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Abstract
Current inverse projection methods are often complex, hard to predict, and may require extensive parametrization. We present a
new technique to compute inverse projections of Multidimensional Scaling (MDS)-based projections with minimal parametrization.
We use mutilateration, a method used for geopositioning, to find data values for unknown 2D points, i.e., locations where no data
point is projected. Our technique can invert 2 dimensional projections up to |D|−1 dimensional spaces given a minimum of
|D| data points. As we use a straightforward geometrical relationship, our technique is more interpretable than comparable
machine learning-based approaches. We qualitatively and quantitatively compare our technique with existing inverse projection
techniques on synthetic and real-world datasets using mean-squared errors (MSEs) and gradient maps. When MDS captures data
distances well, our approach performs similarly to existing approaches. While our method may show higher MSE when inverting
known data points, it produces smoother gradient maps, indicating a higher predictability when inverting unseen points.

CCS Concepts
• Human-centered computing → Visualization techniques;

1. Introduction

Dimensionality reduction techniques, also called projections, are
a key approach to visualizing high-dimensional data. These meth-
ods work by reducing the data to lower dimensions while trying
to preserve its inherent relationships and structure. One such re-
lationship is the similarity of data samples, usually expressed by
their distance in high-dimensional space [SVP14, CG15, NA19]. A
particular class of such methods based on Multidimensional Scaling
(MDS) aims to preserve distances between the projected samples
as close as possible to distances between the respective samples
in the data space [Kru64]. Such methods create scatterplots that
are easier to interpret when tasks require the assessment of sample
similarities [Yin07,vdMPvdH09,HFA17]. While projections P map
the data space to the visual space, inverse projections P−1 attempt
the opposite. Given a point q in the visual (2D) space, its inverse
projection is a data sample which, if projected by P, should yield a
location close to q. Inverse projections are most valuable for points
in areas where no data is projected by P, which in the following we
call unknown points. Inverse projections can be used as a genera-
tive model to create synthetic data and have multiple applications,
such as user-driven data interpolation based on interaction in a 2D
space for shape control [ABM∗15] or electronic instrument syn-
thesis [vWvO03]; visual exploration of trained Machine Learning
(ML) models [REHT19, SHH20, OEJT22]; and assessment of dis-
tortions caused by direct projection methods [EAS∗21]. Current
inverse projection techniques suffer from artifact and interpretability

issues [WMT23, WT24]. We address these limitations for MDS-
class methods. We leverage their distance-preserving property in a
multilateration-based inversion process, allowing us to invert MDS
by algebraic expressions. Hence, our proposed method is simple to
implement, simple to interpret, computationally efficient, and avoids
the black-box behavior of deep learning-based inverse projections.
To summarize, we contribute the following:

• An interpretable technique for the multilateration-based inversion
of MDS projections.

• A qualitative and quantitative evaluation using gradient maps and
mean-squared errors for comparison with existing approaches.

• We publish our source code, datasets, and results on OSF.

2. Related Work on Inverse Projections

We start by introducing a few notations. Let D = {xi}1≤i≤|D|
be a dataset of high-dimensional samples xi ∈ Rn. A projection
technique P maps D to P(D) = {P(xi)|xi ∈ D}, where P(D) ⊂
Rq with q ≪ n. Usually q = 2, so P(D) can be directly visual-
ized in a 2-dimensional scatterplot. Projection techniques have
been extensively discussed and evaluated in several surveys [vdM-
PvdH09, SVP14, CG15, EMK∗19, NA19].

Inverse projections are functions P−1 : Rq → Rn that (a) are
smooth (needed by applications as interpolation); and (b) minimize
a cost of the type ∑x∈D ∥P−1(P(x))− x∥ for a given dataset D and
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direct projection P, where ∥ · ∥ denotes the L2 norm. While many
projection techniques exist, only a few inverse projections have been
proposed. A first such technique inverts a sample x ∈ R2 by Shep-
ard interpolation of all samples xi ∈ D with weights ∥x−P(xi)∥
[vWvO03]. This inverse projection is smooth by design and can han-
dle, in theory, any direct projection P. Yet, this method has a global
nature, so it cannot handle local structures of high-dimensional
datasets. Local Shepard interpolation was further refined by iLAMP
[dSABI∗12] to invert the piecewise-linear affine projection LAMP
[JCC∗11]. As iLAMP is not smooth, Amorim et al. [ABM∗15]
refined it using Radial Basis Functions (RBFs) to a local and piece-
wise continuous result. The UMAP technique [MHM18] was, to
our knowledge, the first technique (besides PCA-class methods)
to jointly compute P and P−1. However, UMAP’s P−1 can be
hard to interpret as UMAP’s P has a highly non-linear nature that
tends to cluster similar samples, leaving large empty regions in
the 2D space where P−1 must extrapolate far away from known
points [EAS∗21]. Deep learning has been used for direct and in-
verse projections, i.e., autoencoders [HS06]. Recently, supervised
deep learning, using the training set (D,P(D)), was used for learn-
ing both P [EHT20, EHT21, AEC∗22] and P−1 [ERH∗19, EHT21].
Such methods are faster than earlier inverse projections (i.e., linear
in the sample size) and work well for any data dimensionality n. Yet,
it is hard for users to predict how deep-learned inverse projection
actually work. To address this issue, Espadoto et al. [EAS∗21] pro-
posed several visualizations to examine distortions caused by P and
P−1 methods.

Inverse projections have been used to compute so-called deci-
sion maps which depict the behavior of a ML classification model
as decision zones (i.e., data space areas where the same label is
inferred) separated by decision boundaries (i.e., places where the
model changes the inferred label) [REHT19, SHH20, OEJT22]. The
hard-to-predict nature of inverse projections has led to decision maps
showing fragmentation and jagged decision boundaries. Filtering
poorly projected points have been used to alleviate this [REHT19].
Yet, artifacts still remain, so users need ways to know if these are
caused by the inverse projection or the actual ML model under ex-
amination. Fundamental issues concerning the interpretability of
inverse projections remain. Recently, Wang et al. [WMT23, WT24]
explored the limitation of such decision maps – and thus implicitly
their underlying inverse projections – showing the limited inter-
pretability and predictability of current inverse projection methods.

3. Method

As direct projection P, we consider metric MDS, which aims to map
distances ∥xi − x j∥, xi ∈ D,x j ∈ D to distances ∥P(xi)−P(x j)∥ up
to a scaling factor [dLM09]. This property, expressed as ∥xi−x j∥≈
∥P(xi)−P(x j)∥, is key to our approach. Further, we leverage ge-
ometrical relationships among the data samples by using multilat-
eration. This process, also known as trilateration in R2, aims to
find a point’s position via its distances to other known points. Typi-
cally used for geopositioning, this can be applied in any Euclidean
space [WL24]. To determine the position of a sample p ∈ Rn, we
need to know the position of n+1 other samples and their distances
to p. Hence, we have the constraint that the dataset size |D| must
exceed the data dimensionality n, which is true for most datasets.

Figure 1: Trilateration in R2.

2D Example: We want to
compute point p given three
known points x1 = (x1,1,x1,2)

T ,
x2 = (x2,1,x2,2)

T , and x3 =

(x3,1,x3,2)
T in R2 and their dis-

tances d1, d2, and d3 to p
(see Figure 1). We get that

(x1,1 − p1)
2 +(x1,2 − p2)

2 = d2
1

(x2,1 − p1)
2 +(x2,2 − p2)

2 = d2
2

(x3,1 − p1)
2 +(x3,2 − p2)

2 = d2
3 .

We subtract one equation from the others to eliminate the squares.
Solving the resulting linear equation system then gives us p.

Generalization to n Dimensions: For any n-dimensional space
with n < |D|, take n+1 known samples x1, . . . ,xn+1 in Rn, where
xi = (xi,1, . . . ,xi,n)

T ∈ Rn, i = 1, . . . ,n+ 1. Consider also a point
p = (p1, . . . , pn)

T ∈ Rn and its distances di to xi. For each i, we
have ∥xi− p∥= di ⇔∥xi− p∥2 = (di)

2 ⇔∑
n
j=1(xi, j− p j)

2 = (di)
2.

Assuming ideal distance preservation by MDS, the distances di are
equal to ∥P(xi)−P(p)∥. Next, if we have a given point q ∈R2 – the
one we want to inversely project to p – then we have that P(p) = q
(since we want that P−1(q)= p), so we can compute ∥P(xi)−P(p)∥
directly as ∥P(xi)− q∥. The above gives us n+ 1 equations with
n unknowns p1, . . . , pn. As the unknowns are squared, we subtract
the first equation (w.l.o.g.) from all others to get rid of the squared
values. This yields a linear equation system of the form Ap = b with

A =

 −2(x2,1 − x1,1) . . . −2(x2,n − x1,n)
...

. . .
...

−2(xn+1,1 − x1,1) . . . −2(xn+1,n − x1,n)


and

b =


(d2)

2 −
n
∑

j=1
(x2, j)

2 − ((d1)
2 −

n
∑

j=1
(x1, j)

2)

...

(dn+1)
2 −

n
∑

j=1
(xn+1, j)

2 − ((d1)
2 −

n
∑

j=1
(x1, j)

2)

 .

Choosing Reference Samples for Multilateration: Choosing the
samples xi is a crucial aspect of our approach. Using all samples in D
would yield a method similar to [vWvO03] which, as mentioned in
Sec. 2, cannot capture local structures well. Moreover, our approach
requires using precisely n+ 1 points for the equation system to
not be over- or underdetermined. Ideally, we expect Ap = b to
provide exactly one solution for the position of p. However, if
some of the samples xi are collinear or coincident, the matrix A is
singular (its determinant is zero), i.e. the equation system becomes
degenerate and does not yield a unique solution. Separately, MDS
usually does not preserve distances equally well across all samples
in D, so specific subsets of n+ 1 samples in D may lead to more
accurate inverse projections. We address this by evaluating several
approaches for selecting a subset of n+1 points from D.
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4. Evaluation

We evaluate the quality of our inverse projections with two metrics
and four datasets, as follows.

Average Mean-Squared Error: An inverse projection should ide-
ally yield P−1(P(x)) = x for all x ∈ D. Hence, the quality of P−1

for a single xi ∈ D can be measured by the mean-squared error

MSE(xi) =
1
n

n

∑
j=1

(xi, j −P−1(P(xi, j)))
2 =

1
n
∥xi −P−1(P(xi))∥2.

Taking the average over the entire dataset D, leads to the quality
measure

MSE(D) =
1
|D|

|D|

∑
i=1

MSE(xi) =
1
|D|

|D|

∑
i=1

1
n
∥xi −P−1(P(xi))∥2. (1)

Note that MSE(D) can also be applied to subsets of D [ERH∗19].
This will become useful when dividing the data into train and test
sets. For visual assessment, we show a 2D scatterplot of P(D), and
color-code its Voronoi diagram, where P(xi) are the centroids of the
cells, with values MSE(xi), using a luminance colormap (dark=high
MSE; bright=low MSE). Technically, this approximates MSE(xi)
over the entire image space using piecewise-constant interpolation,
and highlights regions of high and low distortions of the MDS
projection and its inversion [Aup07, LA11].

Error for Unseen Points: For points q ∈ R2 \P(D), we have no
‘ground truth’ in terms of samples in D that are projected there by P.
As such, we need different ways to evaluate the inverse projection
at these locations – which are also the ones where we want to practi-
cally use the inverse projection. For this, we use the gradient map
technique proposed in [EAS∗21]. For each q ∈ R2, this computes
the total pseudo-derivative of P−1 as

G(q) =
√

∥P−1(ql)−P−1(qr)∥2 +∥P−1(qu)−P−1(qd)∥2,

where ql ,qr,qu, and qd are the left, right, up, and bottom 4-neighbor
pixels of q. When G(q) has nearly constant (and, ideally, low) values
over a 2D area, one-pixel ‘moves’ of q in that area cause only small
changes to the inferred samples P−1(q) ∈Rn, which is highly desir-
able. For instance, users interactively picking points q in such areas
will get data points in a confined, controlled area in Rn. Conversely,
when G(q) has high values, small changes in 2D, e.g., caused by a
user interactively moving the point q, can suddenly ‘throw away’
the generated samples P−1(q) into far-apart regions in Rn. Appli-
cations such as interpolation or data synthesis then become hard to
support [vWvO03, ABM∗15, REHT19].

Datasets: We applied our method on synthetic data with a known
topology as well as on real-world datasets: (1) Blobs is a synthetic
dataset of 1000 points generated from a Gaussian distribution with
5 clusters and 100 additional randomly distributed noise samples
(|D|= 1100, n = 10). (2) Rings is a synthetic dataset containing 3D
(n = 3) points arranged in two interlacing rings having 100 and 80
samples respectively (|D|= 180). (3) Iris [Fis36] serves as a simple
real-world application and represents 3 different flower species with
n = 4 dimensions and |D| = 150 samples. (4) Seismic [SW10]
shows a real-world scenario with more dimensions (n = 24) and
includes |D|= 646 samples of seismic bumps in a coal mine.

4.1. Point Selection Strategies for Multilateration

We evaluated four different strategies for selecting the reference
points xi (see Sec. 3). First, we used the n+1 furthest points, i.e.,
those having the largest distances di to the 2D point we want to
invert. This approach could, in theory, work well, as MDS aims to
optimize over global neighborhoods. Secondly, we used the n+1
closest points in 2D. The inverse projection should, then, behave
more like the local iLAMP approach [ABM∗15]. Yet, both of these
strategies produce a few very high values for MSE(xi), most likely
due to points being poorly chosen, i.e., being collinear, coincident
or having distances not well preserved by MDS.

To tackle these issues, we used a randomized approach. For a
given 2D point q to invert, we pick n + 1 samples from D and
compute the resulting p = P−1(q) using these samples as reference
points (see Sec. 3). We repeat this s times, and finally set p to the
medoid of all the generated values. Simply put, this strategy acts as
a low-pass filter that limits the potentially undesirable effects due to
a poor (random) selection of points from D.

Further, we tested a stratified random approach. We first cluster
D using k-means with k = n+1 (our target number of samples to
select) and then select one point from each cluster randomly. We
repeat the selection s times and take the medoid of the generated
positions. Clustering is expected to reduce cases where selected
points are collinear or coincident. However, due to the restriction to
select exactly one point from each cluster, we might always select
some poorly projected points if they are assigned to the same cluster.

We evaluate both randomized approaches using the average MSE
(Eqn. 1). Figure 2 shows the average MSE for different numbers
of selection steps s. We see that increasing s improves the accuracy
of inversely projecting points from D. However, beyond a certain
number of trials, the error more or less stabilizes. As our randomized
approach (without clustering) outperformed the clustering one in
terms of average MSE, we use this point selection strategy for the
remaining evaluation with s = 500 selection steps.
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Number of selection steps s

Figure 2: Average MSE across datasets against number of selection
steps for randomized and clustering-based selection strategies.

4.2. Comparison to Existing Inverse Projection Techniques

We compare our approach to the inverse projection methods iLAMP
[dSABI∗12], iNN [ERH∗19, EAS∗21], and RBF [ABM∗15], as
these techniques are also applicable to MDS projections. For each
method, we use the same parameters as proposed in the respective
paper. We left SSNP [EHT21] and autoencoders [HS06] out from
the comparison since these compute P and P−1 jointly (see Sec. 2).
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As such, we cannot use these to invert a MDS projection or any
other user-chosen projection for that matter.

We split the data into training and testing to assess the MSE of
unseen test samples. Yet, our approach is a lazy learner, so does not
have a training phase. Hence, to evaluate our P−1, we restrict the
multilateration to only use training samples as reference points.

Ours iLAMP iNN RBF

Blobs 0.0277 0.0057 0.0053 0.0059

Rings 0.0123 0.0012 0.0012 0.0008

Iris 0.0035 0.0034 0.0038 0.0036

Seismic 15.4107 0.0090 0.1601 0.0086

Table 1: Average MSE for test data.

Table 1 shows
the average
MSE of the test
sample for each
inverse projec-
tion technique
when utilizing
80% of the data
for training and

the remaining 20% for testing. While achieving a similar average
MSE for the Iris data, our method encounters limitations when MDS
induces significant information loss. For the Seismic dataset, our
average MSE on the test data is much higher than for the other
inverse projection techniques tested. Yet, we see a notable differ-
ence in the MSE visualization in Figure 3 (Blobs dataset). Our
method spreads darker colors, i.e. higher MSE values, across mul-
tiple Voronoi cells, rather than having them concentrated in cells
around the test samples. This shows the relative independence of our
approach from the choice of training and test data, unlike ML-based
methods. Separately, for our method, we see that areas in the middle
of the projection (being surrounded by many data points) have a
lower MSE than points lying at the projection borders.

Gradient map visualizations match the above findings (see Fig-
ure 4). For our method, these maps are quite smooth, showing
uniformly low values in the projection center. iLAMP yields high
gradients visible as reticulated lines in gaps between projected point
clusters and in areas with no projected samples. Our method shows
low gradient values even in areas between clusters, see e.g. the Iris
dataset. Both our method and iLAMP show uniformly low gradient
values near and around projected points. Conversely, RBF’s gradient
maps show high values between projected samples and relatively
low values in regions with no projected samples. The gradient map
for iNN shows a mix of the above. Notably, for Rings, RBF and iNN
produce high gradients at the intersection of the rings in the projec-
tion, i.e., regions where the projection is misleading as the rings do
not intersect or touch in the original 3D space. When the dataset
dimensionality and complexity increases (see Seismic), our method
reaches its limits, yielding high gradients especially in the corners of
the map. Yet, the transition pattern is still relatively smooth in com-
parison to all other inverse projection techniques. As Secs. 2 and 3
mention, low and constant gradients are essential for the practical
usage of an inverse projection method.

5. Discussion and Future Work

Our approach, like all inverse projections P−1, depends on the qual-
ity of the direct projection P. Our evaluation using inversely project-
ing known samples shows that (Sec. 4). This is unavoidable for any
inverse projection since all such functions must be constructed from
a given direct P. Neural network (NN) based techniques can accu-
rately inversely project known samples, but are prone to overfit. Our

approach, being purely based on the assumptions made by MDS,
avoids this issue. Solving linear equation systems has a runtime
complexity of O(N3) (worst case) and O(N2) (best case) for N
equations. For us, N = n+1 for an n-dimensional dataset. However,
our method does not require a training step, such as iNN [ERH∗19],
SSNP [EHT21], or autoencoders [HS06]. Thus, our computing
effort is only in the inference step. Our technique can be used with
progressive visualizations [Fek15] since our randomized strategy
improves in accuracy with each iteration – a feature that, to our
knowledge, none of the existing inverse projection techniques has.
Finally, we found that the quality of our approach diminishes with
increasing complexity and dimensionality of the dataset. There are
several possible reasons for this: (1) sparse data, (2) high intrinsic
dimensionality, (3) distortions in the MDS projection, and the curse
of dimensionality [VF05].

Future Work: While inverse projections can enrich projection scat-
terplots [LA11, NA19, DMKEA23], to be practically effective, they
must be interpretable. Algorithm-wise, we claim our technique
meets this goal, more than other existing techniques. Yet, improve-
ments are possible. Despite our negative results partitioning the data
by k-means for stratified sampling, reference point selection can
be optimized, e.g., by selecting points based on their relative angle
or filtering out poorly-projected samples (following [REHT19]).
Inverting really high-dimensional data will require many samples
to avoid problems stemming from sparsity. While we restrict our
approach to MDS with the Euclidean distance, future work can
explore other projections and distance measures. There is a further
need to evaluate the limitations of our approach. With regard to
other inverse projection approaches, we found that objective criteria
for the parameterization are missing or rather vague. For example,
NN-based approaches, require an NN architecture tailored to the
dataset and are difficult to interpret. Our method only requires the
number of selection steps s as a parameter.

6. Conclusion

We proposed a new method for inverting MDS-class projections.
Our approach is purely based on Euclidean geometry, which avoids
the need for more complex machine learning and deep-learning
based approaches, which are hard to fine-tune, understand, interpret,
and predict. Our method is simple to implement, efficient to com-
pute, and can be applied to any generic high-dimensional dataset.
We evaluate our method by qualitatively and quantitatively com-
paring it to three key existing approaches for inverse projections.
Quantitatively, our approach only yields similar errors in projecting
known points if the distances are well preserved by MDS. However,
qualitatively, our method produces smoother gradients between pro-
jected points (and clusters thereof), meaning that our method may
be better suited for applications where users (interactively) change
the position of a 2D point to infer a smoothly-changing data value.
Still, our approach reaches limitations when the dimensionality or
complexity of the underlying data is high.
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Figure 3: Comparison of inverse projections showing the MSE for known points encoded in Voronoi cells associated with each projected point
of the Blobs dataset. The number at the bottom right corner indicates the average MSE for the test samples (20% of the dataset).

Ours iLAMP iNN RBF

B
lo

bs
R

in
gs

Ir
is

Se
is

m
ic

Figure 4: Gradient maps of inverse projections for four datasets. Darker colors indicate a low rate of change, and lighter areas show a high
rate of change. The number at the bottom right shows the average gradient.
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