Algorithm for Visualization of General Graphs

Course : Data Visualization
Lecturer : Tamara Mchedlidze
Utrecht University, Dept. of Information and Computing Sciences

Lecture Overview

- Introduction and How to draw a general graph
- Eades algorithm
- Fruchterman-Reingold algorithm
- Improvements/Modifications
- Speed up (with quadtree)
- Other versions of force-directed algorithm

Introduction

- Method for visualization of general graphs inspired by physical analogies
- The methods are very popular: intuitiveness, easy to program, generality, fairly satisfactory results, easily adaptable for applications...

General Layout Problem

Given:Graph $G=(V, E)$
Find: Clear and readable drawing of G

Which quality metrics would

you optimize?

Which drawing conventions
would we apply?

General Layout Problem

Given:Graph $G=(V, E)$
Find: Clear and readable drawing of G
Criteria:

- adjacent nodes are close
- non-adjacent far apart
- edges short, straight-line, similar length
- densly connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly

General Layout Problem

Given:Graph $G=(V, E)$
Find: Clear and readable drawing of G
Criteria:

- adjacent nodes are close
- non-adjacent far apart
- edges short, straight-line, similar length
- densly connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly

Gestalt Principle of human perception
Proximity

General Layout Problem

Given:Graph $G=(V, E)$
Find: Clear and readable drawing of G
Criteria:

- adjacent nodes are close
- non-adjacent far apart
- edges short, straight-line, similar length
- densly connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly

Optimization criteria partially contradict each other

General Layout Problem

Given:Graph $G=(V, E)$
Find: Clear and readable drawing of G
Criteria:

- adjacent nodes are close
- -non-adjacent far apart
- edges short, straight-line, similar length
- densly connected parts (clusters) form communities
- as few crossings as possible
- Vnodes distributed evenly

Optimization criteria partially contradict each other

General Layout Problem

Given:Graph $G=(V, E)$
Find: Clear and readable drawing of G
Criteria:

- adjacent nodes are close
- Anon-adjacent far apart
- edges short, straight-line, similar length
- densly connected parts (clusters) form communities
- a as few crossings as possible
- -nodes distributed evenly

Optimization criteria partially contradict each other

NP-hard for

- edge lengths $\{1,2\}$
[Saxe, '80]
- planar drawing with unit edge length
[Eades, Wormald, '90]

Physical Model

Physical Model

[Eades, '84] "To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ...

Physical Model

[Eades, '84] "To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Model

[Eades, '84] "To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Model

So-called spring-embedder algorithms that work

[E according to this or similar principles are among the

 and most frequently used graph-drawing methods in Th practice.

Notation

$$
\xrightarrow[\overrightarrow{p_{u} p_{v}}]{\left\|p_{u}-p_{v}\right\|}
$$

$\ell=\ell(e) \quad$ ideal spring length for edge e
$p_{v}=\left(x_{v}, y_{v}\right) \quad$ position of node v
Euclidean distance between u and v
unit vector pointing from u to v

Spring-Embedder (Eades, 1884)

- repulsive force between two non-adjacent nodes u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

Spring-Embedder (Eades, 1884)

- repulsive force between two non-adjacent nodes u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

- attractive force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=c_{\text {spring }} \cdot \log \frac{\left\|p_{u}-p_{v}\right\|}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

Spring-Embedder (Eades, 1884)

- repulsive force between two non-adjacent nodes u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

- attractive force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=c_{\text {spring }} \cdot \log \frac{\left\|p_{u}-p_{v}\right\|}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

- The values $c_{\text {spring }}=2, \ell=1, c_{\text {rep }}=1$ are appropriate for most graphs

Spring-Embedder (Eades, 1984)

- repulsive force between two non-adjacent nodes u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

- attractive force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=c_{\text {spring }} \cdot \log \frac{\left\|p_{u}-p_{v}\right\|}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

- The values $c_{\text {spring }}=2, \ell=1, c_{\text {rep }}=1$ are appropriate for most graphs
- resulting displacement vector for node v

$$
F_{v}=\sum_{u:\{u, v\} \notin E} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{u:\{u, v\} \in E} f_{\text {spring }}\left(p_{u}, p_{v}\right)
$$

Spring-Embedder (Eades, 1984)

- repulsive force between two non-adjacent nodes u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

- attractive force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=c_{\text {spring }} \cdot \log \frac{\left\|p_{u}-p_{v}\right\|}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

- The values $c_{\text {spring }}=2, \ell=1, c_{\text {rep }}=1$ are appropriate for most graphs
- resulting displacement vector for node v

$$
F_{v}=\sum_{u:\{u, v\} \notin E} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{u:\{u, v\} \in E} f_{\text {spring }}\left(p_{u}, p_{v}\right)
$$

Spring-Embedder (Eades, 1984)

- repulsive force between two non-adjacent nodes u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

Vectors!

- attractive force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=c_{\text {spring }} \cdot \log \frac{\left\|p_{u}-p_{v}\right\|}{\ell} \cdot \stackrel{\rightharpoonup \bar{p}_{v} p_{u}}{ }
$$

- The values $c_{\text {spring }}=2, \ell=1, c_{\text {rep }}=1$ are appropriate for most graphs
- resulting displacement vector for node v

$$
F_{v}=\sum_{u:\{u, v\} \notin E} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{u:\{u, v\} \in E} f_{\text {spring }}\left(p_{u}, p_{v}\right)
$$

Intermission: Vectors vs. Scalars in Code

import numpy as np

```
point1 = np.array ([1.0, 0.0])
point2 = np.array([0.0, 2.0])
```

force_intensity = C_REP / np. linalg.norm(point1 - point2)
force_direction $=$ point2 - point1
force $=$ force direction * force intensity

- force_intensity is a scalar
- force_direction is a vector!
- force is a vector!

Intermission: Vectors vs. Scalars in Code

```
import numpy as np
point1 = np.array([1.0, 0.0])
point2 = np.array([0.0, 2.0])
force_intensity = C_REP / np.linalg.norm(point1 - point2)
force direction = (point2 - point1) / np.linalg.norm(point1 - point2)
force = force_direction * force_intensity
- force_intensity is a scalar
- force_direction is a vector!
- force is a vector!
```

- Do not confuse the data types. This saves you from wrongly calculating/applying forces.

Diagram of Spring-Embedder Forces ${ }_{\text {(Eades, } 1984)}$

$f_{\text {spring }}\left(p_{u}, p_{v}\right)$ contributes to attraction when $\left\|p_{u}-p_{v}\right\|>\ell$ and to repulsion when $\left\|p_{u}-p_{v}\right\|<\ell$
$f_{\text {rep }}\left(p_{u}, p_{v}\right)$ is approaching zero as the distance grows, faster for smaller $C_{r e p}$

Algorithm Spring-Embedder (Eades, 1984)

Input: $G=(V, E)$ connected undirected graph with initial placement $p=\left(p_{v}\right)_{v \in V}$, number of interations $K \in \mathbb{N}$, threshold $\varepsilon>0$, constant $\delta>0$
Output: Layout p with "low internal stress"'
$t \leftarrow 1$
while $t<K$ and $\max _{v \in V}\left\|F_{v}(t)\right\|>\varepsilon$ do foreach $v \in V$ do

$$
\begin{aligned}
F_{v}(t) \leftarrow & \sum_{u:\{u, v\} \notin E} f_{\text {rep }}\left(p_{u}, p_{v}\right)+ \\
& \sum_{u:\{u, v\} \in E} f_{\text {spring }}\left(p_{u}, p_{v}\right)
\end{aligned}
$$

foreach $v \in V$ do
$\left\lfloor p_{v} \leftarrow p_{v}+\delta \cdot F_{v}(t)\right.$
$t \leftarrow t+1$

Algorithm Spring-Embedder (Eades, 1984)

Input: $G=(V, E)$ connected undirected graph with initial placement $p=\left(p_{v}\right)_{v \in V}$, number of interations $K \in \mathbb{N}$, th $\delta>0$
Output: Layout p with "low $t \leftarrow 1$
while $t<K$ and $\max _{v \in V} \| F$ foreach $v \in V$ do

$$
\left.F_{v}(t) \leftarrow \sum_{u:\{u, v\} \notin E} f_{r}\right\}
$$

$$
\sum_{u:\{u, v\} \text { spring }}\left(p_{u}, p_{v}\right)
$$

foreach $v \in V$ do

$$
\left\lfloor p_{v} \leftarrow p_{v}+\delta(t) \cdot F_{v}(t)\right.
$$

$t \leftarrow t+1$

Variant: Fruchterman \& Reingold ${ }_{(1991)}$

Model:

- repulsive force between all node pairs u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{u} p_{v}}
$$

Variant: Fruchterman \& Reingold ${ }_{(1991)}$

Model:

- repulsive force between all node pairs u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{u} p_{v}}
$$

- attractive force between two adjacent nodes u and v

$$
f_{\mathrm{attr}}\left(p_{u}, p_{v}\right)=\frac{\left\|p_{u}-p_{v}\right\|^{2}}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

Variant: Fruchterman \& Reingold ${ }_{(1991)}$

Model:

- repulsive force between all node pairs u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{u} p_{v}}
$$

- attractive force between two adjacent nodes u and v

$$
f_{\mathrm{attr}}\left(p_{u}, p_{v}\right)=\frac{\left\|p_{u}-p_{v}\right\|^{2}}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

- $\ell=C \sqrt{\frac{\text { area }}{\text { number of vertices }}}$ - ideal edge length

Variant: Fruchterman \& Reingold ${ }_{(1991)}$

Model:

- repulsive force between all node pairs u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{u} p_{v}}
$$

- attractive force between two adjacent nodes u and v

$$
f_{\mathrm{attr}}\left(p_{u}, p_{v}\right)=\frac{\left\|p_{u}-p_{v}\right\|^{2}}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

- $\ell=C \sqrt{\frac{\text { area }}{\text { number of vertices }}}$ - ideal edge length
- resulting force between adjacent nodes u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=f_{\text {rep }}\left(p_{u}, p_{v}\right)+f_{\text {attr }}\left(p_{u}, p_{v}\right)
$$

Diagramm of Fruchtermann \& Reingold Forces

Force

Observe that $f_{\text {spring }}\left(p_{u}, p_{v}\right)=0$ for $\left\|p_{v}-p_{u}\right\|=\ell$

Discussion

Advantages

- very simple Algorithm
- good results for small and medium-sized graphs
- emphirically good representation of symmetry and structure

Discussion

Advantages

- very simple Algorithm
- good results for small and medium-sized graphs
- emphirically good representation of symmetry and structure

Disadvantages

- system is not stable at the end
- converging to local minima
- timewise $f_{\text {spring }}$ in $\mathcal{O}(|E|)$ and $f_{\text {rep }}$ in $\mathcal{O}\left(|V|^{2}\right)$

Discussion

Advantages

- very simple Algorithm
- good results for small and medium-sized graphs
- emphirically good representation of symmetry and structure

Disadvantages

- system is not stable at the end
- converging to local minima
- timewise $f_{\text {spring }}$ in $\mathcal{O}(|E|)$ and $f_{\text {rep }}$ in $\mathcal{O}\left(|V|^{2}\right)$

Influence

- Original paper by Peter Eades got 1775 citations (in 2019, no update possible)
- Variants of Fruchterman and Reingold algorithms are probably the most popular force-based methods (original paper cited 7457 times (doubled in the past 4 years)
- Basis for MANY further ideas

Other Possible Modifications

- Inertia
- Gravitation
- Magnetic forces

Other Possible Modifications

- Inertia
define node mass as $\Phi(v)=1+\operatorname{deg}(v) / 2$
set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$
- Gravitation
- Magnetic forces

Other Possible Modifications

- Inertia
define node mass as $\Phi(v)=1+\operatorname{deg}(v) / 2$
set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$
- Gravitation
define barycenter $p_{\text {bary }}=1 /|V| \cdot \sum_{v \in V} p_{v}$
$f_{\text {grav }}\left(p_{v}\right)=c_{\text {grav }} \cdot \Phi(v) \cdot \overrightarrow{p_{v} p_{\text {bary }}}$
- Magnetic forces

Other Possible Modifications

- Inertia
define node mass as $\Phi(v)=1+\operatorname{deg}(v) / 2$
set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$
- Gravitation
define barycenter $p_{\text {bary }}=1 /|V| \cdot \sum_{v \in V} p_{v}$
$f_{\text {grav }}\left(p_{v}\right)=c_{\text {grav }} \cdot \Phi(v) \cdot \overrightarrow{p_{v} p_{\text {bary }}}$
- Magnetic forces
- define magnetic fields (e.g. vertical, horizontal)
- angle θ between edge and the direction of the field
- define force that reduces this angle

Bounded Drawing Area

Bounded Drawing Area

Bounded Drawing Area

Adaptive Displacement ${ }_{\text {(Frick, Luwwig, , Wenlaau 1995) }}$

Method to prevent node oscillation and repeated rotations

- store previous displacement vector $F_{v}(t-1)$

Adaptive Displacement ${ }_{\text {(Frick, Luwwig, Menlaau 1985) }}$

Method to prevent node oscillation and repeated rotations

- store previous displacement
 vector $F_{v}(t-1)$
store local temperature for every node v
- $\cos \left(\alpha_{v}(t)\right) \approx 1:$ similar direction
\rightarrow increase the temperature of v

Adaptive Displacement ${ }_{\text {(Firck, Luwwig, Mendaau 1995) }}$

Method to prevent node oscillation and repeated rotations

- store previous displacement vector $F_{v}(t-1)$

store local temperature for every node v
- $\cos \left(\alpha_{v}(t)\right) \approx 1:$ similar direction \rightarrow increase the temperature of v
- $\cos \left(\alpha_{v}(t)\right) \approx-1$: oscillation
\rightarrow reduce the temperature of v

Adaptive Displacement ${ }_{\text {(Firck, Luwwig, Mendaau 1995) }}$

Method to prevent node oscillation and repeated rotations

- store previous displacement vector $F_{v}(t-1)$

store local temperature for every node v
- $\cos \left(\alpha_{v}(t)\right) \approx 1:$ similar direction \rightarrow increase the temperature of v
- $\cos \left(\alpha_{v}(t)\right) \approx-1$: oscillation
\rightarrow reduce the temperature of v
- $\cos \left(\alpha_{v}(t)\right) \approx 0$:

Rotation
\rightarrow update rotation counter and decrease temperature if necessary

Lecture Overview

- Introduction and How to draw a general graph
- Eades algorithm
- Fruchterman-Reingold algorithm
- Improvements/Modifications
- Speed-up (with quadtree)
- Other versions of force-directed algorithm

Grid Version ${ }_{\text {(Fuchereman, Rengogal, 1900) }}$

Grid Version ${ }_{\text {FFuchereman, Fengoga, 1900) }}$

Grid Version $_{\text {Frucumemann Rennoad, } 1500}$

- subdivide plane by a grid

Grid Version ${ }_{\text {(Fruchereman, Reengoda, 1900) }}$

- subdivide plane by a grid
- compute repulsive forces only for the nodes in the neighbouring cells

Grid Version ${ }_{\text {(Fruchereman, Reengoda, 1900) }}$

- subdivide plane by a grid
- compute repulsive forces only for the nodes in the neighbouring cells
- and only when the distance is at most $d_{\text {max }}$

Grid Version ${ }_{\text {(Fruchereman, Reengoda, 1900) }}$

- subdivide plane by a grid
- compute repulsive forces only for the nodes in the neighbouring cells
- and only when the distance is at most $d_{\text {max }}$

Discussion

- meaningful idea to improve runtime
- worst-case no advantage
- Quality loss

Grid Version ${ }_{\text {(Fruchereman, Reengoda, 1900) }}$

- subdivide plane by a grid
- compute repulsive forces only for the nodes in the neighbouring cells
- and only when the distance is at most $d_{\text {max }}$

Discussion

- meaningful idea to improve runtime
- worst-case no advantage
- Quality loss

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups of vertices that are far apart from v we do not need to account on individual force-influences

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups of vertices that are far apart from v we do not need to account on individual force-influences

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups of vertices that are far apart from v we do not need to account on individual force-influences

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups of vertices that are far apart from v we do not need to account on individual force-influences

Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups of vertices that are far apart from v we do not need to account on individual force-influences

Quad-Tree

Quad-Tree

Quad-Tree

Quad-Tree

Quad-Tree

Properties of Quad-Tree

- height $h \leq \log \frac{s_{\text {nit }}}{d_{\text {min }}}+\frac{3}{2}$, here $d_{\text {min }}$-smallest distance
- time and space $O(h n)$
- compressed quad-tree in $O(n \log n)$ time

Forces with Quad-Trees ${ }_{\text {(Barnes , tut, } 1986)}$

Forces with Quad-Trees ${ }_{\text {(Bames. , tut, } 1986)}$

Forces with Quad-Trees ${ }_{\text {(Bames , tut, } 1986)}$

Forces with Quad-Trees ${ }_{\text {(Bames. , tut, } 1986)}$

Forces with Quad-Trees ${ }_{\text {(Bames, , Hu, } 1986)}$

Forces with Quad-Trees ${ }_{\text {(Bames, , Hu, } 1986)}$

Forces with Quad-Trees ${ }_{\text {(Bames , tut, } 1986)}$

When to use center of mass and when real points?

Forces with Quad-Trees ${ }_{\text {(Bames , tut, } 1986)}$

When to use center of mass and when real points?

Parameter θ : if $\frac{\text { width of the box }}{\text { distance to the center }}<\theta$ - use center of mass

Forces with Quad-Trees (Barnes, tuu, 1s86)

Parameter θ : if $\frac{\text { width of the box }}{\text { distance to the center }}<\theta$ - use center of mass Assuming homogeneous distribution, the calculations of forces can be done in $O(\log n)$ for a single vertex - $O(n \log n)$ overall vs $O\left(n^{2}\right)$

Forces with Quad-Trees ${ }_{\text {(Bames. , Hut, } 1986)}$

Parameter θ : if $\frac{\text { width of the box }}{\text { distance to the center }}<\theta$ - use center of mass
Assuming homogeneous distribution, the calculations of forces can be done in $O(\log n)$ for a single vertex - $O(n \log n)$ overall vs $O\left(n^{2}\right)$

Modifications

$\mathbf{G R I P}_{\text {(Hachul, Jünger 2007) }}$

Left: Grid version of Fruchterman Reingold. Right: GRIP
Idea: Construct layers of nodes, position layers one after the other, force-directed shaking locally

Modifications

Lombardi-Spring-Embedder (Cherrobelskiy et al. 2012)

- edges are circular arcs
- goal: optimal angular resolution $2 \pi / \operatorname{deg}(v)$ at each node v
- additional rotational forces

Modifications

Lombardi-Spring-Embedder (Chernobeskiy e tal 2012)

- edges are circular arcs
- goal: optimal angular resolution $2 \pi / \operatorname{deg}(v)$ at each node v
- additional rotational forces

Metro Maps with Bézier curves (Fink etal. 2013)

- model paths as Bézier curves
- forces on nodes and control points:
- lines are distinguishable
- few bend points
- few control points

Modifications

Lombardi-Spring-Embedder (chermoesksiy tal. 2012)

- edges are circular arcs
- goal: optimal angular resolution $2 \pi / \operatorname{deg}(v)$ at each node v
- additional rotational forces

Realistic Node Sizes (Gansner, North 1998)

- node positions are adjusted to avoid overlaps

Modifications

Separation Constraints (Dwyer, Koren, Marriott, 2006)

- groups of vertices are constrained to lie in predetermined polygons/ other separation contraints

Modifications

Separation Constraints (Dwyer, Koren, Mariot, 2006)

- groups of vertices are constrained to lie in predetermined polygons/ other separation contraints
https://marvl.infotech.monash.edu/webcola/

Modifications

Separation Constraints (Dwyer, Koren, Marriott, 2006)

- groups of vertices are constrained to lie in predetermined polygons/ other separation contraints

Modifications

Separation Constraints (Owyer, Koere, Mariot, 2006)

- groups of vertices are constrained to lie in predetermined polygons/ other separation contraints

Dynamic maps (Mchenedide, Schorr, 2022)

- regions are proportional to given values
- regions have simple organic form
- regions come and go/change adjacency

Summary

Force-based Approaches are

- easily understandable and implementable
- no special requirements on the input graph
- depending on the graphs (small and sparce) amazingly good layouts (Symmetries, Clustering, ...)
- easily adaptable and configurable
- robust
- scalable

Summary

Force-based Approaches are

- easily understandable and implementable
- no special requirements on the input graph
- depending on the graphs (small and sparce) amazingly good layouts (Symmetries, Clustering, ...)
- easily adaptable and configurable
- robust
- scalable

But...

- usually no quality and running time guaranees
- bad choice of starting layout \rightarrow slow convergence
- possibly slow for large graphs
- fine-turning need be done by experts

Summary and Reading

- Introduction and How to draw a general graph
- Eades algorithm
- Fruchterman-Reingold algorithm
- Improvements/Modifications ${ }^{\circ}$
- Speed up (with quadtree):
- Other versions of forceedirected algorithm

Summary and Reading

- Introduction and How to draw a general graph
- Eades algorithm
- Fruchterman-Reingogold algorithm
- Improvements/Modifications ${ }^{\circ}$
- Speed up (with quadtree):
- Other versions of forcedolirected algorithm

Additional Reading

Graph Drawing handbook: Chäpter 12
Paper "Graph Drawing by Force-directed placement" by Fruchterman and Reingold Paper "ForceAtlas2..." by Jacomy et al. perhaps best version of forces today

Summary and Reading

- Introduction and How to draw a general graph
- Eades algorithm
- Fruchterman-Reingold algorithm
- Improvements/Modifications
- Speed up (with quadtree):
- Other versions of forcedolirected algorithm

Next

Algorithm for visualization of general graphs *

