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Lecture Overview

Introduction and How to draw a general graph
Eades algorithm

Fruchterman-Reingold algorithm
Improvements/Modifications

Speed up (with quadtree)

Other versions of force-directed algorithm



Introduction

* Method for visualization of general graphs inspired by
physical analogies

* The methods are very popular: intuitiveness, easy to
program, generality, fairly satisfactory results, easily
adaptable for applications...




General Layout Problem

Given:Graph G = (V, E)
Find: Clear and readable drawing of G
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General Layout Problem

Given:Graph G = (V, E)
Find: Clear and readable drawing of G

Criteria:
« adjacent nodes are close
* non-adjacent far apart
» edges short, straight-line, similar length
 densly connected parts (clusters) form communities
* as few crossings as possible
* nodes distributed evenly
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densly connected parts (clusters) form communities
* as few crossings as possible
nodes distributed evenly

Gestalt Principle of human perception

Proximity @ ®
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General Layout Problem

Given:Graph G = (V, E)
Find: Clear and readable drawing of G
Criteria:

« adjacent nodes are close

*Knon-adjacent far apart
 £dges short, straight-line,_similar length

* 0ensly connected sters) form communities
a few crossirfigs as pessible

nodes distributed evenly

AOpnmlzatlon criteria partially contradict each other

NP-hard for
 edge lengths {1,2} [Saxe, '80]
 planar drawing with unit edge length  [Eades, Wormald,
'90]



Physical Model
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[Eades, '84] “To embed a graph we replace the vertices by steel rings
and replace each edge with a spring to form a mechanical system ...
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[Eades, '84] “To embed a graph we replace the vertices by steel rings
and replace each edge with a spring to form a mechanical system ...
The vertices are placed in some initial layout and let go so that the

spring forces on the rings move the system to a minimal energy state.”
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[Eades, '84] “To embed a graph we replace the vertices by steel rings
and replace each edge with a spring to form a mechanical system ...
The vertices are placed in some initial layout and let go so that the

spring forces on the rings move the system to a minimal energy state.”



Physical Model
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So-called spring-embedder algorithms that work
according to this or similar principles are among the

an¢ most frequently used graph-drawing methods in

gsS

Th] practice.
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Notation

¢ =/(e) ideal spring length for edge e
py = (Xy, Vv) position of node v
|pu — pvl| Euclidean distance between v and v

N , L
PuPv unit vector pointing from uto v



Spring'Embedder (Eades, 1984)

* repulsive force between two non-adjacent nodes u

and v e
frep(pu:pv) — Hpv _puH2 * PuPv




Spring'Embedder (Eades, 1984)

* repulsive force between two non-adjacent nodes u

and v
Crep

|pv — Pull
« attractive force between adjacent vertices u and v

frep(Pus Pv) = 5 - PubPv

Hpuzva m

fspring (Pus Pv) = Cspring - 109



Spring'Embedder (Eades, 1984)

* repulsive force between two non-adjacent nodes u

and v
Crep

|pv — Pull
« attractive force between adjacent vertices u and v

o PuPv

frep(Pus Pv) =

fspring (Pus Pv) = Cspring * 10Q IP. 2 Pl * PvPu

 The values Cspring =2, £ =1, Crep = 1 are appropriate for
most graphs



Spring'Embedder (Eades, 1984)

repulsive force between two non-adjacent nodes u

and v
Crep

Py — Pul|?
attractive force between adjacent vertices u and v

frep(Pu, Pv) = : pupv;

Hpuzva m

The values Cspring = 2, £ = 1, Crep = 1 are appropriate for
most graphs

fspring (Pus Pv) = Cspring - 109

resulting displacement vector for node v

F, = Z frep(pUs pv) + Z fspring (Pus Pv)
u{uvi€E u{uvieE



Spring'Embedder (Eades, 1984)

repulsive force between two non-adjacent nodes u

and v

frep(Pus Pv) =

attractive force between adjacent vertices u and v

fspring (pU5 pv) =

C Scalars!
rep . —
Ipw — pul? PP
Cspring ) IOg Hpu ; pVH ) PHqu

The values Cspring = 2, £ = 1, Crep = 1 are appropriate for

most graphs

resulting displacement vector for node v

Fy = Z frep(pUs pv) + Z fspring (bus Pv)

u{uv}&E

u{

uv}ieEk



Spring'Embedder (Eades, 1984)

repulsive force between two non-adjacent nodes u
and v Vectors!

C —
fop(Pu: Pv) = 1 _re‘;)uuz { Pupy

attractive force between adjacent vertices u and v

fspring(pUs pv) = Cspring IOg Hpu 2 pVH 'Evpu

The values Cspring = 2, £ = 1, Crep = 1 are appropriate for
most graphs

resulting displacement vector for node v

F, = Z frep(pUs pv) + Z fspring (Pus Pv)
u{uvi€E u{uvieE



Intermission: Vectors vs. Scalars in Code

import numpy as np

point1
point2

np.array([1.0, 0.0])
np.array ([0.0, 2.0])

force_intensity = CREP / np.linalg.norm(pointl — point2)
force_direction = point2 - pointf

force = force_direction =+ force_intensity
« force_intensity IS a scalar

e force_direction IS a vector!
« force IS a vector!



Intermission: Vectors vs. Scalars in Code

import numpy as np

point1
point2

np.array([1.0, 0.0])
np.array ([0.0, 2.0])

force_intensity
n

CREP / np.linalg.norm(pointl - point2)
force _directio (

point2 - pointl1) / np.linalg.norm(point1 - point2)

force = force_direction =+ force_intensity

« force_intensity IS a scalar
e force_direction IS a vector!
e force IS a vector!

* Do not confuse the data types. This saves you from
wrongly calculating/applying forces.



Diagram of Spring-Embedder Forces aes, 1084

Force
A
2 fspring
0
o
<
O » Distance
Zx """" frep
> | u—Mv —
Z { Fspring(Pus Pv) = Cspring - log 122l . pop7
3 "
Q ' C —
e frep(puspv) = ||pv_e;)u||2 * PuPv

fsoring(Pu» Pv) contributes to attraction when ||p, — py|| > ¢
and to repulsion when ||p, — pv|| < ¢

frep(Pus> Pv) 1S @pproaching zero as the distance grows, faster
for smaller crgp



Algorithm Spring-Embedder (Eades, 1984)

Input: G = (V, E) connected undirected graph with
initial placement p = (py)vcv, NuMber of
interations K € N, threshold £ > 0, constant
0>0

Output: Layout p with "low internal stress”

[+ 1
while t < K and max,cy ||F,(t)|| > ¢ do
foreach v € V do

Fu(t) < Zu:{u,v}gE frep(,ou,pv) +
| Zu:{u,v}eE fspring(pw pv)
foreach v ¢ V do

L py < pv+0 - F(t)

B [+ t+1




Algorithm Spring-Embedder (Eades, 1984)

Input: G = (V, E) connected undirected graph with
initial placement p = (py)vcv, NuMber of

Interations K € N, thi
) A
o>0 (1)
Output: Layout p with "low

< 1
while t < K and max,cy ||F
foreach v € V do

Fv(t) A Zu:{u,v}gE frf

Zu:{u,v pring (pu= pV)

fc;reach veVdo
va%pv+5(t)'Fv(t)
B t<+— t+1




Variant: Fruchterman & Reingold (e

Model:
* repulsive force between all node pairs v and v

62
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Model:
* repulsive force between all node pairs v and v

62
v — pul|
* attractive force between two adjacent nodes u and v

* PuPv

frep(Pu, Pv) =
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Variant: Fruchterman & Reingold (e

Model:
* repulsive force between all node pairs v and v

62
v — pul|
* attractive force between two adjacent nodes u and v

* PuPv

frep(Pu, Pv) =

_ Py —va2 P

fattl’(pU5 pv) — ¢ ) Pqu

* (=C,/ area - ideal edge length

number of vertices




Variant: Fruchterman & Reingold (e

Model:
* repulsive force between all node pairs v and v

62
v — pul|
* attractive force between two adjacent nodes u and v

frep(Pu, Pv) = . DuPy

_ Py _va2 P

fattr (Ous Pv) = / - PvPu
* g = C\/numberag?‘avertices ) Ideal edge Iength

* resulting force between adjacent nodes u and v

fspring(pUs pV) = frep(pm pV) + fattr(pm pV)



Diagramm of Fruchtermann & Reingold Forces

Force

q>)A fspring

g y=Xx+/

g
2Lkl » Distance
i frep

Repulsive

frep(pUspv) - 1w —pull * PuPv
PvPu

fattr(pUs pv) = _g

fspring (Pu, Pv) = frep(Pus Pv) + fattr(Ous Pv)
Observe that fspring(ou, pv) = 0 for ||py — pu|| = ¢



Discussion

Advantages

 very simple Algorithm
 good results for small and medium-sized graphs
« emphirically good representation of symmetry and structure
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 converging to local minima
* timewise fspring IN O(|E|) and fiep in O(| V[?)



Discussion

Advantages

 very simple Algorithm
 good results for small and medium-sized graphs
« emphirically good representation of symmetry and structure

Disadvantages
« system is not stable at the end
 converging to local minima
* timewise fspring IN O(|E|) and fiep in O(| V[?)

Influence

 Original paper by Peter Eades got 1775 citations (in 2019, no
update possible)

 Variants of Fruchterman and Reingold algorithms are probably the
most popular force-based methods (original paper cited 7457
times (doubled in the past 4 years)

« Basis for MANY further ideas



Other Possible Modifications

* Inertia

 Gravitation

* Magnetic forces



Other Possible Modifications

* Inertia
define node mass as ¢(v) =1 +deg(v)/2

set fawr(Pu, Pv) < fattr(Pus Pv) - 1/P(V)

 Gravitation

* Magnetic forces



Other Possible Modifications

* Inertia
define node mass as ¢(v) =1 +deg(v)/2

set fawr(Pu, Pv) < fattr(Pus Pv) - 1/P(V)

 Gravitation
define barycenter poary = 1/| V|- ), cv Pv

fgrav(pv) = Cgrav - CID(V) ‘ pvpbar;//
* Magnetic forces




Other Possible Modifications
* Inertia
define node mass as ¢(v) =1 +deg(v)/2
set fir(Pu, Pv) < fatr(Pu, Pv) - 1/D(V)

» Gravitation
define barycenter poary = 1/| V|- ), cv Pv
fgrav(pv) = Cgrav - CID(V) ‘ pvpbar;

* Magnetic forces
— define magnetic fields (e.g. vertical, horizontal)
— angle 6 between edge and the direction of the field
— define force that reduces this angle
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Bounded Drawing Area
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If forceF, drives out of R, we adapt the
vector appropriately within R.




Bounded Drawing Area
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If forceF, drives out of R, we adapt the
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If forceF, drives out of R, we adapt the
vector appropriately within R.




Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Method to prevent node oscillation and repeated rotations

* store previous displacement
vector F,(t — 1)

F,(t—1)



Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Method to prevent node oscillation and repeated rotations
* store previous displacement
F, (1) vector F,(t — 1)
store local temperature for
F,(t—1)
every node v

* coS(ay(t)) =~ 1:
ay (1) similar direction
— Iincrease the temperature
of v

"4



Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Method to prevent node oscillation and repeated rotations

* store previous displacement
vector F,(t — 1)

F,(t—1) store local temperature for
v every node v

ay(t) e cos(ay(t)) =~ 1:

similar direction

— Iincrease the temperature
of v

e cos(ay(f)) ~ —1:
F, (1) oscillation
v — reduce the temperature of v



Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Method to prevent node oscillation and repeated rotations

* store previous displacement
vector F,(t — 1)

store local temperature for
every node v

* coS(ay(t)) =~ 1:
similar direction
— Iincrease the temperature
of v

e cos(ay(t) ~ —1:
oscillation
— reduce the temperature of v
e cos(ay(t)) =~ O:
Rotation
— update rotation counter and decrease temperature if necessary



Lecture Overview

Speed-up (with quadtree)
Other versions of force-directed algorithm
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« and only when the
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Discussion
* meaningful idea to
improve runtime
e worst-case no
advantage
« Quality loss
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Discussion
* meaningful idea to
improve runtime
e worst-case no
advantage
« Quality loss




Speed-up with Quad-Tree

Main idea : when computing repulsive force for a vertex v, for groups
of vertices that are far apart from v we do not need to account on
iIndividual force-influences

S
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Main idea : when computing repulsive force for a vertex v, for groups
of vertices that are far apart from v we do not need to account on
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Properties of Quad-Tree

» height h < log St + 2, here dy,,-smallest distance

 time and space m(m)(hn)
« compressed quad-tree in O(nlog n) time




Forces with Quad-Trees (Barnes, Hut, 1986)
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Forces with Quad-Trees (Barnes, Hut, 1986)
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Forces with Quad-Trees (Barnes, Hut, 1986)
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® YR
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®
o When to use center of mass

¢ and when real points?

Parameter §: if -_widthof thebox - 9 _ ;50 center of mass

distance to the center
Assuming homogeneous distribution, the calculations of forces can
be done in O(log n) for a single vertex - O(nlog n) overall vs O(n?)



Forces with Quad-Trees (Barnes, Hut, 1986)

®
o
® Check: https://jheer. glthub lo/barnes-hut/
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o When to use center of mass
¢ and when real points?

Parameter §: if -_widthof thebox - 9 _ ;50 center of mass

distance to the center

Assuming homogeneous distribution, the calculations of forces can
be done in O(log n) for a single vertex - O(nlog n) overall vs O(n?)



Modifications

G RI P (Hachul, Junger 2007)

Left: Grid version of
Fruchterman Reingold.
Right: GRIP

ldea: Construct layers of
nodes, position layers one
after the other,
force-directed shaking
locally




Modifications

Lombardi-Spring-Embedder (chemobeiskiy et al. 2012)

* edges are circular arcs

» goal: optimal angular resolution 27/ deg(v) at each
node v

 additional rotational forces



Modifications

Lombardi-Spring-Embedder (chemobeiskiy et al. 2012)

* edges are circular arcs

» goal: optimal angular resolution 27/ deg(v) at each
node v

 additional rotational forces

Metro Maps with Bézier curves (rinketal. 2013)

« model paths as Bézier curves
forces on nodes and control points:
lines are distinguishable
few bend points
few control points




Modifications

Lombardi-Spring-Embedder (chemobeiskiy et al. 2012)

* edges are circular arcs
» goal: optimal angular resolution 27/ deg(v) at each
node v

- _additional rotational forces
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Modifications

Separation ConStraints (Dwyer, Koren, Marriott, 2006)

« groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints



Modifications

Separation ConStraints (Dwyer, Koren, Marriott, 2006)

« groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints

: https://marvl.infotech.monash.edu/webcola/
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Modifications

Separation ConStraints (Dwyer, Koren, Marriott, 2006)

« groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints

Dynamic maps mcheididze, schnorr, 2022)

* regions are proportional to given values
* regions have simple organic form
* regions come and go/change adjacency



Summary

Force-based Approaches are

 easily understandable and implementable

* no special requirements on the input graph

» depending on the graphs (small and sparce) amazingly
good layouts (Symmetries, Clustering, ...)

 easily adaptable and configurable

* robust

 scalable



Summary

Force-based Approaches are

 easily understandable and implementable

* no special requirements on the input graph

» depending on the graphs (small and sparce) amazingly
good layouts (Symmetries, Clustering, ...)

 easily adaptable and configurable

* robust

 scalable

But...
 usually no quality and running time guaranees
 bad choice of starting layout — slow convergence
« possibly slow for large graphs
* fine-turning need be done by experts
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Addltlonal Readmg

Graph Drawing handbook: Chapter 12
Paper "Graph Drawing by Force-directed

T~ placement” by Fruchterman and Reingold

Paper "ForceAtlas2...” by Jacomy et al. -
perhaps best version of forces today



Summary and Reading
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