(High-dimensional and Relational) Data Visualization

Course Organization

dr. Tamara Mchedlidze prof. dr. Alexandru (Alex) Telea

Department of Information and Computing Sciences Utrecht University, the Netherlands

Introduction - Instructors

Tamara Mchedldize (Mtsentlintze)

- PhD in graph drawing (NTUA Athens, 2012)
- PostDoc in network visualization (KIT Karslruhe, 2012-2020)
- assistant professor (UU Utrecht, since 2020)
- research: graph drawing (theory, practice, ML), applications of datavis in humanities
- check: <u>https://evm.science.uu.nl/</u>

Alex Telea

- PhD in scientific visualization (TU Eindhoven, 2000)
- assistant professor in visualization (TU Eindhoven, 2000-2007)
- professor in multiscale visual analytics (RUG, 2007-2019)
- professor in visual data analytics (UU, since 2019)
- research: visual analytics, shape analytics, machine learning

Alister Machado dos Reis (tutorials)

- Bachelor in Computer Science (UFRGS, Brasil, 2017)
- Master's in Data Science (INP, Grenoble, 2017)
- Software Engeneer (Google Brasil, 2018-2021)
- PhD student (UU Utrecht, since 2021)
- research: interactions between Visualization and Reinforcement Learning

http://www.staff.science.uu.nl/
~telea001

https://www.uu.nl/staff/ AMachadodosReis

Introduction - Students

Tell us about you!

Or go to <u>https://www.menti.com/alxuiaip3in1</u> use code: **6984 2695**

For whom is this course

- (under)graduate students in the MSc phase
- interested to learn in depth algorithms and methods for data visualization

What you need to know before

- a programming language (C, C++, Python, Java, C#)
- data/software management (platforms, tools, scripting, etc)
- background in math (linear algebra, calculus, optimization, statistics)
- knowledge of algorithms and computational complexity
- fundamentals of visualization and/or graphics

Course Structure

Lectures

- 7 lecture weeks
- communicate and illustrate theory, techniques, methodology
- present examples
- interactive setting: slides, questions to\from audience (!)

Tutorials

- develop a tool for relational, high-dimensional data visualization
- work in groups (1..3 students); groups of 2 are encouraged
- assignment is online (assignment -> Overview)
- work on the assignment as the course progresses (25% of the grade, more later)
- implement algorithms given at the lectures. If you want to implement smth else, provide a good reason why to do so.

Feedback

- global, during lectures
- per-group, from lecturers, upon submission of progress reports

Course Structure

Grading (more later)

- 25% Process
- 25% Final project presentation
- 50% Final project deliverable

Course Outline

- Module 1: Introduction
- Module 2: Tree visualizations
- **Module 3:** Visualization of general graphs
- Module 4: Visualization of directed graphs
- Module 5: Visualization of clustered/multilayer networks
- Module 6: Low dimensional data visualization
- Module 7: High dimensional data visualization

Note: A module is not 1-to-1 to one lecture

Course Schedule

Week	Date	Time	Content	Lecturer
6	February 7	9:00-10:45	Introduction to Network Visualization	Tamara
7	February 12	-	Tutorial	Alister
	February 14	-	Tree Visualizations	Tamara
8	February 19	-	Tutorial	Alister
	February 21	-	Visualization of general graphs	Alister for Tamara
9	February 26	-	Tutorial	Alister
	February 28	-	Visualization of hierarchical graphs	Tamara
10	March 4	-	Tutorial	Alister
	March 6	-	Visualization of multilevel networks	Tamara
11	March 11	-	Tutorial	Alister
	March 13	-	High-dimensional data visualization	Alex
12	March 18	-	Tutorial	Alister
	March 20	-	High-dimensional data visualization: advanced	Alex
13	March 25	-	Tutorial	Alister
	March 27	-	_	
14	April 2	17:15-19:00	Final Presentations	Students
	April 3	9:00-12:45	Final Presentations	Students

Note: MSTeams -> General -> Files

Assessment Practical assignment

Design and implement a system for the visualization for relational and highdimensional data

1.Progress report updates (25% of the grade)

- describes implementation choices, parameters of the algorithms, presents output visualizations, qualitative and quantitative evaluation of the visualizations
- submit progress of the report every week same updated document
- use github for collaborative work both for code and progress report
- submit progress report every week (on Monday) to MSTeams (Tutorials -> Files)
- we grade: consistency, quality, and completeness
- check: tips&tricks documents released every week

2. Final project deliverable (50% of the grade)

•PDF of the final report (completeness of the assignments and explanations, quality of writing)

GitHub repository with code (not graded separately, but must work to pass course)
Readme + built instruction

3. Final presentation (25% of the grade)

- present orally your system
- clarity and structure of the presentation, quality of the slides, engagement with the audience, addressing questions

Communication Channels

Course webpage

- slides (webpage->slides, updates as the course progresses)
- recommended books/articles
- datasets
- sample code fragments
- assignment description
- tips & tricks (added as the the course progresses)
- grading rules
- FAQ

	Main	News	Research	Publications	Courses	Students	Software	Funding					
orof. dr. Alexandru C. Telea	Data Visualization												
Data Visualization	Course content												
łome	This course teaches Data Visualization methods with a focus on relational and high-dimensional data. Such data												
.ectures	appear in many of real-life applications from science, social phenomena, and engineering. The course is divided into two parts: parts - relational and high-dimensional data - as follows.												
Class overview	Relational data We present a model used for representation and storing relational data, called graph or network,												
lides	and list a visualiza	applicatior itions. We	ns of network study severa	k visualization. W al network visual	e define so-o ization metho	called quality ods, including	metrics to coi :	nstruct and assess networ	rk				
Readings													
Grading and Rules	Visu	alizing ger	neral graphs;	nho									
Assignment	 Visu Visu 	alization o	of multilevel r	pris; networks for mod	leling highly	complex appl	ications;						
Overview	 Grap 	oh bundlin	g.										
Code	High-dimensional data We present methods that teach the visualization of large data tables (thousands of rows, bundreds of columns) from data science, artificial intelligence, and related fields. We discuss these methods as well												
Others	as quality metrics to assess them including:												
Additional material?	 Parallel coordinate plots Scatterplot matrices Table lenses Dimensionality reduction 												
AQ													

Communication Channels

MSTeams

- link in blackboard please request access
- General : announcements and questions about organizational matters
- Lectures: questions about the lecture content
- Tutorials : questions about assignments
- Students : communication among the students, can help you to find project

partner

Learning Goals

- Have an overview of the state-of-the art visualization methods for relational and high-dimensional data (Remember)
- Be able to explain the functionality of these methods (Understand)
- Implement the methods in your programming language of choice (Apply)
- Parametrise the methods for a range of data sets (Apply)
- Assess the results of the constructed visualizations (Analyse, Evaluate)
- Present and motivate all taken choices (Analyse)
- Come up with novel ideas to address algorithmic challenges (Create)

Additional Remarks

Competences assumed you have (and develop further)

Coding

- you need to be able to **program** (well)!!!
- lecturer is **not assumed** to debug your source code

Communication

• describe a problem/question **correctly**, **compactly**, and **technically** ("it does not work, what to do?" is not a good example ③)

Reporting

- your final report should be at the level of an industry white paper / tech report / scientific publication
- well structured, complete, coherent, with clear math notations, references
- illustrate all you do by graphs, charts, snapshots
- use tips&tricks!

Additional Remarks

Be present!

- lectures give **detailed explanation** of the methods you need to implement
- tutorial sessions give opportunity to **ask questions** and **anticipate challenges**

Be proactive!

- ask questions during lectures!
- provide assignment progress reports
- do read all information on course website

Watch the time!

- make sure you progress **continuously** with the assignment
- report blockers ASAP!

Last but not least: Have fun!

Enjoy this online visualization of political blogosphere: <u>https://vimeo.com/108948127</u>