

Val (u => u1) = Val u -> Val u1
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Well-typed lambda terms

data Ref (s : U) : Ctx -> Set where

Top : ∀ {Γ} -> Ref s (s ∷ Γ)

Pop : ∀ {Γ t} -> Ref s Γ -> Ref s (t ∷ Γ)

data Term : Ctx -> U -> Set where

App : ∀ {Γ t s} -> Term Γ (s => t) -> Term Γ s -> Term Γ t

Lam : ∀ {Γ t s} -> Term (s ∷ Γ) t -> Term Γ (s => t)

Var : ∀ {Γ s} -> Ref s Γ -> Term Γ s
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