Algorithms for Visualization of Trees

Course : Data Visualization
Lecturer : Tamara Mchedlidze
Utrecht University, Dept. of Information and Computing Sciences

Lecture Overview

- Tree and its traversals
- Examples of trees and their visualizations
- Level-based layout
- Radial layout
- Bubble layout

Tree and its traversals

- Tree - a connected graph without cycles
- Rooted tree
- Binary tree
- Tree traversals: breadth-first search (bfs), depth-first search (dfs)
- bfs - visit vertices in layers
- dfs pre-order : first parent then subtrees
- dfs post-order : first subtrees then parent
- dfs in-order : left child, parent, right child

Tree and its traversals

- Tree - a connected graph without cycles
- Rooted tree
- Binary tree
- Tree traversals: breadth-first search (bfs), depth-first search (dfs)
- bfs - visit vertices in layers
- dfs pre-order : first parent then subtrees
- dfs post-order : first subtrees then parent
- dfs in-order : left child, parent, right child

Tree and its traversals

- Tree - a connected graph without cycles
- Rooted tree
- Binary tree
- Tree traversals: breadth-first search (bfs), depth-first search (dfs)
- bfs - visit vertices in layers
- dfs pre-order : first parent then subtrees
- dfs post-order : first subtrees then parent
- dfs in-order : left child, parent, right child

Tree and its traversals

- Tree - a connected graph without cycles
- Rooted tree
- Binary tree
- Tree traversals: breadth-first search (bfs), depth-first search (dfs)
- bfs - visit vertices in layers
- dfs pre-order : first parent then subtrees
- dfs post-order : first subtrees then parent
- dfs in-order : left child, parent, right child 5

Tree and its traversals

- Tree - a connected graph without cycles
- Rooted tree
- Binary tree
- Tree traversals: breadth-first search (bfs), depth-first search (dfs)
- bfs - visit vertices in layers
- dfs pre-order : first parent then subtrees
- dfs post-order : first subtrees then parent
- dfs in-order : left child, parent, right child

Tree and its traversals

Task: Construct pre-order of the left tree and post-order of the right one

Go to Teams $->$ Lectures $->$ Whiteboard tree traversals

Hint

- dfs pre-order : first parent then subtrees
- dfs post-order : first subtrees then parent

Tree and its traversals

Task: What is the asymptotic time complexity of pre- and post-order traversals?

Hint

- Assume there are n vertices. How many times you visit a vertex?

Tree and its traversals

Task: What is the asymptotic time complexity of pre- and post-order traversals?

Answer: Generally all dfs and bfs traversals have time complexity $O(n)$.

Hint

- Assume there are n vertices. How many times you visit a vertex?

Level-based Layout

Task: What are the properties of this visualization? (recall "drawing conventions")

Level-based Layout

Task: What are the properties of this visualization? (recall "drawing conventions")

Drawing Conventions

- Vertices lie on parallel horizontal layers
- Parent is above the children
- Parent is centered with respect to the children
- Edges are straight lines
- Isomorphic subtrees have identical drawings

Level-based Layout

Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T
Conquer:

-													

Level-based Layout

Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T
Conquer:
Oo

Level-based Layout

Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T
Conquer:
$\int_{0}^{0} \rightarrow \sim$ oro

Level-based Layout

Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T
Conquer:

Level-based Layout

Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T
Conquer:

-							
		0 -					
		0					
		O					
		some agreed distance					

Level-based Layout

Algorithm Outline:
Input: A binary tree T
Output: A level-based drawing of T
Divide and Conquer algorithm
Base case: a single vertex
Divide: Recursively apply the algorithm to draw the left and the right subtrees of T
Conquer:

Level-based Layout

Implementation Details (postorder and preorder traversals) Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

Level-based Layout

Implementation Details (postorder and preorder traversals) Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v
- Store at v the left and the right boundaries of $T(v)$

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

- Assume at each vertex u (below v) we have stored the left and the right boundary of the subtree $T(u)$ and the horizontal displacements of the children
- "Summ up" the horizontal displacements of the right boundary of $T_{l}(v)$ and the left boundary of $T_{r}(v)$ to obtain the displ. of the children of v
- Store at v the left and the right boundaries of $T(v)$

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

Preorder traversal: Compute x - and y-coordinates

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

Preorder traversal: Compute x - and y-coordinates
$(0,0)$

								$-2 v+2$										
								- -1										
								1 - -										
								0										

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates
$(0,0)$

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

Preorder traversal: Compute x - and y-coordinates
$(0,0)$

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

Preorder traversal: Compute x - and y-coordinates
$(0,0)$

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child

Preorder traversal: Compute x - and y-coordinates
$(0,0)$

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates
Asymptotic time complexity:

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates
Asymptotic time complexity:

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates
Asymptotic time complexity:

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates
Asymptotic time complexity:

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates
Asymptotic time complexity:

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates
Asymptotic time complexity:
The overall procedure of summing up horizontal displacements is $O(n)$

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y - coordinates
Asymptotic time complexity:
The overall procedure of summing up horizontal displacements is $O(n)$ Since both preorder and postorder are also $O(n)$, we need $O(n)$ in total

Level-based Layout

Implementation Details (postorder and preorder traversals)
Postorder traversal: For each vertex v compute horizontal displacements of the left and the right child
Preorder traversal: Compute x - and y-coordinates
Asymptotic time complexity:

Level-based Layout

Theorem

Let T be a binary tree with n vertices. Algorithm of Reingold \&Tilford constructs a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar and straight-line
- $\forall v \in T$ y-coordinate of v is -depth (v)
- Vertical and horizontal distance is at least 1
- Area of Γ is $O\left(n^{2}\right)$
- Each vertex is centered with respect to its children
- Isomorphic trees have coincident drawings up to translation and reflection

Level-based Layout

The presented algorithm tries to minimize width, does it achieve the minimum width?

Level-based Layout

The presented algorithm tries to minimize width, does it achieve the minimum width?

Level-based Layout

The presented algorithm tries to minimize width, does it achieve the minimum width?

- Drawing with minimum width can not be achieved by a divide\&conquer strategy
- But a linear program (LP) can do that!
- However if integer coordinates are required

Level-based Layout

Note: We discussed an algorithm for binary trees. Your task is to generalize this to general trees!

Implementation Details (postorder and preorder traversals) Postorder traversal: For each vertex v compute horizontal displacements of all the children

Radial Layout

An unrooted phylogenetic tree for myosin, a superfamily of proteins.
"A myosin family tree" Journal of Cell Science

Radial Layout

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribecca, 2011

Radial Layout

Drawing Conventions:

- Vertices lie on circular layers according to their depth
- Drawing is planar

Quality Metrics:

- Distribution of the vertices (vaguely)

Radial Layout

Drawing Conventions:

- Vertices lie on circular layers according to their depth
- Drawing is planar

Quality Metrics:

- Distribution of the vertices (vaguely)

E
Take a minute to think about a possible algorithm to optimize the distribution of the vertices

Radial Layout

Example: - Angle corresponding to the subtree rooted at u :

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1}
$$

Radial Layout

Example: - Angle corresponding to the subtree rooted at u :

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1}
$$

Radial Layout

Example: - Angle corresponding to the subtree rooted at u :

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1}
$$

Radial Layout

Example: - Angle corresponding to the subtree rooted at u :

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1}
$$

Radial Layout

Example: - Angle corresponding to the subtree rooted at u :

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1}
$$

Radial Layout

Example: - Angle corresponding to the subtree rooted at u :

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1}
$$

Radial Layout

Example: - Angle corresponding to the subtree rooted at u :

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1}
$$

Radial Layout

Example: - Angle corresponding to the subtree rooted at u :

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1}
$$

Radial Layout

How to avoid crossings:

Radial Layout

How to avoid crossings:

Radial Layout

How to avoid crossings:

- τ_{u} - angle of the wedge corresponding to vertex u itu/2
- ρ_{i} - raduis of layer i
- $\ell(v)$-number of nodes in the subtree rooted at v
- $\cos \frac{\tau_{U}}{2}=\frac{\rho_{i}}{\rho_{i+1}}$

Radial Layout

How to avoid crossings:

- τ_{u} - angle of the wedge corresponding

- ρ_{i} - raduis of layer i
- $\ell(v)$-number of nodes in the subtree rooted at v
- $\cos \frac{\tau_{u}}{2}=\frac{\rho_{i}}{\rho_{i+1}}$

Radial Layout

How to avoid crossings:

- τ_{u} - angle of the wedge corresponding

- ρ_{i} - raduis of layer i
- $\ell(v)$-number of nodes in the subtree rooted at v
- $\cos \frac{\tau_{u}}{2}=\frac{\rho_{i}}{\rho_{i+1}}$
- $\tau_{u}=$ $\min \left\{\frac{\ell(u)}{\ell(v)-1}, 2 \arccos \frac{\rho_{i}}{\rho_{i+1}}\right\}$ (correction)

Radial Layout

How to avoid crossings:

- τ_{u} - angle of the wedge corresponding to vertex
- ρ_{i} - raduis of layer i
- $\ell(v)$-number of nodes in the subtree rooted at v
- $\cos \frac{\tau_{\nu}}{2}=\frac{\rho_{i}}{\rho_{i+1}}$
- $\tau_{u}=$ $\min \left\{\frac{\ell(u)}{\ell(v)-1}, 2 \arccos \frac{\rho_{i}}{\rho_{i+1}}\right\}$ (correction)
- Alternatively use number of leaves in the subtree to subdivide the angles

Radial Layout

Theorem

Let T be a rooted tree with n vertices. The radial algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- 「 is planar
- Each vertex lies on the radial layer equal to its height
- The area of the drawing is at most $O\left(h^{2} d_{M}^{2}\right), h$-height, d_{M}-max number of children

Assuming that the radii of consecutive layers differ by the same number and the distance between the vertices on the layer is a constant

Radial Layout

Theorem

Let T be a rooted tree with n vertices. The radial algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is planar
- Each vertex lies on the radial layer equal to its height
- The area of the drawing is at most $O\left(h^{2} d_{M}^{2}\right), h$-height, d_{M}-max number of children

Assuming that the radii of consecutive layers differ by the same number and the distance between the vertices on the layer is a constant

Radial Layout

Theorem

Let T be a rooted tree with n vertices. The radial algorithm constructs in $O(n)$ time a drawing Γ of T such that:

- Γ is planar
- Each vertex lies on the radial layer equal to its height
- The area of the drawing is at most $O\left(h^{2} d_{M}^{2}\right)$, h-height, d_{M}-max number of children

Assuming that the radii of consecutive layers differ by the same number and the distance between the ontices on the layer is a constant
radius of the first layers is $O\left(d_{M}\right)$ radius of the last layer is $O\left(h d_{M}\right)$

Bubble Layout

Stefanie Posavec: Writing Without Words:
the project
explores methods of visuallyrepresenting text and visualises the differences in writing styles when comparing different authors.

Bubble Layout

Stefanie Posavec: Writing Without Words:
the project
explores methods of visuallyrepresenting text and visualises the differences in
writing styles when comparing different authors.
similar to Bubble

layout

Bubble Layout

Drawing Conventions:

- All children of the same vertex lie on a circle
- Edges do not intersect

Bubble Layout

Drawing Conventions:

- All children of the same vertex lie on a circle
- Edges do not intersect

Bubble Layout

Drawing Conventions:

- All children of the same vertex lie on a circle
- Edges do not intersect

Quality Metrics:

- Distribution of the vertices (vaguely)

Bubble Layout

Similar to Reingold\&Till ford algorithm (layered layout) - has two stages
First stage: Compute relative position of the children's circles relatively to each node

Second stage: coordinate assignment (taking care of no crossings)

Bubble Layout

Similar to Reingold\&Till ford algorithm (layered layout) - has two stages
First stage: Compute relative position of the children's circles relatively to each node

Bubble Layout

Similar to Reingold\&Till ford algorithm (layered layout) - has two stages
First stage: Compute relative position of the children's circles relatively to each node
Postorder traversal: Compute relative coordinates w.r.t. parent

subtrees are already drawn these are enclosing circles

Bubble Layout

Similar to Reingold\&Till ford algorithm (layered layout) - has two stages
First stage: Compute relative position of the children's circles relatively to each node
Postorder traversal: Compute relative coordinates w.r.t. parent

subtrees are already drawn these are enclosing circles

Bubble Layout

Similar to Reingold\&Till ford algorithm (layered layout) - has two stages
First stage: Compute relative position of the children's circles relatively to each node
Postorder traversal: Compute relative coordinates w.r.t. parent

subtrees are already drawn these are enclosing circles

assign θ_{i} proportionally to r_{i}

Bubble Layout

Similar to Reingold\&Till ford algorithm (layered layout) - has two stages
First stage: Compute relative position of the children's circles relatively to each node
Postorder traversal: Compute relative coordinates w.r.t. parent

subtrees are already drawn these are enclosing circles

assign θ_{i} proportionally to r_{i}

Bubble Layout

assign angle π to the biggest circle distribute the rest angles proportionally to r_{i}

Bubble Layout

where δ_{i} is a distance
between u and the center of a circle
assign angle π to the
biggest circle distribute the rest angles proportionally to r_{i}

place circles tangent to their sectors
$\sin \left(\theta_{i} / 2\right)=r_{i} / \delta_{i}$

Bubble Layout

assign angle π to the biggest circle distribute the rest angles proportionally to r_{i}

place circles tangent to their sectors
$\sin \left(\theta_{i} / 2\right)=r_{i} / \delta_{i}$
where δ_{i} is a distance between u and the center of a circle
when sector is large the circle may overlap node n, so we correct as follows

Bubble Layout

assign angle π to the biggest circle distribute the rest angles proportionally to r_{i}

place circles tangent to their sectors
$\sin \left(\theta_{i} / 2\right)=r_{i} / \delta_{i}$
where δ_{i} is a distance
between u and the center of a circle
when sector is large the circle may overlap node n, so we correct as follows
$\delta_{i}=\max \left\{\operatorname{size}(u)+r_{i}, \frac{r_{i}}{\sin \theta_{i} / 2}\right\}$

compute the smallest enclosing circle C_{u} of the circle arrangement

Bubble Layout

assign angle π to the biggest circle distribute the rest angles proportionally to r_{i}

place circles tangent to their sectors
$\sin \left(\theta_{i} / 2\right)=r_{i} / \delta_{i}$
where δ_{i} is a distance
between u and the center of a circle
when sector is large the circle may overlap node n, so we correct as follows $\delta_{i}=\max \left\{\operatorname{size}(u)+r_{i}, \frac{r_{i}}{\sin \theta_{i} / 2}\right\}$

Check geometric libraries!

compute the smallest enclosing circle C_{u} of the circle arrangement

Bubble Layout

in order to connect node u to its ancestor, we use a polyline with one bend β_{u}. We add a small dummy circle C^{\prime} and put the bend on the intersection of the C_{u} and line through u and center of C^{\prime}

Bubble Layout

in order to connect node u to its ancestor, we use a polyline with one bend β_{u}. We add a small dummy circle C^{\prime} and put the bend on the intersection of the C_{u} and line through u and center of C^{\prime}

We compute the relative coordinates

Bubble Layout

in order to connect node u to its ancestor, we use a polyline with one bend β_{u}. We add a small dummy circle C^{\prime} and put the bend on the intersection of the C_{u} and line through u and center of C^{\prime}

We compute the relative coordinates

γ_{i} - position of the center of C_{i} with respect to the center of C_{u}

Bubble Layout

in order to connect node u to its ancestor, we use a polyline with one bend β_{u}. We add a small dummy circle C^{\prime} and put the bend on the intersection of the C_{u} and line through u and center of C^{\prime}

We compute the relative coordinates

γ_{i} - position of the center of C_{i} with respect to the center of C_{u} also compute ζ_{u}, β_{u} - position of u and β_{u} with respect to the center of C_{u}

Bubble Layout

in order to connect node u to its ancestor, we use a polyline with one bend β_{u}. We add a small dummy circle C^{\prime} and put the bend on the intersection of the C_{u} and line through u and center of C^{\prime}

We compute the relative coordinates

γ_{i} - position of the center of C_{i} with respect to the center of C_{u} also compute ζ_{u}, β_{u} - position of u and β_{u} with respect to the center of C_{u}

Bubble Layout

Second stage: coordinate assignment (taking care of no crossings)

Bubble Layout

Second stage: coordinate assignment (taking care of no crossings)
Preorder traversal: Compute x - and y - coordinates. Before that, take care of the possible crossings by rotating each child circle as follows

Bubble Layout

Second stage: coordinate assignment (taking care of no crossings)
Preorder traversal: Compute x - and y-coordinates. Before that, take care of the possible crossings by rotating each child circle as follows

Bubble Layout

Second stage: coordinate assignment (taking care of no crossings)
Preorder traversal: Compute x - and y-coordinates. Before that, take care of the possible crossings by rotating each child circle as follows

Bubble Layout

Second stage: coordinate assignment (taking care of no crossings)
Preorder traversal: Compute x - and y-coordinates. Before that, take care of the possible crossings by rotating each child circle as follows

Bubble Layout

Algorithm : Coordinate Assignment

input : u - the node to draw (recall ζ_{u}, β_{u})
$C_{u}^{a b s}$ - the absolute coordinate of the center of circle C_{u}
function coordAssign($u, C_{u}^{a b s}$)
begin
Let rot be the rotation operation of the center of C_{u}, so that
C_{u}, β_{u}, and ancestor(u) are aligned
Set P_{u} to $\operatorname{rot}\left(\zeta_{u}\right)+C_{u}^{a b s}$
Set P_{u}^{β} to $\operatorname{rot}\left(\beta_{u}\right)+C_{u}^{a b s}$
for all children u_{i} of u begin
call coordAssign $\left(u_{i}, C_{u}^{a b s}+\operatorname{rot}\left(\zeta_{u}+\gamma_{i}\right)\right)$
 end
end
β_{u} - position of the bend on the edge connecting u to its ancestor
ζ_{u} - position of u (both relative to the center of C_{u})
P_{u}, P_{u}^{β} - final positions of u and β_{u}, respectively

Bubble Layout

Algorithm : Coordinate Assignment

input : u - the node to draw (recall ζ_{u}, β_{u})
$C_{u}^{a b s}$ - the absolute coordinate of the center of circle C_{u}
function coordAssign($u, C_{u}^{a b s}$)
begin
Let rot be the rotation operation of the center of C_{u}, so that
C_{u}, β_{u}, and ancestor(u) are aligned
Set P_{u} to $\operatorname{rot}\left(\zeta_{u}\right)+C_{u}^{a b s}$
Set P_{u}^{β} to $\operatorname{rot}\left(\beta_{u}\right)+C_{u}^{a b s}$
for all children u_{i} of u begin
call coordAssign $\left(u_{i}, C_{u}^{a b s}+\operatorname{rot}\left(\zeta_{u}+\gamma_{i}\right)\right)$ end
end
β_{u} - position of the bend on the edge connecting u to its ancestor
ζ_{u} - position of u (both relative to the center of C_{u})
P_{u}, P_{u}^{β} - final positions of u and β_{u}, respectively

Bubble Layout

Algorithm : Coordinate Assignment

input : u - the node to draw (recall ζ_{u}, β_{u})
$C_{u}^{a b s}$ - the absolute coordinate of the center of circle C_{u}
function coordAssign($u, C_{u}^{a b s}$)
begin
Let rot be the rotation operation of the center of C_{u}, so that
C_{u}, β_{u}, and ancestor(u) are aligned
Set P_{u} to $\operatorname{rot}\left(\zeta_{u}\right)+C_{u}^{a b s}$
Set P_{u}^{β} to $\operatorname{rot}\left(\beta_{u}\right)+C_{u}^{a b s}$
for all children u_{i} of u begin
call coordAssign $\left(u_{i}, C_{u}^{a b s}+\operatorname{rot}\left(\zeta_{u}+\gamma_{i}\right)\right)$
 end
end
β_{u} - position of the bend on the edge connecting u to its ancestor
ζ_{u} - position of u (both relative to the center of C_{u})
P_{u}, P_{u}^{β} - final positions of u and β_{u}, respectively

Bubble Layout

Algorithm : Coordinate Assignment

input : u - the node to draw (recall ζ_{u}, β_{u})
$C_{u}^{a b s}$ - the absolute coordinate of the center of circle C_{u}
function coordAssign($u, C_{u}^{a b s}$)
begin
Let rot be the rotation operation of the center of C_{u}, so that
C_{u}, β_{u}, and ancestor(u) are aligned
Set P_{u} to $\operatorname{rot}\left(\zeta_{u}\right)+C_{u}^{a b s}$
Set P_{u}^{β} to $\operatorname{rot}\left(\beta_{u}\right)+C_{u}^{\text {abs }}$
for all children u_{i} of u begin
call coordAssign $\left(u_{i}, C_{u}^{a b s}+\operatorname{rot}\left(\zeta_{u}+\gamma_{i}\right)\right)$
 end
end
β_{u} - position of the bend on the edge connecting u to its ancestor
ζ_{u} - position of u (both relative to the center of C_{u})
P_{u}, P_{u}^{β} - final positions of u and β_{u}, respectively

Bubble Layout

Algorithm : Coordinate Assignment

input : u - the node to draw (recall ζ_{u}, β_{u})
$C_{u}^{a b s}$ - the absolute coordinate of the center of circle C_{u}
function coordAssign($u, C_{u}^{a b s}$)
begin Vector operations!
Let rot be the rotation operation of the center of C_{u}, so that
C_{u}, β_{u}, and ancestof (u) are aligned
Set P_{u} to $\operatorname{rot}\left(\zeta_{u}\right)+C_{u}^{a b s}$
Set P_{u}^{β} to $\operatorname{rot}\left(\beta_{u}\right)+C_{u}^{\text {abs }}$ for all children u_{i} of u begin
call coordAssign $\left(u_{i}, C_{u}^{a b s}+\operatorname{rot}\left(\zeta_{u}+\gamma_{i}\right)\right)$
 end
end
β_{u} - position of the bend on the edge connecting u to its ancestor
ζ_{u} - position of u (both relative to the center of C_{u})
P_{u}, P_{u}^{β} - final positions of u and β_{u}, respectively

Bubble Layout

Time complexity is $O(n \log n)$ if for the enclosing circle we use the algorithm by Welzl ("Smallest enclosing discs", 1991).

Bubble Layout

Time complexity is $O(n \log n)$ if for the enclosing circle we use the algorithm by Welzl ("Smallest enclosing discs", 1991).

Task: Think and discuss in which situations the resulting drawings have many bends and in which no bends at all? (use virtual board for sketching your ideas)

Bubble Layout

Time complexity is $O(n \log n)$ if for the enclosing circle we use the algorithm by Welzl ("Smallest enclosing discs", 1991).

Task: Think and discuss in which situations the resulting drawings have many bends and in which no bends at all? (use virtual board for sketching your ideas)

Bends create a spiral effect in case of very unballanced trees

Bubble Layout

Time complexity is $O(n \log n)$ if for the enclosing circle we use the algorithm by Welzl ("Smallest enclosing discs", 1991).

Task: Think and discuss in which situations the resulting drawings have many bends and in which no bends at all? (use virtual board for sketching your ideas)

Bends create a spiral effect in case of very unballanced trees
On the other hand the number of bends is zero for a completely balanced tree

Inspired by Bubble Layout

Inspired by Bubble Layout

Yifan Hu: tree of life

- phylogeny of organisms, \equiv the history of organismal lineages as they change through time. The data used in this drawing contains 93891 species.

Summary and Reading

We looked at tree drawing algorithms:
Layered layout, radial layout and bubble layout

Summary and Reading

We looked at tree drawing algorithms:
Layered layout, radial layout and bubble layout

Additional Reading

Layered Layout: Book Di Battista et al:
Chapter 3.1.2
Radial Layout: Book Di Battista et al:
Chapter 3.1.3
Bubble Layout: Paper "Bubble Tree
Drawing Algorithm" Grivet et al.

Summary and Reading

We looked at tree drawing algorithms:
Layered layout, radial layout and bubble layout

Next

Algorithm for visualization of "general graphs

