Algorithm for
Visualization of General Graphs

Course : Data Visualization
Lecturer : Tamara Mchedlidze
Utrecht University, Dept. of Information and Computing Sciences

'https://wikipedia.org

Lecture Overview

Introduction and How to draw a general graph
Eades algorithm

Fruchterman-Reingold algorithm
Improvements/Modifications

Speed up (with quadtree)

Other versions of force-directed algorithm

Introduction

* Method for visualization of general graphs inspired by
physical analogies

* The methods are very popular: intuitiveness, easy to
program, generality, fairly satisfactory results, easily
adaptable for applications...

General Layout Problem

Given:Graph G = (V, E)
Find: Clear and readable drawing of G

= 07 ped ,
"N\\\\\'\'\gﬁﬁ A
\ / eSSy T
‘}/,‘/{ .%@Wu‘ &J%ff’u‘, .

A \‘ .
WX §vf

'f'/l\‘*"\w i 725N
L R\

= i)V NEY ‘___g’ iy

P
;!

Q Which quality metrics wo = B
.7 ., Youoptimize? s
m_l'b_? Which drawing conventien

would we apply?

Z

General Layout Problem

Given:Graph G = (V, E)
Find: Clear and readable drawing of G

Criteria:
« adjacent nodes are close
* non-adjacent far apart
» edges short, straight-line, similar length
 densly connected parts (clusters) form communities
* as few crossings as possible
* nodes distributed evenly

General Layout Problem

Given:Graph G = (V, E)
Find: Clear and readable drawing of G

Criteria:
« adjacent nodes are close
* non-adjacent far apart
» edges short, straight-line, similar length
densly connected parts (clusters) form communities
* as few crossings as possible
nodes distributed evenly

Gestalt Principle of human perception

Proximity @ ®

General Layout Problem

Given:Graph G = (V, E)
Find: Clear and readable drawing of G

Criteria:
« adjacent nodes are close
* non-adjacent far apart
» edges short, straight-line, similar length
densly connected parts (clusters) form communities
* as few crossings as possible
nodes distributed evenly

AOptimization criteria partially contradict each other

General Layout Problem
Given:Graph G = (V, E)
Find: Clear and readable drawing of G

Criteria:
« adjacent nodes are close
*Knon-adjacent far apart
 £dges short, straight-line,_similar length

* 0ensly connected sters) form communities
a few crossirfigs as pessible

nodes distributed evenly

AOpnmlzatlon criteria partially contradict each other

General Layout Problem

Given:Graph G = (V, E)
Find: Clear and readable drawing of G
Criteria:

« adjacent nodes are close

*Knon-adjacent far apart
 £dges short, straight-line,_similar length

* 0ensly connected sters) form communities
a few crossirfigs as pessible

nodes distributed evenly

AOpnmlzatlon criteria partially contradict each other

NP-hard for
 edge lengths {1,2} [Saxe, '80]
 planar drawing with unit edge length [Eades, Wormald,
'90]

Physical Model

Physical Model

£
-"*.'_"_'n:'-:;‘:i:'.lm.:ml:;_i-" y a

[Eades, '84] “To embed a graph we replace the vertices by steel rings
and replace each edge with a spring to form a mechanical system ...

Physical Model

& v o
it)
e |'~'~"‘J=Hm" Vil ; 3 Hﬂk J}\ ! §

l:i:'jtl-:“'._'.':.r ?_ L [: y _--I.-.L.

o .-J' ""'"l-'.. '- q uj‘i’ I {l i =L

pl @iy

2 2
.J' .._' : ' I:-""-.. P 3

[Eades, '84] “To embed a graph we replace the vertices by steel rings
and replace each edge with a spring to form a mechanical system ...
The vertices are placed in some initial layout and let go so that the

spring forces on the rings move the system to a minimal energy state.”

Physical Model

[Eades, '84] “To embed a graph we replace the vertices by steel rings
and replace each edge with a spring to form a mechanical system ...
The vertices are placed in some initial layout and let go so that the

spring forces on the rings move the system to a minimal energy state.”

Physical Model

[Ea

So-called spring-embedder algorithms that work
according to this or similar principles are among the

an¢ most frequently used graph-drawing methods in

gsS

Th] practice.
Sp e.’

Notation

¢ =/(e) ideal spring length for edge e
py = (Xy, Vv) position of node v
|pu — pvl| Euclidean distance between v and v

N , L
PuPv unit vector pointing from uto v

Spring'Embedder (Eades, 1984)

* repulsive force between two non-adjacent nodes u

and v e
frep(pu:pv) — Hpv _puH2 * PuPv

Spring'Embedder (Eades, 1984)

* repulsive force between two non-adjacent nodes u

and v
Crep

|pv — Pull
« attractive force between adjacent vertices u and v

frep(Pus Pv) = 5 - PubPv

Hpuzva m

fspring (Pus Pv) = Cspring - 109

Spring'Embedder (Eades, 1984)

* repulsive force between two non-adjacent nodes u

and v
Crep

|pv — Pull
« attractive force between adjacent vertices u and v

o PuPv

frep(Pus Pv) =

fspring (Pus Pv) = Cspring * 10Q IP. 2 Pl * PvPu

 The values Cspring =2, £ =1, Crep = 1 are appropriate for
most graphs

Spring'Embedder (Eades, 1984)

repulsive force between two non-adjacent nodes u

and v
Crep

Py — Pul|?
attractive force between adjacent vertices u and v

frep(Pu, Pv) = : pupv;

Hpuzva m

The values Cspring = 2, £ = 1, Crep = 1 are appropriate for
most graphs

fspring (Pus Pv) = Cspring - 109

resulting displacement vector for node v

F, = Z frep(pUs pv) + Z fspring (Pus Pv)
u{uvi€E u{uvieE

Spring'Embedder (Eades, 1984)

repulsive force between two non-adjacent nodes u

and v

frep(Pus Pv) =

attractive force between adjacent vertices u and v

fspring (pU5 pv) =

C Scalars!
rep . —
Ipw — pul? PP
Cspring) IOg Hpu ; pVH) PHqu

The values Cspring = 2, £ = 1, Crep = 1 are appropriate for

most graphs

resulting displacement vector for node v

Fy = Z frep(pUs pv) + Z fspring (bus Pv)

u{uv}&E

u{

uv}ieEk

Spring'Embedder (Eades, 1984)

repulsive force between two non-adjacent nodes u
and v Vectors!

C —
fop(Pu: Pv) = 1 _re‘;)uuz { Pupy

attractive force between adjacent vertices u and v

fspring(pUs pv) = Cspring IOg Hpu 2 pVH 'Evpu

The values Cspring = 2, £ = 1, Crep = 1 are appropriate for
most graphs

resulting displacement vector for node v

F, = Z frep(pUs pv) + Z fspring (Pus Pv)
u{uvi€E u{uvieE

Intermission: Vectors vs. Scalars in Code

import numpy as np

point1
point2

np.array([1.0, 0.0])
np.array ([0.0, 2.0])

force_intensity = CREP / np.linalg.norm(pointl — point2)
force_direction = point2 - pointf

force = force_direction =+ force_intensity
« force_intensity IS a scalar

e force_direction IS a vector!
« force IS a vector!

Intermission: Vectors vs. Scalars in Code

import numpy as np

point1
point2

np.array([1.0, 0.0])
np.array ([0.0, 2.0])

force_intensity
n

CREP / np.linalg.norm(pointl - point2)
force _directio (

point2 - pointl1) / np.linalg.norm(point1 - point2)

force = force_direction =+ force_intensity

« force_intensity IS a scalar
e force_direction IS a vector!
e force IS a vector!

* Do not confuse the data types. This saves you from
wrongly calculating/applying forces.

Diagram of Spring-Embedder Forces aes, 1084

Force
A
2 fspring
0
o
<
O » Distance
Zx """" frep
> | u—Mv —
Z { Fspring(Pus Pv) = Cspring - log 122l . pop7
3 "
Q ' C —
e frep(puspv) = ||pv_e;)u||2 * PuPv

fsoring(Pu» Pv) contributes to attraction when ||p, — py|| > ¢
and to repulsion when ||p, — pv|| < ¢

frep(Pus> Pv) 1S @pproaching zero as the distance grows, faster
for smaller crgp

Algorithm Spring-Embedder (Eades, 1984)

Input: G = (V, E) connected undirected graph with
initial placement p = (py)vcv, NuMber of
interations K € N, threshold £ > 0, constant
0>0

Output: Layout p with "low internal stress”

[+ 1
while t < K and max,cy ||F,(t)|| > ¢ do
foreach v € V do

Fu(t) < Zu:{u,v}gE frep(,ou,pv) +
| Zu:{u,v}eE fspring(pw pv)
foreach v ¢ V do

L py < pv+0 - F(t)

B [+ t+1

Algorithm Spring-Embedder (Eades, 1984)

Input: G = (V, E) connected undirected graph with
initial placement p = (py)vcv, NuMber of

Interations K € N, thi
) A
o>0 (1)
Output: Layout p with "low

< 1
while t < K and max,cy ||F
foreach v € V do

Fv(t) A Zu:{u,v}gE frf

Zu:{u,v pring (pu= pV)

fc;reach veVdo
va%pv+5(t)'Fv(t)
B t<+— t+1

Variant: Fruchterman & Reingold (e

Model:
* repulsive force between all node pairs v and v

62

s
1oy — pul| Puby

frep(Pu, Pv) =

Variant: Fruchterman & Reingold (e

Model:
* repulsive force between all node pairs v and v

62
v — pul|
* attractive force between two adjacent nodes u and v

* PuPv

frep(Pu, Pv) =

_ Py —va2 P

fattr(pw pv) — ¢) Pqu

Variant: Fruchterman & Reingold (e

Model:
* repulsive force between all node pairs v and v

62
v — pul|
* attractive force between two adjacent nodes u and v

* PuPv

frep(Pu, Pv) =

_ Py —va2 P

fattl’(pU5 pv) — ¢) Pqu

* (=C,/ area - ideal edge length

number of vertices

Variant: Fruchterman & Reingold (e

Model:
* repulsive force between all node pairs v and v

62
v — pul|
* attractive force between two adjacent nodes u and v

frep(Pu, Pv) = . DuPy

_ Py _va2 P

fattr (Ous Pv) = / - PvPu
* g = C\/numberag?‘avertices) Ideal edge Iength

* resulting force between adjacent nodes u and v

fspring(pUs pV) = frep(pm pV) + fattr(pm pV)

Diagramm of Fruchtermann & Reingold Forces

Force

q>)A fspring

g y=Xx+/

g
2Lkl » Distance
i frep

Repulsive

frep(pUspv) - 1w —pull * PuPv
PvPu

fattr(pUs pv) = _g

fspring (Pu, Pv) = frep(Pus Pv) + fattr(Ous Pv)
Observe that fspring(ou, pv) = 0 for ||py — pu|| = ¢

Discussion

Advantages

 very simple Algorithm
 good results for small and medium-sized graphs
« emphirically good representation of symmetry and structure

Discussion

Advantages
 very simple Algorithm
 good results for small and medium-sized graphs
« emphirically good representation of symmetry and structure

Disadvantages

« system is not stable at the end
 converging to local minima
* timewise fspring IN O(|E|) and fiep in O(| V[?)

Discussion

Advantages

 very simple Algorithm
 good results for small and medium-sized graphs
« emphirically good representation of symmetry and structure

Disadvantages
« system is not stable at the end
 converging to local minima
* timewise fspring IN O(|E|) and fiep in O(| V[?)

Influence

 Original paper by Peter Eades got 1775 citations (in 2019, no
update possible)

 Variants of Fruchterman and Reingold algorithms are probably the
most popular force-based methods (original paper cited 7457
times (doubled in the past 4 years)

« Basis for MANY further ideas

Other Possible Modifications

* Inertia

 Gravitation

* Magnetic forces

Other Possible Modifications

* Inertia
define node mass as ¢(v) =1 +deg(v)/2

set fawr(Pu, Pv) < fattr(Pus Pv) - 1/P(V)

 Gravitation

* Magnetic forces

Other Possible Modifications

* Inertia
define node mass as ¢(v) =1 +deg(v)/2

set fawr(Pu, Pv) < fattr(Pus Pv) - 1/P(V)

 Gravitation
define barycenter poary = 1/| V|-), cv Pv

fgrav(pv) = Cgrav - CID(V) ‘ pvpbar;//
* Magnetic forces

Other Possible Modifications
* Inertia
define node mass as ¢(v) =1 +deg(v)/2
set fir(Pu, Pv) < fatr(Pu, Pv) - 1/D(V)

» Gravitation
define barycenter poary = 1/| V|-), cv Pv
fgrav(pv) = Cgrav - CID(V) ‘ pvpbar;

* Magnetic forces
— define magnetic fields (e.g. vertical, horizontal)
— angle 6 between edge and the direction of the field
— define force that reduces this angle

- o

- >

- o

- >
/) -
U

- o

- >

Bounded Drawing Area

\"

\

If forceF, drives out of R, we adapt the
vector appropriately within R.

Bounded Drawing Area

Y
F v

:

If forceF, drives out of R, we adapt the
vector appropriately within R.

Bounded Drawing Area

,
Fv

1 A
1 A

Ad

A

A
A)
.
A
A
\J

If forceF, drives out of R, we adapt the
vector appropriately within R.

Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Method to prevent node oscillation and repeated rotations

* store previous displacement
vector F,(t — 1)

F,(t—1)

Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Method to prevent node oscillation and repeated rotations
* store previous displacement
F, (1) vector F,(t — 1)
store local temperature for
F,(t—1)
every node v

* coS(ay(t)) =~ 1:
ay (1) similar direction
— Iincrease the temperature
of v

"4

Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Method to prevent node oscillation and repeated rotations

* store previous displacement
vector F,(t — 1)

F,(t—1) store local temperature for
v every node v

ay(t) e cos(ay(t)) =~ 1:

similar direction

— Iincrease the temperature
of v

e cos(ay(f)) ~ —1:
F, (1) oscillation
v — reduce the temperature of v

Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Method to prevent node oscillation and repeated rotations

* store previous displacement
vector F,(t — 1)

store local temperature for
every node v

* coS(ay(t)) =~ 1:
similar direction
— Iincrease the temperature
of v

e cos(ay(t) ~ —1:
oscillation
— reduce the temperature of v
e cos(ay(t)) =~ O:
Rotation
— update rotation counter and decrease temperature if necessary

Lecture Overview

Speed-up (with quadtree)
Other versions of force-directed algorithm

G I' i d Ve I‘S i O n (Fruchterman, Reingold, 1990)

G I' i d Ve I‘S i O n (Fruchterman, Reingold, 1990)

G I' i d Ve I‘S i O n (Fruchterman, Reingold, 1990)

 subdivide plane by a
grid

G I' i d Ve rS i O n (Fruchterman, Reingold, 1990)

 subdivide plane by a
grid
.1 i s compute repulsive
forces only for the
nodes in the
neighbouring cells

G I' i d Ve rS i O n (Fruchterman, Reingold, 1990)

 subdivide plane by a
grid
_____________________ .1 1« compute repulsive
A forces only for the
' ' nodes in the

neighbouring cells
« and only when the

distance is at most dax

G I' i d Ve rS i O n (Fruchterman, Reingold, 1990)

 subdivide plane by a
grid
___ » compute repulsive
. | g forces only for the
' ' nodes in the
neighbouring cells
« and only when the
distance is at most dyay

""""""""""""""""""""""""""

""""""""""""""""""""""""""

Discussion
* meaningful idea to
improve runtime
e worst-case no
advantage
« Quality loss

G I' i d Ve rS i O n (Fruchterman, Reingold, 1990)

 subdivide plane by a
grid
___ » compute repulsive
. | g forces only for the
' ' nodes in the
neighbouring cells
« and only when the
distance is at most dyay

""""""""""""""""""""""""""

""""""""""""""""""""""""""

Discussion
* meaningful idea to
improve runtime
e worst-case no
advantage
« Quality loss

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups
of vertices that are far apart from v we do not need to account on
iIndividual force-influences

S

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups
of vertices that are far apart from v we do not need to account on
iIndividual force-influences

S

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups
of vertices that are far apart from v we do not need to account on
iIndividual force-influences

S

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups
of vertices that are far apart from v we do not need to account on
iIndividual force-influences

S

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups
of vertices that are far apart from v we do not need to account on
iIndividual force-influences

S

Quad-Tree

o Ro

QT

Quad-Tree

R 1 ® Rg
o

¢ °
o
Rs R4

Quad-Tree

o ° R7
R
5 o R R
° ° I's
Rs o
Rio R
o
o
Ri2

Quad-Tree

Quad-Tree

Properties of Quad-Tree

» height h < log St + 2, here dy,,-smallest distance

 time and space m(m)(hn)
« compressed quad-tree in O(nlog n) time

Forces with Quad-Trees (Barnes, Hut, 1986)

Forces with Quad-Trees (Barnes, Hut, 1986)

// /.’\,\ B
i/

Forces with Quad-Trees (Barnes, Hut, 1986)

S

/.

o
./
barycenter

OR |
> of center of
mass

Forces with Quad-Trees (Barnes, Hut, 1986)

// /.’\,\ B
i/

Forces with Quad-Trees (Barnes, Hut, 1986)

0‘ Rs .\o °
\\
v
°
® °
O
°
°
°
°

Forces with Quad-Trees (Barnes, Hut, 1986)

Forces with Quad-Trees (Barnes, Hut, 1986)

®

o

% .

¢ o
® YR
®
o When to use center of mass
and when real points?

Forces with Quad-Trees (Barnes, Hut, 1986)

¢ ®

®

o

% .

¢ o
® YR
®
®
o When to use center of mass

¢ and when real points?

Parameter §: if -_widthof thebox - 9 _ ;50 center of mass

distance to the center

Forces with Quad-Trees (Barnes, Hut, 1986)

¢ ®

®

o

% .

¢ o
® YR
®
®
o When to use center of mass

¢ and when real points?

Parameter §: if -_widthof thebox - 9 _ ;50 center of mass

distance to the center
Assuming homogeneous distribution, the calculations of forces can
be done in O(log n) for a single vertex - O(nlog n) overall vs O(n?)

Forces with Quad-Trees (Barnes, Hut, 1986)

®
o
® Check: https://jheer. glthub lo/barnes-hut/
° e e e Eee s EEes s Epasnsnnnaannnnmanag e :
r7 4 \oﬁs
o When to use center of mass
¢ and when real points?

Parameter §: if -_widthof thebox - 9 _ ;50 center of mass

distance to the center

Assuming homogeneous distribution, the calculations of forces can
be done in O(log n) for a single vertex - O(nlog n) overall vs O(n?)

Modifications

G RI P (Hachul, Junger 2007)

Left: Grid version of
Fruchterman Reingold.
Right: GRIP

ldea: Construct layers of
nodes, position layers one
after the other,
force-directed shaking
locally

Modifications

Lombardi-Spring-Embedder (chemobeiskiy et al. 2012)

* edges are circular arcs

» goal: optimal angular resolution 27/ deg(v) at each
node v

 additional rotational forces

Modifications

Lombardi-Spring-Embedder (chemobeiskiy et al. 2012)

* edges are circular arcs

» goal: optimal angular resolution 27/ deg(v) at each
node v

 additional rotational forces

Metro Maps with Bézier curves (rinketal. 2013)

« model paths as Bézier curves
forces on nodes and control points:
lines are distinguishable
few bend points
few control points

Modifications

Lombardi-Spring-Embedder (chemobeiskiy et al. 2012)

* edges are circular arcs
» goal: optimal angular resolution 27/ deg(v) at each
node v

- _additional rotational forces

J'-lr';-.'TI_I\:l:k: butter
k‘“—y> N
A

- [}
= L i
ot _data ,
. out_heading main g
| i 1 =
£
L
hit:“x -)
= B[C [TH5E2
chech it

spec_heading

e v Ty P---“ T —

ReaI|Stic NOde SIZGS (Gansner, North 1998)
* node positions are adjusted to avoid overlaps

Modifications

Separation ConStraints (Dwyer, Koren, Marriott, 2006)

« groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints

Modifications

Separation ConStraints (Dwyer, Koren, Marriott, 2006)

« groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints

: https://marvl.infotech.monash.edu/webcola/

Modifications

Separation ConStraints (Dwyer, Koren, Marriott, 2006)

« groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints

Modifications

Separation ConStraints (Dwyer, Koren, Marriott, 2006)

« groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints

Dynamic maps mcheididze, schnorr, 2022)

* regions are proportional to given values
* regions have simple organic form
* regions come and go/change adjacency

Summary

Force-based Approaches are

 easily understandable and implementable

* no special requirements on the input graph

» depending on the graphs (small and sparce) amazingly
good layouts (Symmetries, Clustering, ...)

 easily adaptable and configurable

* robust

 scalable

Summary

Force-based Approaches are

 easily understandable and implementable

* no special requirements on the input graph

» depending on the graphs (small and sparce) amazingly
good layouts (Symmetries, Clustering, ...)

 easily adaptable and configurable

* robust

 scalable

But...
 usually no quality and running time guaranees
 bad choice of starting layout — slow convergence
« possibly slow for large graphs
* fine-turning need be done by experts

Summary and Reading

Introduction and How to draw,a general graph
Eades algorithm o N

Improvements/l\/lod|f|cat|ons

°
e O

Speed up (with quadtre@)i :

Summary and Reading

Introduction and How to draw,a general graph
Eades algorlthm

@) i O (0} o®
O %
OO QO o o
mprovements O I ICa |ons NG :
= 0 1t A5 c? °
= 53 18 5 ey / °
° o°o o < :’% o° o

0@ g OXS 000 * o / @) @) = = ® "

Speed up (with quadtreg): . o= = . :
* ooo'voooooo =" e o

) > o o %°<§ OC:>°°°O ° = O, O .y *
. I = = (\\Q\O : oo/ Zoveel I =0 oo o o

[} (] \ P O g s @)
° _2 P1F .:;‘ off © = . b
- : 3 g lOf 4L b = @) (@) o
° N o % (3} 4 @ (@)
o o - 32, A 5 o
o o 0.0 ¢ ﬁ
go & % % ° O B e A g'ooo oggooo °
2 °o° % S o 0 o 0® o°8° °°°o°o °
o© o (0] °o Oo o2 N (o] o%q?o o %
00
00 /o
°

Addltlonal Readmg

Graph Drawing handbook: Chapter 12
Paper "Graph Drawing by Force-directed

T~ placement” by Fruchterman and Reingold

Paper "ForceAtlas2...” by Jacomy et al. -
perhaps best version of forces today

Summary and Reading
* Introduction and How to draw.a general graph

e o
°
° ® o [}

« Eades algorithm o N ey oy

» Fruchterman-Reingold algorithrir <<% 5°. .. . %
e T, LToe G L, o

+ Improvements/Modifications: Vo er:

- Speed up (with quadtree): -

° % % o
° %00 2 ©
° 0% o % < °
° 9 © o o4
, © ="
o o
°

Next o e
Algorithm for visualization of general graphs »

° °
°
0%0
e o
000 o %

e o e ° ° o
oo ° SRLIL® ° ‘e o R * %
o0 o 00 ° °
00 € e

° e

	\bf \textcolor{black}{Introduction}
	\bf \textcolor{black}{General Layout Problem}
	\bf \textcolor{black}{Physical Model}
	\bf \textcolor{black}{Notation}
	\bf \textcolor{black}{Spring-Embedder {\tiny (Eades, 1984)}}
	\bf \textcolor{black}{Intermission: Vectors vs. Scalars in Code}
	\bf \textcolor{black}{Diagram of Spring-Embedder Forces {\tiny (Eades, 1984)}}
	\bf \textcolor{black}{Variant: Fruchterman \& Reingold {\tiny (1991)}}
	\bf \textcolor{black}{Diagramm of Fruchtermann \& Reingold Forces}
	\bf \textcolor{black}{Discussion}
	\bf \textcolor{black}{Other Possible Modifications}
	\bf \textcolor{black}{Bounded Drawing Area}
	\bf \textcolor{black}{Adaptive Displacement {\tiny (Frick, Ludwig, Mehldau 1995)}}
	\bf \textcolor{black}{Grid Version {\tiny (Fruchterman, Reingold, 1990)}}
	\bf \textcolor{black}{Quad-Tree}
	\bf \textcolor{black}{Properties of Quad-Tree}
	\bf \textcolor{black}{Forces with Quad-Trees {\tiny (Barnes, Hut, 1986)}}
	\bf \textcolor{black}{Modifications}
	\bf \textcolor{black}{Summary}

