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Lecture Overview

• Introduction and How to draw a general graph

• Eades algorithm

• Fruchterman-Reingold algorithm

• Improvements/Modifications

• Speed up (with quadtree)

• Other versions of force-directed algorithm



Introduction
• Method for visualization of general graphs inspired by

physical analogies
• The methods are very popular: intuitiveness, easy to

program, generality, fairly satisfactory results, easily
adaptable for applications...



General Layout Problem
Given:Graph G = (V , E)
Find: Clear and readable drawing of G

Which quality metrics would
you optimize?
Which drawing conventions
would we apply?
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General Layout Problem
Given:Graph G = (V , E)
Find: Clear and readable drawing of G
Criteria:

• adjacent nodes are close
• non-adjacent far apart
• edges short, straight-line, similar length
• densly connected parts (clusters) form communities
• as few crossings as possible
• nodes distributed evenly

Optimization criteria partially contradict each other!
NP-hard for

• edge lengths {1, 2} [Saxe, ’80]
• planar drawing with unit edge length [Eades, Wormald,

’90]
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Physical Model

[Eades, ’84] “To embed a graph we replace the vertices by steel rings
and replace each edge with a spring to form a mechanical system . . .
The vertices are placed in some initial layout and let go so that the
spring forces on the rings move the system to a minimal energy state.”

So-called spring-embedder algorithms that work
according to this or similar principles are among the
most frequently used graph-drawing methods in
practice.



Notation

ℓ = ℓ(e) ideal spring length for edge e

pv = (xv , yv ) position of node v

||pu − pv || Euclidean distance between u and v
−−→pupv unit vector pointing from u to v
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• repulsive force between two non-adjacent nodes u
and v
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• resulting displacement vector for node v

Fv =
∑

u:{u,v}̸∈E

frep(pu, pv ) +
∑

u:{u,v}∈E

fspring(pu, pv )

• The values cspring = 2, ℓ = 1, crep = 1 are appropriate for
most graphs

Vectors!



Intermission: Vectors vs. Scalars in Code

• force intensity is a scalar
• force direction is a vector!
• force is a vector!

1 import numpy as np
2
3 po in t1 = np . ar ray ( [ 1 . 0 , 0 . 0 ] )
4 po in t2 = np . ar ray ( [ 0 . 0 , 2 . 0 ] )
5
6 f o r c e i n t e n s i t y = C REP / np . l i n a l g . norm ( po in t1 − po in t2 )
7 f o r c e d i r e c t i o n = po in t2 − po in t1
8
9 fo rce = f o r c e d i r e c t i o n * f o r c e i n t e n s i t y



Intermission: Vectors vs. Scalars in Code

1 import numpy as np
2
3 po in t1 = np . ar ray ( [ 1 . 0 , 0 . 0 ] )
4 po in t2 = np . ar ray ( [ 0 . 0 , 2 . 0 ] )
5
6 f o r c e i n t e n s i t y = C REP / np . l i n a l g . norm ( po in t1 − po in t2 )
7 f o r c e d i r e c t i o n = ( po in t2 − po in t1 ) / np . l i n a l g . norm ( po in t1 − po in t2 )
8
9 fo rce = f o r c e d i r e c t i o n * f o r c e i n t e n s i t y

• force intensity is a scalar
• force direction is a vector!
• force is a vector!

• Do not confuse the data types. This saves you from
wrongly calculating/applying forces.



Diagram of Spring-Embedder Forces (Eades, 1984)

Distance
frep

fspring

ℓ

Force

frep(pu, pv ) = crep

||pv−pu ||2 ·
−−→pupv

fspring(pu, pv ) = cspring · log ||pu−pv ||
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fspring(pu, pv ) contributes to attraction when ||pu − pv || > ℓ
and to repulsion when ||pu − pv || < ℓ

frep(pu, pv ) is approaching zero as the distance grows, faster
for smaller crep



Algorithm Spring-Embedder (Eades, 1984)

Input: G = (V , E) connected undirected graph with
initial placement p = (pv )v∈V , number of
interations K ∈ N, threshold ε > 0, constant
δ > 0

Output: Layout p with ”low internal stress”’

t ← 1
while t < K and maxv∈V ∥Fv (t)∥ > ε do

foreach v ∈ V do
Fv (t)←

∑
u:{u,v}̸∈E frep(pu, pv ) +

Fv (t)←
∑

u:{u,v}∈E fspring(pu, pv )

foreach v ∈ V do
pv ← pv + δ · Fv (t)

t ← t + 1



Algorithm Spring-Embedder (Eades, 1984)

Cooling of the
scaling factor δ

Input: G = (V , E) connected undirected graph with
initial placement p = (pv )v∈V , number of
interations K ∈ N, threshold ε > 0, constant
δ > 0

Output: Layout p with ”low internal stress”’

t ← 1
while t < K and maxv∈V ∥Fv (t)∥ > ε do

foreach v ∈ V do
Fv (t)←

∑
u:{u,v}̸∈E frep(pu, pv ) +

Fv (t)←
∑

u:{u,v}∈E fspring(pu, pv )

foreach v ∈ V do
pv ← pv + δ(t) · Fv (t)

t ← t + 1

δ(t)

t
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Variant: Fruchterman & Reingold (1991)

Model:
• repulsive force between all node pairs u and v

frep(pu, pv ) =
ℓ2

||pv − pu||
· −−→pupv

• attractive force between two adjacent nodes u and v

fattr(pu, pv ) =
||pu − pv ||2

ℓ
· −−→pv pu

• resulting force between adjacent nodes u and v

fspring(pu, pv ) = frep(pu, pv ) + fattr(pu, pv )

• ℓ = C
√

area
number of vertices - ideal edge length



Diagramm of Fruchtermann & Reingold Forces
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fspring

ℓ
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Force

frep(pu, pv ) = ℓ2

||pv−pu || ·
−−→pupv

fattr(pu, pv ) = ||pu−pv ||2
ℓ · −−→pv pu

fspring(pu, pv ) = frep(pu, pv ) + fattr(pu, pv )
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Observe that fspring(pu, pv ) = 0 for ||pv − pu|| = ℓ
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Discussion
Advantages

• very simple Algorithm
• good results for small and medium-sized graphs
• emphirically good representation of symmetry and structure

Disadvantages
• system is not stable at the end
• converging to local minima
• timewise fspring in O(|E |) and frep in O(|V |2)

Influence
• Original paper by Peter Eades got 1775 citations (in 2019, no

update possible)
• Variants of Fruchterman and Reingold algorithms are probably the

most popular force-based methods (original paper cited 7457
times (doubled in the past 4 years)

• Basis for MANY further ideas
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Other Possible Modifications
• Inertia

• Gravitation

• Magnetic forces

define node mass as Φ(v ) = 1 + deg(v )/2
set fattr(pu, pv )← fattr(pu, pv ) · 1/Φ(v )

define barycenter pbary = 1/|V | ·
∑

v∈V pv

fgrav(pv ) = cgrav · Φ(v ) · −−−−→pv pbary

– define magnetic fields (e.g. vertical, horizontal)
– angle θ between edge and the direction of the field
– define force that reduces this angle

θ
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Adaptive Displacement (Frick, Ludwig, Mehldau 1995)

Fv (t − 1)

Fv (t)αv (t)

F ′
v (t) v

• store previous displacement
vector Fv (t − 1)

store local temperature for
every node v

• cos(αv (t)) ≈ 1:
similar direction
→ increase the temperature
of v

• cos(αv (t)) ≈ −1:
oscillation
→ reduce the temperature of v

• cos(αv (t)) ≈ 0:
Rotation
→ update rotation counter and decrease temperature if necessary

Method to prevent node oscillation and repeated rotations



Lecture Overview

• Introduction and How to draw a general graph

• Eades algorithm

• Fruchterman-Reingold algorithm

• Improvements/Modifications

• Speed-up (with quadtree)

• Other versions of force-directed algorithm



Grid Version (Fruchterman, Reingold, 1990)

v



Grid Version (Fruchterman, Reingold, 1990)

v



Grid Version (Fruchterman, Reingold, 1990)

v

• subdivide plane by a
grid



Grid Version (Fruchterman, Reingold, 1990)

v

• subdivide plane by a
grid

• compute repulsive
forces only for the
nodes in the
neighbouring cells



Grid Version (Fruchterman, Reingold, 1990)

v

• subdivide plane by a
grid

• compute repulsive
forces only for the
nodes in the
neighbouring cells

• and only when the
distance is at most dmax



Grid Version (Fruchterman, Reingold, 1990)

v

• subdivide plane by a
grid

• compute repulsive
forces only for the
nodes in the
neighbouring cells

• and only when the
distance is at most dmax

Discussion
• meaningful idea to

improve runtime
• worst-case no

advantage
• Quality loss



Grid Version (Fruchterman, Reingold, 1990)

v

• subdivide plane by a
grid

• compute repulsive
forces only for the
nodes in the
neighbouring cells

• and only when the
distance is at most dmax

Discussion
• meaningful idea to

improve runtime
• worst-case no

advantage
• Quality loss



Speed-up with Quad-Tree
Main idea : when computing repulsive force for a vertex v , for groups
of vertices that are far apart from v we do not need to account on
individual force-influences



Speed-up with Quad-Tree
Main idea : when computing repulsive force for a vertex v , for groups
of vertices that are far apart from v we do not need to account on
individual force-influences



Speed-up with Quad-Tree
Main idea : when computing repulsive force for a vertex v , for groups
of vertices that are far apart from v we do not need to account on
individual force-influences



Speed-up with Quad-Tree
Main idea : when computing repulsive force for a vertex v , for groups
of vertices that are far apart from v we do not need to account on
individual force-influences



Speed-up with Quad-Tree
Main idea : when computing repulsive force for a vertex v , for groups
of vertices that are far apart from v we do not need to account on
individual force-influences



Quad-Tree

r0
R0 QT



Quad-Tree

r0

r1 r2 r3 r4

R1 R2

R3 R4

QT



Quad-Tree

r0

r1 r2 r3 r4

r5 r12

R5

R6

R7

R8 R9

R10 R11

R12

QT



Quad-Tree

r0

r1 r2 r3 r4

r5 r12

r13 r16

R13
R14

R15

R16

QT

r6



Quad-Tree

r0

r1 r2 r3 r4

r5 r12

r13 r16

r17 r18

R17

R18

QT

r6



Properties of Quad-Tree

• height h ≤ log sinit
dmin

+ 3
2 , here dmin-smallest distance

• time and space O(hn)
• compressed quad-tree in O(n log n) time

r0

r1 r2 r3 r4

r5 r12

r13 r16

r17 r18

r6

sinit



Forces with Quad-Trees (Barnes, Hut, 1986)
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Forces with Quad-Trees (Barnes, Hut, 1986)
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r0
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QT

u

r6

When to use center of mass
and when real points?

Parameter θ: if width of the box
distance to the center < θ - use center of mass

Assuming homogeneous distribution, the calculations of forces can
be done in O(log n) for a single vertex - O(n log n) overall vs O(n2)

Check: https://jheer.github.io/barnes-hut/



Modifications

Left: Grid version of
Fruchterman Reingold.
Right: GRIP
Idea: Construct layers of
nodes, position layers one
after the other,
force-directed shaking
locally

GRIP (Hachul, Jünger 2007)
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Modifications
Lombardi-Spring-Embedder (Chernobelskiy et al. 2012)

• edges are circular arcs
• goal: optimal angular resolution 2π/deg(v ) at each

node v
• additional rotational forces

Metro Maps with Bézier curves (Fink et al. 2013)

• model paths as Bézier curves
• forces on nodes and control points:
• lines are distinguishable
• few bend points
• few control points

Realistic Node Sizes (Gansner, North 1998)

• node positions are adjusted to avoid overlaps
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predetermined polygons/ other separation contraints
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• groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints

https://marvl.infotech.monash.edu/webcola/
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Modifications
Separation Constraints (Dwyer, Koren, Marriott, 2006)

• groups of vertices are constrained to lie in
predetermined polygons/ other separation contraints

Dynamic maps (Mcheldidze, Schnorr, 2022)

• regions are proportional to given values
• regions have simple organic form
• regions come and go/change adjacency
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Force-based Approaches are
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• no special requirements on the input graph
• depending on the graphs (small and sparce) amazingly

good layouts (Symmetries, Clustering, ...)
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Summary
Force-based Approaches are

• easily understandable and implementable
• no special requirements on the input graph
• depending on the graphs (small and sparce) amazingly

good layouts (Symmetries, Clustering, ...)
• easily adaptable and configurable
• robust
• scalable

But...
• usually no quality and running time guaranees
• bad choice of starting layout→ slow convergence
• possibly slow for large graphs
• fine-turning need be done by experts
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Summary and Reading

Additional Reading

Graph Drawing handbook: Chapter 12

Paper ”Graph Drawing by Force-directed
placement” by Fruchterman and Reingold

• Introduction and How to draw a general graph
• Eades algorithm
• Fruchterman-Reingold algorithm
• Improvements/Modifications
• Speed up (with quadtree)
• Other versions of force-directed algorithm

Paper ”ForceAtlas2...” by Jacomy et al. -
perhaps best version of forces today



Summary and Reading

Algorithm for visualization of general graphs
Next

• Introduction and How to draw a general graph
• Eades algorithm
• Fruchterman-Reingold algorithm
• Improvements/Modifications
• Speed up (with quadtree)
• Other versions of force-directed algorithm


	\bf  \textcolor{black}{Introduction}
	\bf  \textcolor{black}{General Layout Problem}
	\bf  \textcolor{black}{Physical Model}
	\bf  \textcolor{black}{Notation}
	\bf  \textcolor{black}{Spring-Embedder {\tiny (Eades, 1984)}}
	\bf  \textcolor{black}{Intermission: Vectors vs. Scalars in Code}
	\bf  \textcolor{black}{Diagram of Spring-Embedder Forces {\tiny (Eades, 1984)}}
	\bf  \textcolor{black}{Variant: Fruchterman \& Reingold {\tiny (1991)}}
	\bf  \textcolor{black}{Diagramm of Fruchtermann \& Reingold Forces}
	\bf  \textcolor{black}{Discussion}
	\bf  \textcolor{black}{Other Possible Modifications}
	\bf  \textcolor{black}{Bounded Drawing Area}
	\bf  \textcolor{black}{Adaptive Displacement {\tiny (Frick, Ludwig, Mehldau 1995)}}
	\bf  \textcolor{black}{Grid Version {\tiny (Fruchterman, Reingold, 1990)}}
	\bf  \textcolor{black}{Quad-Tree} 
	\bf  \textcolor{black}{Properties of Quad-Tree}
	\bf  \textcolor{black}{Forces with Quad-Trees {\tiny (Barnes, Hut, 1986)}}
	\bf \textcolor{black}{Modifications}
	\bf \textcolor{black}{Summary}

