
Algorithms for
Visualization of Trees

Course : Data Visualization
Lecturer : Tamara Mchedlidze
Utrecht University, Dept. of Information and Computing Sciences



Lecture Overview

• Tree and its traversals

• Examples of trees and their visualizations

• Level-based layout

• Radial layout

• Bubble layout



Tree and its traversals

• Tree - a connected graph without cycles
• Rooted tree
• Binary tree
• Tree traversals: breadth-first search (bfs), depth-first

search (dfs)
• bfs - visit vertices in layers
• dfs pre-order : first parent then subtrees
• dfs post-order : first subtrees then parent
• dfs in-order : left child, parent, right child



Tree and its traversals

• Tree - a connected graph without cycles
• Rooted tree
• Binary tree
• Tree traversals: breadth-first search (bfs), depth-first

search (dfs)
• bfs - visit vertices in layers
• dfs pre-order : first parent then subtrees
• dfs post-order : first subtrees then parent
• dfs in-order : left child, parent, right child1

2

4 5

8 9 10 11 13 14 15

6 7

3

12

bfs



Tree and its traversals

• Tree - a connected graph without cycles
• Rooted tree
• Binary tree
• Tree traversals: breadth-first search (bfs), depth-first

search (dfs)
• bfs - visit vertices in layers
• dfs pre-order : first parent then subtrees
• dfs post-order : first subtrees then parent
• dfs in-order : left child, parent, right child1

2

3 6

4 5 7 8 12 14 15

10 13

9

11

pre-order



Tree and its traversals

• Tree - a connected graph without cycles
• Rooted tree
• Binary tree
• Tree traversals: breadth-first search (bfs), depth-first

search (dfs)
• bfs - visit vertices in layers
• dfs pre-order : first parent then subtrees
• dfs post-order : first subtrees then parent
• dfs in-order : left child, parent, right child15

7

3 6

1 2 4 5 9 11 12

10 13

14

8

post-order



Tree and its traversals

• Tree - a connected graph without cycles
• Rooted tree
• Binary tree
• Tree traversals: breadth-first search (bfs), depth-first

search (dfs)
• bfs - visit vertices in layers
• dfs pre-order : first parent then subtrees
• dfs post-order : first subtrees then parent
• dfs in-order : left child, parent, right child8

4

2 6

1 3 5 7 11 13 15

10 14

12

9

in-order



Tree and its traversals

• dfs pre-order : first parent then subtrees
• dfs post-order : first subtrees then parent

Task: Construct pre-order of the left
tree and post-order of the right one

Hint

Go to Teams − > Lectures − > Whiteboard tree
traversals



Tree and its traversals

• Assume there are n vertices. How many times you visit
a vertex?

Task: What is the asymptotic time
complexity of pre- and post-order
traversals?

Hint



Tree and its traversals

• Assume there are n vertices. How many times you visit
a vertex?

Task: What is the asymptotic time
complexity of pre- and post-order
traversals?

Hint

Answer: Generally all dfs and bfs
traversals have time complexity O(n).



Level-based Layout

Task: What are the properties of this
visualization? (recall ”drawing conventions”)



Level-based Layout

Task: What are the properties of this
visualization? (recall ”drawing conventions”)

• Vertices lie on parallel horizontal layers
• Parent is above the children
• Parent is centered with respect to the children
• Edges are straight lines
• Isomorphic subtrees have identical drawings

Drawing Conventions



Level-based Layout
Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T
Conquer:



Level-based Layout
Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T
Conquer:



Level-based Layout
Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T
Conquer:



Level-based Layout
Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T
Conquer:



Level-based Layout

some agreed distance

Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T
Conquer:



Level-based Layout

some agreed distance

parent is centered wrt children

Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right
subtrees of T
Conquer:



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Tl (v ) Tr (v )



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v

−1

+1
−1 +1

+1
+1

−1
−1



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v

−1

+1
−1 +1

+1
+1

−1
−1

2
4



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v

−1

+1
−1 +1

+1
+1

−1
−1

2
4
4



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v

−1

+1
−1 +1

+1
+1

−1
−1

2
4
4

−2 +2



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2

• Store at v the left and the right boundaries of T(v)



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

• Assume at each vertex u (below v ) we have stored the left and the
right boundary of the subtree T (u) and the horizontal
displacements of the children

• “Summ up” the horizontal displacements of the right boundary of
Tl (v ) and the left boundary of Tr (v ) to obtain the displ. of the
children of v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2

• Store at v the left and the right boundaries of T(v)



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2

Preorder traversal: Compute x- and y- coordinates



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2

Preorder traversal: Compute x- and y- coordinates

(0, 0)



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2

Preorder traversal: Compute x- and y- coordinates

(0, 0)

(−2,−1)



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2

Preorder traversal: Compute x- and y- coordinates

(0, 0)

(−2,−1)

(−3,−2)



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2

Preorder traversal: Compute x- and y- coordinates

(0, 0)

(−2,−1)

(−3,−2)
(−2,−3)



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

−1

+1
−1 +1

+1
+1

−1
−1

−2 +2

Preorder traversal: Compute x- and y- coordinates

(0, 0)

(−2,−1)

(−3,−2)
(−2,−3)
(−3,−4)

(−1,−4)



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:
The overall procedure of summing up horizontal displacements is O(n)



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:
The overall procedure of summing up horizontal displacements is O(n)
Since both preorder and postorder are also O(n), we need O(n) in total



Level-based Layout
Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of the left and the right child

v

Preorder traversal: Compute x- and y- coordinates

Asymptotic time complexity:



Level-based Layout

Let T be a binary tree with n vertices. Algorithm of Reingold &Tilford
constructs a drawing Γ of T in O(n) time, such that:

• Γ is planar and straight-line

• ∀v ∈ T y-coordinate of v is -depth(v )

• Vertical and horizontal distance is at least 1

• Area of Γ is O(n2)

• Each vertex is centered with respect to its children

• Isomorphic trees have coincident drawings up to translation and
reflection

Theorem



Level-based Layout

The presented algorithm tries to minimize width, does it
achieve the minimum width?

15



Level-based Layout

The presented algorithm tries to minimize width, does it
achieve the minimum width?

13
15



Level-based Layout

The presented algorithm tries to minimize width, does it
achieve the minimum width?

13
15

• Drawing with minimum width can not be
achieved by a divide&conquer strategy

• But a linear program (LP) can do that!
• However if integer coordinates are required

the problem becomes NP-hard!



Level-based Layout

Note: We discussed an algorithm for binary trees. Your
task is to generalize this to general trees!

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal
displacements of all the children

center parent with
respect to this interval

−8
−1

+8



Radial Layout

An unrooted phylogenetic tree for myosin, a superfamily of
proteins.
”A myosin family tree“ Journal of Cell Science

Application



Radial Layout

Flare Visualization Toolkit code
structure by Heer, Bostock and
Ogievetsky, 2010

Greek Myth Family by
Ribecca, 2011



Radial Layout

Drawing Conventions:
• Vertices lie on circular layers

according to their depth
• Drawing is planar

Quality Metrics:
• Distribution of the vertices (vaguely)



Radial Layout

Drawing Conventions:
• Vertices lie on circular layers

according to their depth
• Drawing is planar

Quality Metrics:
• Distribution of the vertices (vaguely)

Take a minute to think about a
possible algorithm to optimize
the distribution of the vertices



Radial Layout

1 9

1
1

1
1 1

3
5

7

11

Example: • Angle corresponding to the
subtree rooted at u:
τu = `(u)

`(v )−1

v
u

`(u)



Radial Layout

1 9

1
1

1
1 1

3
5

7

11

Example: • Angle corresponding to the
subtree rooted at u:
τu = `(u)

`(v )−1

v
u

`(u)



Radial Layout

1 9

1
1

1
1 1

3
5

7

11
1
10

Example: • Angle corresponding to the
subtree rooted at u:
τu = `(u)

`(v )−1

v
u

`(u)



Radial Layout

1 9

1
1

1
1 1

3
5

7

11
1
10

Example: • Angle corresponding to the
subtree rooted at u:
τu = `(u)

`(v )−1

v
u

`(u)



Radial Layout

1 9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

Example: • Angle corresponding to the
subtree rooted at u:
τu = `(u)

`(v )−1

v
u

`(u)



Radial Layout

1 9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

Example: • Angle corresponding to the
subtree rooted at u:
τu = `(u)

`(v )−1

v
u

`(u)



Radial Layout

1 9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

9
10 ·

7
8 ·

1
6

Example: • Angle corresponding to the
subtree rooted at u:
τu = `(u)

`(v )−1

v
u

`(u)



Radial Layout

1 9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

9
10 ·

7
8 ·

1
6

Example: • Angle corresponding to the
subtree rooted at u:
τu = `(u)

`(v )−1

v
u

`(u)



Radial Layout
How to avoid crossings:

v

u

p

q



Radial Layout
How to avoid crossings:

v

u
q

p



Radial Layout
How to avoid crossings:

v

u
q

p



Radial Layout
How to avoid crossings:

v

u
q

p



Radial Layout

τu

How to avoid crossings:

v

u
q

p



Radial Layout

ρi

ρi+1
τu/2

How to avoid crossings:

v

u

• τu - angle of the
wedge corresponding
to vertex u

• ρi - raduis of
layer i

• cos τu
2 = ρi

ρi+1

• `(v )-number of
nodes in the
subtree rooted at v

q

p



Radial Layout

ρi

ρi+1
τu/2

How to avoid crossings:

v

u

• τu - angle of the
wedge corresponding
to vertex u

• ρi - raduis of
layer i

• cos τu
2 = ρi

ρi+1

• `(v )-number of
nodes in the
subtree rooted at v

q

p



Radial Layout

ρi

ρi+1
τu/2

How to avoid crossings:

v

u

• τu - angle of the
wedge corresponding
to vertex u

• ρi - raduis of
layer i

• cos τu
2 = ρi

ρi+1

• τu =
min{ `(u)

`(v )−1 , 2 arccos ρi
ρi+1
}

(correction)

• `(v )-number of
nodes in the
subtree rooted at v

q

p



Radial Layout

ρi

ρi+1
τu/2

How to avoid crossings:

v

u

• τu - angle of the
wedge corresponding
to vertex u

• ρi - raduis of
layer i

• cos τu
2 = ρi

ρi+1

• τu =
min{ `(u)

`(v )−1 , 2 arccos ρi
ρi+1
}

(correction)

• `(v )-number of
nodes in the
subtree rooted at v

q

p • Alternatively use number of
leaves in the subtree to
subdivide the angles



Radial Layout

Let T be a rooted tree with n vertices. The radial algorithm
constructs in O(n) time a drawing Γ of T such that:

• Γ is planar
• Each vertex lies on the radial layer equal to its height
• The area of the drawing is at most O(h2d2

M ), h-height,
dM -max number of children

Assuming that the radii of consecutive layers differ by the
same number and the distance between the vertices on the
layer is a constant

Theorem



Radial Layout

Let T be a rooted tree with n vertices. The radial algorithm
constructs in O(n) time a drawing Γ of T such that:

• Γ is planar
• Each vertex lies on the radial layer equal to its height
• The area of the drawing is at most O(h2d2

M ), h-height,
dM -max number of children

Assuming that the radii of consecutive layers differ by the
same number and the distance between the vertices on the
layer is a constant

Theorem



Radial Layout

Let T be a rooted tree with n vertices. The radial algorithm
constructs in O(n) time a drawing Γ of T such that:

• Γ is planar
• Each vertex lies on the radial layer equal to its height
• The area of the drawing is at most O(h2d2

M ), h-height,
dM -max number of children

Assuming that the radii of consecutive layers differ by the
same number and the distance between the vertices on the
layer is a constant

radius of the first
layers is O(dM )
radius of the last
layer is O(hdM )

Theorem



Bubble Layout
Stefanie Posavec:
Writing Without
Words:
the project
explores methods
of visually-
representing text
and visualises the
differences in
writing styles when
comparing different
authors.



Bubble Layout
Stefanie Posavec:
Writing Without
Words:
the project
explores methods
of visually-
representing text
and visualises the
differences in
writing styles when
comparing different
authors.

similar to Bubble
layout



Bubble Layout

Drawing Conventions:
• All children of the same vertex

lie on a circle
• Edges do not intersect



Bubble Layout

Drawing Conventions:
• All children of the same vertex

lie on a circle
• Edges do not intersect



Bubble Layout

Drawing Conventions:
• All children of the same vertex

lie on a circle
• Edges do not intersect

Quality Metrics:
• Distribution

of the vertices (vaguely)



Bubble Layout
Similar to Reingold&Till ford algorithm (layered layout) - has
two stages

First stage: Compute relative position of the children’s
circles relatively to each node

Second stage: coordinate assignment (taking care of no
crossings)



Bubble Layout
Similar to Reingold&Till ford algorithm (layered layout) - has
two stages

First stage: Compute relative position of the children’s
circles relatively to each node

Second stage: coordinate assignment (taking care of no
crossings)



Bubble Layout
Similar to Reingold&Till ford algorithm (layered layout) - has
two stages

First stage: Compute relative position of the children’s
circles relatively to each node

Second stage: coordinate assignment (taking care of no
crossings) subtrees are already drawn

these are enclosing circles
u

ri

Postorder traversal: Compute relative coordinates w.r.t. parent

u1 uk

C1 Ck



Bubble Layout
Similar to Reingold&Till ford algorithm (layered layout) - has
two stages

First stage: Compute relative position of the children’s
circles relatively to each node

Second stage: coordinate assignment (taking care of no
crossings) subtrees are already drawn

these are enclosing circles
u

u

ri

Postorder traversal: Compute relative coordinates w.r.t. parent

u1 uk

C1 Ck



Bubble Layout
Similar to Reingold&Till ford algorithm (layered layout) - has
two stages

First stage: Compute relative position of the children’s
circles relatively to each node

Second stage: coordinate assignment (taking care of no
crossings) subtrees are already drawn

these are enclosing circles
u

uθi

assign θi proportionally to ri

ri

Postorder traversal: Compute relative coordinates w.r.t. parent

u1 uk

C1 Ck



Bubble Layout
Similar to Reingold&Till ford algorithm (layered layout) - has
two stages

First stage: Compute relative position of the children’s
circles relatively to each node

Second stage: coordinate assignment (taking care of no
crossings) subtrees are already drawn

these are enclosing circles
u

uθi

assign θi proportionally to ri

ri

u

may result in sector > π

Postorder traversal: Compute relative coordinates w.r.t. parent

u1 uk

C1 Ck



Bubble Layout

u

assign angle π to the
biggest circle
distribute the rest angles
proportionally to ri



Bubble Layout

u

assign angle π to the
biggest circle
distribute the rest angles
proportionally to ri

place circles tangent to their
sectors

u
θi/2

sin(θi/2) = ri/δi

where δi is a distance
between u and the center of
a circle



Bubble Layout

u

assign angle π to the
biggest circle
distribute the rest angles
proportionally to ri

place circles tangent to their
sectors

u
θi/2

sin(θi/2) = ri/δi

where δi is a distance
between u and the center of
a circle

when sector is large the
circle may overlap node n,
so we correct as follows



Bubble Layout

u

assign angle π to the
biggest circle
distribute the rest angles
proportionally to ri

place circles tangent to their
sectors

u
θi/2

sin(θi/2) = ri/δi

where δi is a distance
between u and the center of
a circle

when sector is large the
circle may overlap node n,
so we correct as follows

δi = max{size(u) + ri , ri
sin θi/2}

compute the smallest
enclosing circle Cu of the
circle arrangement



Bubble Layout

u

assign angle π to the
biggest circle
distribute the rest angles
proportionally to ri

place circles tangent to their
sectors

u
θi/2

sin(θi/2) = ri/δi

where δi is a distance
between u and the center of
a circle

when sector is large the
circle may overlap node n,
so we correct as follows

δi = max{size(u) + ri , ri
sin θi/2}

compute the smallest
enclosing circle Cu of the
circle arrangement

Check geometric libraries!



Bubble Layout

bend
position

in order to connect node u to its
ancestor, we use a polyline with
one bend βu. We add a small
dummy circle C′ and put the bend
on the intersection of the Cu and
line through u and center of C′

u C′



Bubble Layout

bend
position

in order to connect node u to its
ancestor, we use a polyline with
one bend βu. We add a small
dummy circle C′ and put the bend
on the intersection of the Cu and
line through u and center of C′

u C′

Ci

αi =
∑i

j=1 θj − θi/2

γi =

{
xi = δi cosαi

yi = δi sinαi

We compute the relative
coordinates



Bubble Layout

bend
position

in order to connect node u to its
ancestor, we use a polyline with
one bend βu. We add a small
dummy circle C′ and put the bend
on the intersection of the Cu and
line through u and center of C′

u C′

Ci

αi =
∑i

j=1 θj − θi/2

γi =

{
xi = δi cosαi

yi = δi sinαi

γi – position of the center of Ci with respect to the center of Cu

We compute the relative
coordinates



Bubble Layout

bend
position

in order to connect node u to its
ancestor, we use a polyline with
one bend βu. We add a small
dummy circle C′ and put the bend
on the intersection of the Cu and
line through u and center of C′

u C′

Ci

αi =
∑i

j=1 θj − θi/2

γi =

{
xi = δi cosαi

yi = δi sinαi

γi – position of the center of Ci with respect to the center of Cu

We compute the relative
coordinates

also compute ζu, βu – position of u and βu with
respect to the center of Cu



Bubble Layout

bend
position

in order to connect node u to its
ancestor, we use a polyline with
one bend βu. We add a small
dummy circle C′ and put the bend
on the intersection of the Cu and
line through u and center of C′

u C′

Ci

αi =
∑i

j=1 θj − θi/2

γi =

{
xi = δi cosαi

yi = δi sinαi

γi – position of the center of Ci with respect to the center of Cu

We compute the relative
coordinates

also compute ζu, βu – position of u and βu with
respect to the center of Cu

Relative coordinates are vectors!



Bubble Layout
Second stage: coordinate assignment (taking care of no
crossings)



Bubble Layout
Second stage: coordinate assignment (taking care of no
crossings)
Preorder traversal: Compute x- and y- coordinates. Before that, take
care of the possible crossings by rotating each child circle as follows



Bubble Layout

dummy circle for the bend

the bend

center of the enclosing circle

the ancester

dummy circle for the bend

the bend

center of the enclosing circle

the ancester

Second stage: coordinate assignment (taking care of no
crossings)
Preorder traversal: Compute x- and y- coordinates. Before that, take
care of the possible crossings by rotating each child circle as follows



Bubble Layout

dummy circle for the bend

the bend

center of the enclosing circle

the ancester

dummy circle for the bend

the bend

center of the enclosing circle

the ancester

Second stage: coordinate assignment (taking care of no
crossings)
Preorder traversal: Compute x- and y- coordinates. Before that, take
care of the possible crossings by rotating each child circle as follows



Bubble Layout

dummy circle for the bend

the bend

center of the enclosing circle

the ancester

dummy circle for the bend

the bend

center of the enclosing circle

the ancester

Second stage: coordinate assignment (taking care of no
crossings)
Preorder traversal: Compute x- and y- coordinates. Before that, take
care of the possible crossings by rotating each child circle as follows



Bubble Layout

function coordAssign(u, Cabs
u )

input : u – the node to draw (recall ζu, βu)
Cabs

u – the absolute coordinate of the center of circle Cu

begin
Let rot be the rotation operation of the center of Cu, so that
Cu, βu, and ancestor (u) are aligned
Set Pu to rot(ζu) + Cabs

u
Set Pβ

u to rot(βu) + Cabs
u

for all children ui of u
begin

call coordAssign(ui , Cabs
u +rot(ζu + γi ))

end
end

Algorithm : Coordinate Assignment

βu – position of the bend on the edge connecting u to its ancestor
ζu – position of u (both relative to the center of Cu)
Pu, Pβ

u – final positions of u and βu, respectively



Bubble Layout

function coordAssign(u, Cabs
u )

input : u – the node to draw (recall ζu, βu)
Cabs

u – the absolute coordinate of the center of circle Cu

begin
Let rot be the rotation operation of the center of Cu, so that
Cu, βu, and ancestor (u) are aligned
Set Pu to rot(ζu) + Cabs

u
Set Pβ

u to rot(βu) + Cabs
u

for all children ui of u
begin

call coordAssign(ui , Cabs
u +rot(ζu + γi ))

end
end

Algorithm : Coordinate Assignment

βu – position of the bend on the edge connecting u to its ancestor
ζu – position of u (both relative to the center of Cu)
Pu, Pβ

u – final positions of u and βu, respectively

rot



Bubble Layout

function coordAssign(u, Cabs
u )

input : u – the node to draw (recall ζu, βu)
Cabs

u – the absolute coordinate of the center of circle Cu

begin
Let rot be the rotation operation of the center of Cu, so that
Cu, βu, and ancestor (u) are aligned
Set Pu to rot(ζu) + Cabs

u
Set Pβ

u to rot(βu) + Cabs
u

for all children ui of u
begin

call coordAssign(ui , Cabs
u +rot(ζu + γi ))

end
end

Algorithm : Coordinate Assignment

βu – position of the bend on the edge connecting u to its ancestor
ζu – position of u (both relative to the center of Cu)
Pu, Pβ

u – final positions of u and βu, respectively



Bubble Layout

function coordAssign(u, Cabs
u )

input : u – the node to draw (recall ζu, βu)
Cabs

u – the absolute coordinate of the center of circle Cu

begin
Let rot be the rotation operation of the center of Cu, so that
Cu, βu, and ancestor (u) are aligned
Set Pu to rot(ζu) + Cabs

u
Set Pβ

u to rot(βu) + Cabs
u

for all children ui of u
begin

call coordAssign(ui , Cabs
u +rot(ζu + γi ))

end
end

Algorithm : Coordinate Assignment

βu – position of the bend on the edge connecting u to its ancestor
ζu – position of u (both relative to the center of Cu)
Pu, Pβ

u – final positions of u and βu, respectively

ζu + γi



Bubble Layout

function coordAssign(u, Cabs
u )

input : u – the node to draw (recall ζu, βu)
Cabs

u – the absolute coordinate of the center of circle Cu

begin
Let rot be the rotation operation of the center of Cu, so that
Cu, βu, and ancestor (u) are aligned
Set Pu to rot(ζu) + Cabs

u
Set Pβ

u to rot(βu) + Cabs
u

for all children ui of u
begin

call coordAssign(ui , Cabs
u +rot(ζu + γi ))

end
end

Algorithm : Coordinate Assignment

βu – position of the bend on the edge connecting u to its ancestor
ζu – position of u (both relative to the center of Cu)
Pu, Pβ

u – final positions of u and βu, respectively

Vector operations!



Bubble Layout

Time complexity is O(n log n) if for the enclosing circle we use the
algorithm by Welzl (“Smallest enclosing discs”, 1991).



Bubble Layout

Time complexity is O(n log n) if for the enclosing circle we use the
algorithm by Welzl (“Smallest enclosing discs”, 1991).

Task: Think and discuss in which
situations the resulting drawings have
many bends and in which no bends at all?
(use virtual board for sketching your ideas)



Bubble Layout

Time complexity is O(n log n) if for the enclosing circle we use the
algorithm by Welzl (“Smallest enclosing discs”, 1991).

Bends create a spiral effect in case of very unballanced trees

Task: Think and discuss in which
situations the resulting drawings have
many bends and in which no bends at all?
(use virtual board for sketching your ideas)



Bubble Layout

Time complexity is O(n log n) if for the enclosing circle we use the
algorithm by Welzl (“Smallest enclosing discs”, 1991).

Bends create a spiral effect in case of very unballanced trees

On the other hand the number of bends is zero for a completely
balanced tree

Task: Think and discuss in which
situations the resulting drawings have
many bends and in which no bends at all?
(use virtual board for sketching your ideas)



Inspired by Bubble Layout

Oli Laruelle ”The
source code
structure and work
progress of software
project. The
intention was to
represent the sheer
volume of work put
into open source
software
development usually
created by a small
number of people.”



Inspired by Bubble Layout
Yifan Hu: tree of life
- phylogeny of
organisms,- the
history of
organismal lineages
as they change
through time.The
data used in this
drawing contains
93891 species.



Summary and Reading
We looked at tree drawing algorithms:

Layered layout, radial layout and bubble layout



Summary and Reading
We looked at tree drawing algorithms:

Layered layout, radial layout and bubble layout

Radial Layout: Book Di Battista et al:
Chapter 3.1.3

Additional Reading

Layered Layout: Book Di Battista et al:
Chapter 3.1.2

Bubble Layout: Paper “Bubble Tree
Drawing Algorithm” Grivet et al.



Summary and Reading
We looked at tree drawing algorithms:

Layered layout, radial layout and bubble layout

Algorithm for visualization of general graphs
Next


