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Tree and its traversals

Tree - a connected graph without cycles
Rooted tree
Binary tree

Tree traversals: breadth-first search (bfs), depth-first
search (dfs)

bfs - visit vertices in layers

dfs pre-order : first parent then subtrees

dfs post-order : first subtrees then parent
dfs in-order : left child, parent, right child
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Tree and its traversals

Tree - a connected graph without cycles
Rooted tree
Binary tree

Tree traversals: breadth-first search (bfs), depth-first
search (dfs)

bfs - visit vertices in layers
dfs pre-order : first parent then subtrees

dfs post-order : first subtrees then parent
dfs in-order : left child, parent, right child

in-order
12
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Tree and its traversals

-

‘qf_.,_?‘ Task: Construct pre-order of the left
i tree and post-order of the right one

Go to Teams — > Lectures — > Whiteboard tree
traversals

Hint
* dfs pre-order : first parent then subtrees
o dfs post-order : first subtrees then parent



Tree and its traversals

Q Task: What is the asymptotic time
N gv A COmplexity of pre- and post-order
q | ? traversals?

Hint
« Assume there are n vertices. How many times you visit
a vertex?



Tree and its traversals

Q Task: What is the asymptotic time
N gv A COmplexity of pre- and post-order
q | ? traversals?

Answer: Generally all dfs and bfs
traversals have time complexity O(n).

Hint
« Assume there are n vertices. How many times you visit
a vertex?
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Level-based Layout

Task: What are the properties of this
visualization? (recall "drawing conventions”)
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Level-based Layout

D

o’ e e Task: What are the properties of this
Lt i visualization? (recall "drawing conventions”)

Drawing Conventions
* Vertices lie on parallel horizontal layers

« Parent is above the children
« Parent is centered with respect to the children
« Edges are straight lines

Isomorphic subtrees have identical drawings
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Level-based Layout

Algorithm Outline:

Input: A binary tree T

Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex

Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T

Conquer:
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Level-based Layout

Algorithm Outline:

Input: A binary tree T

Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex

Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T

Conquer:
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Level-based Layout

Algorithm Outline:

Input: A binary tree T

Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex

Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T

Conquer: parentlis centered wrt children

N
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some agreed distance



Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child
« Assume at each vertex u (below v) we have stored the left and the
right boundary of the subtree T(u) and the horizontal
displacements of the children
« “Summ up” the horizontal displacements of the right boundary of
T;(v) and the left boundary of T,(v) to obtain the displ. of the
children of v
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child
« Assume at each vertex u (below v) we have stored the left and the
right boundary of the subtree T(u) and the horizontal
displacements of the children
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children of v v
o
-1 5 — 140 +1
g +1 —10 +1 ©
~—1 o+1 © o

®) O



Level-based Layout

Implementation Details (postorder and preorder traversals)
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child
« Assume at each vertex u (below v) we have stored the left and the
right boundary of the subtree T(u) and the horizontal
displacements of the children
« “Summ up” the horizontal displacements of the right boundary of
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child
« Assume at each vertex u (below v) we have stored the left and the
right boundary of the subtree T(u) and the horizontal
displacements of the children
« “Summ up” the horizontal displacements of the right boundary of
T;(v) and the left boundary of T,(v) to obtain the displ. of the
children of v
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child
« Assume at each vertex u (below v) we have stored the left and the
right boundary of the subtree T(u) and the horizontal
displacements of the children
« “Summ up” the horizontal displacements of the right boundary of
T;(v) and the left boundary of T,(v) to obtain the displ. of the
children of v
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child
« Assume at each vertex u (below v) we have stored the left and the
right boundary of the subtree T(u) and the horizontal
displacements of the children
« “Summ up” the horizontal displacements of the right boundary of
T;(v) and the left boundary of T,(v) to obtain the displ. of the
children of v oV o
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« Store at v the left and the right boundaries of T(v)



Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child
« Assume at each vertex u (below v) we have stored the left and the
right boundary of the subtree T(u) and the horizontal
displacements of the children
« “Summ up” the horizontal displacements of the right boundary of
T;(v) and the left boundary of T,(v) to obtain the displ. of the
children of v
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« Store at v the left and the right boundaries of T(v)



Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates



Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:
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Implementation Details (postorder and preorder traversals)
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Implementation Details (postorder and preorder traversals)
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates
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74
O
o___ @
o __ "0 0
o ___ o 0
O O



Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:
The overall procedure of summing up horizontal displacements is O(n)

74
O
o___ @
o __ "0 0
o ___ o 0
OO



Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:
The overall procedure of summing up horizontal displacements is O(n)
Since both preorder and postorder are also O(n), we need O(n) in total
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Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:
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Level-based Layout

Let T be a binary tree with n vertices. Algorithm of Reingold &Tilford
constructs a drawing I of T in O(n) time, such that:

* [ is planar and straight-line
« Yv € T y-coordinate of v is -depth(v)

Vertical and horizontal distance is at least 1
Area of [ is O(n?)
Each vertex is centered with respect to its children

Isomorphic trees have coincident drawings up to translation and
reflection




Level-based Layout

The presented algorithm tries to minimize width, does it
achieve the minimum width?
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Level-based Layout

The presented algorithm tries to minimize width, does it
achieve the minimum width?

« Drawing with minimum width can not be
achieved by a divide&conqguer strategy

 But a linear program (LP) can do that!

« However if integer coordinates are required
the problem becomes NP-hard!



Level-based Layout

Note: We discussed an algorithm for binary trees. Your
task is to generalize this to general trees!

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of all the children

center parent with
respect to this interval




Radial Layout
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adial Layout
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Radial Layout

Drawing Conventions:

 Vertices lie on circular layers
according to their depth
* Drawing is planar
Quality Metrics:

» Distribution of the vertices (vaguely)



Radial Layout

Drawing Conventions:

 Vertices lie on circular layers
according to their depth
* Drawing is planar

Quality Metrics:
» Distribution of the vertices (vaguely)

possible algorithm to optimize

j Take a minute to think about a
— the distribution of the vertices




Radial Layout

Example: < Angle corresponding to the

subtree rooted at u:
Z(u)

Tu = v =1
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Radial Layout

* Angle corresponding to the

subtree rooted at u:
Z(u)

Tu = v =1
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Radial Layout

How to avoid crossings:
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How to avoid crossings:
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How to avoid crossings:
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Radial Layout

How to avoid crossings:
« 7, - angle of the
wedge corresponding
to vertex

* pj - raduis of
layer |

« /(v)-number of
nodes in the
subtree rooted at v

. Ty _ p
COS % =

Pi+1
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Radial Layout

How to avoid crossings:
« 7, - angle of the
wedge corresponding
to vertex

* p; - raduis of
layer |

« /(v)-number of
nodes in the
subtree rooted at v

* COs 3 = L&
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° TU —_
: ¢(u) pi
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(correction)



Radial Layout

How to avoid crossings:
« 7, - angle of the
wedge corresponding
to vertex

* pj - raduis of
layer |

« /(v)-number of
nodes in the
subtree rooted at v

* COs 3 = L&
I+
° TU —
: 1a0) Pi
mln{e(v)_1 2 arccos p?}

(correction)

Alternatively use number of
" leaves in the subtree to
subdivide the angles



Radial Layout
Theorem

Let T be a rooted tree with n vertices. The radial algorithm
constructs in O(n) time a drawing I of T such that:

* [ is planar
e Each vertex lies on the radial layer equal to its height

- The area of the drawing is at most O(h?d%)), h-height,
dy-max number of children

Assuming that the radii of consecutive layers ditfer by the
same number and the distance between the vertices on the
layer Is a constant
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Let T be a rooted tree with n vertices. The radial algorithm
constructs in O(n) time a drawing I of T such that:

* [ is planar
e Each vertex lies on the radial layer equal to its height

- The area of the drawing is at most O(h?d%)), h-height,
dy-max number of children

Assuming that the radii of consecutive layers ditfer by the
same number and the distance between t iIces on the
layer Is a constant



Radial Layout
Theorem

Let T be a rooted tree with n vertices. The radial algorithm
constructs in O(n) time a drawing I of T such that:

* [ is planar
e Each vertex lies on the radial layer equal to its height

- The area of the drawing is at most O(h?d%)), h-height,
dy-max number of children

Assuming that the radii of consecutive layers ditfer by the
same number and the distance between t iIces on the
layer Is a constant

radius of the first
layers is O(du)

radius of the last
layer is O(hdy)



Stefanie Posavec:
Writing Without
Words:

the project
explores methods
of visually-
representing text
and visualises the
differences in
writing styles when
comparing different
authors.

Bubble Layout
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Bubble Layout

Drawing Conventions:

* All children of the same vertex
lie on a circle
« Edges do not intersect
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Bubble Layout

Drawing Conventions:

* All children of the same vertex
lie on a circle
« Edges do not intersect

Quality Metrics:

* Distribution
of the vertices (vaguely)




Bubble Layout

Similar to Reingold&Till ford algorithm (layered layout) - has
two stages

First stage: Compute relative position of the children’s
circles relatively to each node

Second stage: coordinate assignment (taking care of no
crossings)
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Similar to Reingold&Till ford algorithm (layered layout) - has
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Bubble Layout

Similar to Reingold&Till ford algorithm (layered layout) - has
two stages

First stage: Compute relative position of the children’s
circles relatively to each node

Postorder traversal: Compute relative coordinates w.r.t. parent

subtrees are already drawn
these are enclosing circles

O06

Ci

U+

u
@

assign 6; proportionallyto ;  may result in sector >
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assign angle « to the
biggest circle

distribute the rest angles
proportionally to r;
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assign angle « to the
biggest circle

distribute the rest angles
proportionally to r;

u
9;/2

place circles tangent to their
sectors

sin(@,-/2) = I’,'/5/

where ¢; Is a distance
between u and the center of
a circle
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assign angle « to the
biggest circle

distribute the rest angles
proportionally to r;

u
9;/2

place circles tangent to their
sectors

sin(@,-/2) = I’,'/5/

where ¢; Is a distance
between u and the center of
a circle

when sector is large the
circle may overlap node n,
so we correct as follows



Bubble Layout

assign angle « to the
biggest circle

distribute the rest angles
proportionally to r;

u
9;/2

place circles tangent to their
sectors

sin(@,-/2) = I’,'/5/

where ¢; Is a distance
between u and the center of
a circle

when sector is large the
circle may overlap node n,
so we correct as follows

5 = max{size(u) + i, g}

compute the smallest
enclosing circle C, of the
circle arrangement



Bubble Layout

where ¢; IS a distance
between u and the center of

a circle

when sector is large the
assign angle « to the circle may overlap node n,
biggest circle so we correct as follows

distribute the rest angles
proportionally to r;

I

0; = max{size(u) + r;, & éi/z}

)
Check geometric libraries!
AN
compute the smallest

enclosing circle C, of the
circle arrangement

u
9;/2

place circles tangent to their
sectors

sin(@,-/2) = I’,'/5/



Bubble Layout

in order to connect node u to its
ancestor, we use a polyline with
one bend 5,. We add a small
dummy circle C’ and put the bend
on the intersection of the C, and
line through u and center of C’
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We compute the relative
coordinates

i
*, position Q= Zj=1 0j — 0i/2

in order to connect node u to its
ancestor, we use a polyline with ..~ \
one bend 5,. We add a small

dummy circle C’ and put the bend
on the intersection of the C, and -] Xxi=9icosq;
line through u and center of C’ = yi = 0;sin q;
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ancestor, we use a polyline with ..~ \
one bend 5,. We add a small

dummy circle C’ and put the bend
on the intersection of the C, and -] Xxi=9icosq;
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~vi — position of the center of C; with respect to the center of C,



Bubble Layout

We compute the relative
coordinates

I
*,_ position a; =) ;40 —0i/2

in order to connect node u to its
ancestor, we use a polyline with ..~ \
one bend 5,. We add a small

dummy circle C’ and put the bend
on the intersection of the C, and -] Xxi=9icosq;
line through u and center of C’ = yi = 0;sin q;

~vi — position of the center of C; with respect to the center of C,

also compute ¢, 8, — position of u and 3, with
respect to the center of C,




Bubble Layout

We compute the relative
coordinates

i
*, position Q= Zj=1 0j — 0i/2

in order to connect node u to its
ancestor, we use a polyline with ..~ \
one bend 5,. We add a small

dummy circle C’ and put the bend
on the intersection of the C, and -] Xxi=9icosq;
line through u and center of C’ = yi = 0;sin q;

~; — position of the center of C; with respect to the center of C,

also compute ¢, 8, — position of u and 3, with
respect to the center of C,

Relative coordinates are vectors!
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care of the possible crossings by rotating each child circle as follows
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Bubble Layout

Second stage: coordinate assignment (taking care of no
crossings)

Preorder traversal: Compute x- and y- coordinates. Before that, take
care of the possible crossings by rotating each child circle as follows

center of the enclosing circle

dummy circle for the bend

the ancester the bend




Bubble Layout

Algorithm : Coordinate Assignment

input : u—the node to draw (recall {,, 5,)
C2bs — the absolute coordinate of the center of circle C,

function coordAssign(u, C2)

begin
Let rot be the rotation operation of the center of C,, so that
Cu, Bu, and ancestor(u) are aligned e ]
Set P, to rot((,) + C2%
Set P} to rot(8,) + Cabs
for all children u; of u
begin

call coordAssign(u;, C2%+rot(C, + ;)
end

end

By — position of the bend on the edge connecting u to its ancestor
Cy — position of u (both relative to the center of C,)
P,, P —final positions of u and 3, respectively
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C2bs — the absolute coordinate of the center of circle C,

function coordAssign(u, C2)

begin
Let rot be the rotation operation of the center of C,, so that
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Algorithm : Coordinate Assignment

input : u—the node to draw (recall {,, 5,)
C2bs — the absolute coordinate of the center of circle C,

function coordAssign(u, C20%)

begin
Let rot be the rotation operation of the center of C,, so that
Cu, Bu, and ancestor(u) are aligned Cu Y

Set P, to rot(¢,) + C3°°

Set P}/ to rot(3,) + C2%

for all children u; of u

call coordAssign(u;, C3*5+rot(C, + 7))
end

end

By — position of the bend on the edge connecting u to its ancestor
Cy — position of u (both relative to the center of C,)
P,, P —final positions of u and 3, respectively



Bubble Layout

Algorithm : Coordinate Assignment

input : u—the node to draw (recall {,, 5,)
C2bs — the absolute coordinate of the center of circle C,

function coordAssign(u, C20%)

begin Vector operations!

Let rot be the rotatioif operafion ot the center of C,, so that
Cu, Bu, and ancestof(u) are aligned J——

Set P} to rot(8,) + Cabs
for all children u; of u

begin 4,
call coordAssign(u;, C2%+rot(C, + ;)
end
end

By — position of the bend on the edge connecting u to its ancestor
Cy — position of u (both relative to the center of C,)
P,, P —final positions of u and 3, respectively
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Time complexity is O(nlog n) if for the enclosing circle we use the
algorithm by Welzl (“Smallest enclosing discs”, 1991).
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Bubble Layout

Time complexity is O(nlog n) if for the enclosing circle we use the
algorithm by Welzl (“Smallest enclosing discs”, 1991).

Q Task: Think and discuss in which

.3~ . situations the resulting drawings have

Q [ ? many bends and in which no bends at all?
| (use virtual board for sketching your ideas)

Bends create a spiral effect in case of very unballanced trees

On the other hand the number of bends is zero for a completely
balanced tree




Inspired by Bubble Layout

Oli Laruelle "The
source code
structure and work

volume of work put
Into open source
software
development usually
created by a small
number of people.”




Inspired by Bubble Layout
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The Tree of Life

This drawing llustrates the phylogeny of organisms, i.e., the history of organismal
lineages as they change through time, as documented by the Tree of Life Web Project
Each dot represents a species or a group, and is linked to its containing group by an edge
Data collected from the project website (http//wiw tolweb.org) on 9/19/2011

Atotal of 93891 species and groups were found on the site, a small sample

of the estimated millons of species on Earth today.
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Summary and Reading

We looked at tree drawing algorithms:
Layered layout, radial layout and bubble layout  #
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Summary and Reading

We looked at tree drawing algorithms:

Layered layout, radial layout and bubble layout " ~."

“4B
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Additional Reading

Layered Layout: Book Di Battista et al:
Chapter 3.1.2

Radial Layout: Book Di Battista et al:

TN > Chapter 3.1.3

Bubble Layout: Paper “Bubble Tree
Drawing Algorithm” Grivet et al.
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