Algorithm for Visualization of Directed Graphs

Course : Data Visualization

Lecturer : Tamara Mchedlidze

Utrecht University, Dept. of Information and Computing Sciences

Lecture Overview

- How to draw a directed graph
- Examples
- Sugiyama framework

Example

Layered Layout

Given:directed graph D = (V, A)

Find: drawing of *D* that emphasized the hierarchy

Layered Layout

Given:directed graph D = (V, A)

Find: drawing of *D* that emphasized the hierarchy

- many edges pointing to the same direction
- nodes lie on (few) horizontal lines

Layered Layout

Given:directed graph D = (V, A)

Find: drawing of *D* that emphasized the hierarchy

- · edges as straight as possible and short
- few edge crossings
- nodes distributed evenly

Application: Java Profiler

JProfiler using yFiles

Application: Storylines

Source: "Design Considerations for Optimizing Storyline Visualizations" Tanahashi et al.

Application: Storylines

Source: ABC news, Australia

Application: Text-Variant graphs

Source: Improving the Layout for Text Variant Graphs Jänicke et al.

Application: Mythological Creatures and Gods

Source: Visualization that won the Graph Drawing contest 2016. Klawitter& Mchedlidze

given

resolve cycles

crossing minimization

- Idea: find maximum acyclic subgraph
 - inverse the directions of the other edges

- Idea: find maximum acyclic subgraph
 - inverse the directions of the other edges

MAXIMUM ACYCLIC SUBGRAPH

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

- Idea: find maximum acyclic subgraph
 - inverse the directions of the other edges

MAXIMUM ACYCLIC SUBGRAPH

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

MINIMUM FEEDBACK ARC SET (FAS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f)$ acyclic with minimum $|A_f|$

- Idea: find maximum acyclic subgraph
 - inverse the directions of the other edges

MAXIMUM ACYCLIC SUBGRAPH

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

MINIMUM FEEDBACK ARC SET (FAS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f)$ acyclic with minimum $|A_f|$

MINIMUM FEEDBACK SET (FS)

- Idea: find maximum acyclic subgraph
 - inverse the directions of the other edges

MAXIMUM ACYCLIC SUBGRAPH

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

MINIMUM FEEDBACK ARC SET (FAS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f)$ acyclic with minimum $|A_f|$

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)**Find:** $A_f \subset A$, with $D_f = (V, A \setminus A_f \cup rev(A_f))$ acyclic with minimum $|A_f|$

Question: Is FS also a FAS? and the opposite?

- Idea: find maximum acyclic subgraph
 - inverse the directions of the other edges

MAXIMUM ACYCLIC SUBGRAPH

Given: directed graph D = (V, A)

Find: acyclic subgraph D' = (V, A') with maximum |A'|

MINIMUM FEEDBACK ARC SET (FAS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f)$ acyclic with minimum $|A_f|$

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)

Find: $A_f \subset A$, with $D_f = (V, A \setminus A_f \cup rev(A_f))$ acyclic with minimum $|A_f|$

All three problems are NP-hard!

MINIMUM FEEDBACK SET (FS)

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)**Find:** $A_f \subset A$, with $D_f = (V, A \setminus A_f \cup rev(A_f))$ acyclic with minimum $|A_f|$

Benefit: Very simple to implement **Drawback:** No guarantee on the number of reversed edges

no cycles if all vertices are only sources and sinks

no cycles if graph can be eliminated by always removing either sources or sinks

$$\begin{array}{lll} N^{\rightarrow}(v) & \coloneqq & \{(v, u) \colon (v, u) \in A\} \\ N^{\leftarrow}(v) & \coloneqq & \{(u, v) \colon (u, v) \in A\} \\ N(v) & \coloneqq & N^{\rightarrow}(v) \cup N^{\leftarrow}(v) \end{array}$$

- 1 $A' := \emptyset;$
- 2 while $V \neq \emptyset$ do 3 while in V exists a sink v do 4 $A' \leftarrow A' \cup N^{\leftarrow}(v)$ 5 remove v and $N^{\leftarrow}(v)$

- 1 $A' := \emptyset;$
- 2 while $V \neq \emptyset$ do 3 while in V exists a sink v do 4 $A' \leftarrow A' \cup N^{\leftarrow}(v)$ 5 remove v and $N^{\leftarrow}(v)$

- **1** $A' := \emptyset;$
- 2 while $V \neq \emptyset$ do 3 while in V exists a sink v do 4 $A' \leftarrow A' \cup N^{\leftarrow}(v)$ 5 remove v and $N^{\leftarrow}(v)$

- 1 $A' := \emptyset;$
- 2 while $V \neq \emptyset$ do 3 while in V exists a sink v do 4 $A' \leftarrow A' \cup N^{\leftarrow}(v)$ 5 remove v and $N^{\leftarrow}(v)$

- **1** $A' := \emptyset;$
- 2 while $V \neq \emptyset$ do 3 while in V exists a sink v do 4 $A' \leftarrow A' \cup N^{\leftarrow}(v)$ 5 remove v and $N^{\leftarrow}(v)$

- 2 while $V \neq \emptyset$ do
- 3while in V exists a sink v do4 $A' \leftarrow A' \cup N^{\leftarrow}(v)$ 5remove v and $N^{\leftarrow}(v)$
- 6 Remove all isolated node from *V*

Theorem: Let D = (V, A) be a connected, directed graph without 2-cycles. Heuristic of Eades at al. computes a set of edges A' with $|A'| \ge |A|/2 + |V|/6$. The running time is O(|A|).

Theorem: Let D = (V, A) be a connected, directed graph without 2-cycles. Heuristic of Eades at al. computes a set of edges A' with $|A'| \ge |A|/2 + |V|/6$. The running time is O(|A|).

Many other heuristics:

• based on vertex ordering – use DFS (Rowe et al. 1987)

Theorem: Let D = (V, A) be a connected, directed graph without 2-cycles. Heuristic of Eades at al. computes a set of edges A' with $|A'| \ge |A|/2 + |V|/6$. The running time is O(|A|).

Many other heuristics:

- based on vertex ordering use DFS (Rowe et al. 1987)
- based on cycle braking start with an empty edge set and only add edges as long as they do not create cycles

Theorem: Let D = (V, A) be a connected, directed graph without 2-cycles. Heuristic of Eades at al. computes a set of edges A' with $|A'| \ge |A|/2 + |V|/6$. The running time is O(|A|).

Many other heuristics:

- based on vertex ordering use DFS (Rowe et al. 1987)
- based on cycle braking start with an empty edge set and only add edges as long as they do not create cycles
- or remove edges that participate in many cycles, again with a use of DFS (Gansner et al. 1993) – performs well and is implemented in Graphvis

Theorem: Let D = (V, A) be a connected, directed graph without 2-cycles. Heuristic of Eades at al. computes a set of edges A' with $|A'| \ge |A|/2 + |V|/6$. The running time is O(|A|).

Many other heuristics:

- based on vertex ordering use DFS (Rowe et al. 1987)
- based on cycle braking start with an empty edge set and only add edges as long as they do not create cycles
- or remove edges that participate in many cycles, again with a use of DFS (Gansner et al. 1993) – performs well and is implemented in Graphvis
- optimal solution integer linear programming, using branch-and-cut technique (Grötschel et al. 1985)

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Given.: directed acyclic graph (DAG) D = (V, A)

Find: Partition the vertex set *V* into disjoint subsets (**layers**) L_1, \ldots, L_h s.t. $(u, v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Def: *y*-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Given.: directed acyclic graph (DAG) D = (V, A)

Find: Partition the vertex set *V* into disjoint subsets (**layers**) L_1, \ldots, L_h s.t. $(u, v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Def: *y*-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Think for a minute and then share

What could we optimize when doing the layer assignment?

Given.: directed acyclic graph (DAG) D = (V, A)

Find: Partition the vertex set *V* into disjoint subsets (**layers**) L_1, \ldots, L_h s.t. $(u, v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Def: *y*-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Possible optimization criteria

- minimize the number of layers *h* (= height of the layouts)
- minimize the total length of edges (\approx number of dummy nodes)
- minimize width, e.g. max{ $|L_i| | 1 \le i \le h$ }

Given.: directed acyclic graph (DAG) D = (V, A)

Find: Partition the vertex set *V* into disjoint subsets (**layers**) L_1, \ldots, L_h s.t. $(u, v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Def: *y*-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Possible optimization criteria

- minimize the number of layers h (= height of the layouts)
 - minimize the total length of edges (\approx number of dummy nodes)
 - minimize width, e.g. max{ $|L_i| | 1 \le i \le h$ }

Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

```
Input: A directed graph G

Output: Layering of G, L_1, ..., L_h

S := sources of G

i = 1;

while S \neq \emptyset do

L_i := S

i + +

G := G \setminus S

S := sources of G
```

Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

```
Input: A directed graph G

Output: Layering of G, L_1, ..., L_h

S := sources of G

i = 1;

while S \neq \emptyset do

L_i := S

i + +

G := G \setminus S

S := sources of G
```


Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

```
Input: A directed graph G

Output: Layering of G, L_1, ..., L_h

S := sources of G

i = 1;

while S \neq \emptyset do

L_i := S

i + +

G := G \setminus S

S := sources of G
```


Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

```
Input: A directed graph G

Output: Layering of G, L_1, ..., L_h

S := sources of G

i = 1;

while S \neq \emptyset do

L_i := S

i + +

G := G \setminus S

S := sources of G
```


Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

```
Input: A directed graph G

Output: Layering of G, L_1, ..., L_h

S := sources of G

i = 1;

while S \neq \emptyset do

L_i := S

i + +

G := G \setminus S

S := sources of G
```


Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

```
Input: A directed graph G

Output: Layering of G, L_1, ..., L_h

S := sources of G

i = 1;

while S \neq \emptyset do

L_i := S

i + +

G := G \setminus S

S := sources of G
```


Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

```
Input: A directed graph G

Output: Layering of G, L_1, ..., L_h

S := sources of G

i = 1;

while S \neq \emptyset do

L_i := S

i + +

G := G \setminus S

S := sources of G
```


Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

```
Input: A directed graph G
Output: Layering of G, L_1, ..., L_h
S := sources of G
i = 1;
```

```
while S \neq \emptyset do
| L_i := S
```

$$i + +$$

$$S := SOURCES of$$

also known as topological numbering

Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

Algorithm

Input: A directed graph G Output: Layering of G, $L_1, ..., L_h$ S := sources of G i = 1;while $S \neq \emptyset$ do $L_i := S$ i + + $G := G \setminus S$

Idea: assign each node v to the layer L_i , where i is the length of the longest simple path from a source to v

- all incomming neighbours lie below v
- the resulting height h is minimized

Algorithm

Input: A directed graph GOutput: Layering of $G, L_1, ..., L_h$ S := sources of Gi = 1;while $S \neq \emptyset$ do $| L_i := S$

$$G := G \setminus S$$

$$_S :=$$
sources of G

edges that span more than two layers get subdivided by dummy vertices

Other optimization criteria:

Total edge length: $\sum_{(u,v)\in A} (y(v) - y(u))$ – with integer linear program (polynomial time) [Gansner et al 93]

Other optimization criteria:

Total edge length: $\sum_{(u,v)\in A} (y(v) - y(u))$ – with integer linear program (polynomial time) [Gansner et al 93]

Width of the layout:

Other optimization criteria:

Total edge length: $\sum_{(u,v)\in A} (y(v) - y(u))$ – with integer linear program (polynomial time) [Gansner et al 93]

Width of the layout:

Reduction to scheduling problem – NP-hard but there is a $2 - \frac{1}{B}$ -approximation algorithm
Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Problem Statement

Given:DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized

Problem Statement

Given:DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number of crossing is minimized

- Number of crossings only depends on the order and not on exact coordinates
- Problem is NP-hard even for two layers (BIPARTITE CROSSING NUMBER [Garey, Johnson '83])
- No approach over several layers simultaneously
- Usually iterative optimization based on approaches for two adjacent layers (*one-sided crossing minimization*)

- **Given:**2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes O_1 of L_1
- **Find:** Node ordering O_2 of L_2 , such that the number of crossing among *E* is minumum

- **Given:**2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes O_1 of L_1
- **Find:** Node ordering O_2 of L_2 , such that the number of crossing among *E* is minumum

Observation:

 for *u*, *v* ∈ *L*₂ the number of crossing among incident to them edges depends on whether *O*₂(*u*) < *O*₂(*v*) or *O*₂(*v*) < *O*₂(*u*) and not on the positions of other vertices

Given:2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes O_1 of L_1

Find: Node ordering O_2 of L_2 , such that the number of crossing among *E* is minumum

Observation:

 for *u*, *v* ∈ *L*₂ the number of crossing among incident to them edges depends on whether *O*₂(*u*) < *O*₂(*v*) or *O*₂(*v*) < *O*₂(*u*) and not on the positions of other vertices

Def: $c_{uv} := |\{(uw, vz) : w \in N(u), z \in N(v), O_1(z) < O_1(w)\}|$ for $O_2(u) < O_2(v)$

Given:2-Layered-Graph $G = (L_1, L_2, E)$ and ordering of the nodes O_1 of L_1

Find: Node ordering O_2 of L_2 , such that the number of crossing among *E* is minumum

Observation:

 for *u*, *v* ∈ *L*₂ the number of crossing among incident to them edges depends on whether *O*₂(*u*) < *O*₂(*v*) or *O*₂(*v*) < *O*₂(*u*) and not on the positions of other vertices

Def: $c_{uv} := |\{(uw, vz) : w \in N(u), z \in N(v), O_1(z) < O_1(w)\}|$ for $O_2(u) < O_2(v)$

Further Properties

- **Def:** Crossing number of *G* with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G, O_1, O_2)$; for fixed O_1 then $opt(G, O_1) = min_{O_2} cr(G, O_1, O_2)$
 - It holds that $cr(G, O_1, O_2) = \sum_{O_2(u) < O_2(v)} c_{uv}$ gives a way to compute $cr(G, O_1, O_2)$ in $O(m^2)$, where *m*-number of edges

Further Properties

- **Def:** Crossing number of *G* with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G, O_1, O_2)$; for fixed O_1 then $opt(G, O_1) = min_{O_2} cr(G, O_1, O_2)$
 - It holds that $cr(G, O_1, O_2) = \sum_{O_2(u) < O_2(v)} c_{uv}$ gives a way to compute $cr(G, O_1, O_2)$ in $O(m^2)$, where *m*-number of edges
 - $cr(G, O_1, O_2)$ can be computed in O(m + C) time, where *C*-number of crossings [Six and Tollis 2006] \rightarrow reduce to counting crossings in a circular drawing

Further Properties

- **Def:** Crossing number of *G* with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G, O_1, O_2)$; for fixed O_1 then $opt(G, O_1) = min_{O_2} cr(G, O_1, O_2)$
 - It holds that $cr(G, O_1, O_2) = \sum_{O_2(u) < O_2(v)} c_{uv}$ gives a way to compute $cr(G, O_1, O_2)$ in $O(m^2)$, where *m*-number of edges
 - $cr(G, O_1, O_2)$ can be computed in O(m + C) time, where *C*-number of crossings [Six and Tollis 2006] \rightarrow reduce to counting crossings in a circular drawing

Iterative Crossing Minimization

Let G = (V, E) be a DAG with layers L_1, \ldots, L_h .

- (1) compute a random ordering O_1 for layer L_1
- (2) for i = 1, ..., h 1 consider layers L_i and L_{i+1} and minimize $cr(G, O_i, O_{i+1})$ with fixed $O_i (\rightarrow OSCM)$
- (3) for i = h 1, ..., 1 consider layers L_{i+1} and L_i and minimize $cr(G, O_i, O_{i+1})$ with fixed $O_{i+1} (\rightarrow OSCM)$
- (4) repeat (2) and (3) until no further improvement happens
- (5) repeat steps (1)–(4) with another O_1
- (6) return the best found solution

Iterative Crossing Minimization

Let G = (V, E) be a DAG with layers L_1, \ldots, L_h .

(1) compute a random ordering O_1 for layer L_1

- (2) for i = 1, ..., h 1 consider layers L_i and L_{i+1} and minimize $cr(G, O_i, O_{i+1})$ with fixed $O_i (\rightarrow OSCM)$
- (3) for i = h 1, ..., 1 consider layers L_{i+1} and L_i and minimize $cr(G, O_i, O_{i+1})$ with fixed $O_{i+1} (\rightarrow OSCM)$
- (4) repeat (2) and (3) until no further improvement happens
- (5) repeat steps (1)–(4) with another O_1
- (6) return the best found solution

Theorem 1: The One-Sided Crossing Minimization (OSCM) problem is NP-hard [Eades, Wormald 1994].

Algorithms for OSCM

Heuristics:

- Barycenter [Sugiyama et al, 81]
- Median [Eades and Wormald, 94]

Exact:

• ILP Model [Juenger and Mutzel, 97]

...and many more...

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

- Idea: few crossing when nodes are close to their neighbours
 - set

$$o_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} o_1(v)$$

• in case of equality introduce tiny gap

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

• set

$$o_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} o_1(v)$$

• in case of equality introduce tiny gap

Properties:

- trivial implementation
- quick (exactly?)
- usually very good results
- finds optimum if $opt(G, o_1) = 0$
- there are graphs on which it performs $\Omega(\sqrt{n})$ times worse than optimal

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their neighbours

• set

$$o_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} o_1(v)$$

• in case of equality introduce tiny gap

Properties:

- trivial implementation
- quick (exactly?)
- usually very good results
- finds optimum if $opt(G, o_1) = 0$
- there are graphs on which it performs $\Omega(\sqrt{n})$ times worse than optimal

Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neightbours

- for a node $v \in L_2$ with neighbours v_1, \ldots, v_k set $O_2(v) = \text{med}(v) = O_1(v_{\lceil k/2 \rceil})$ and $O_2(v) = 0$ if $N(v) = \emptyset$
- if $o_2(u) = o_2(v)$ and u, v have different degree parity, place the node with odd degree to the left
- if $o_2(u) = o_2(v)$ and u, v have the same degree parity, place an arbitrary of them to the left
- Runs in time O(|E|)

Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neightbours

- for a node $v \in L_2$ with neighbours v_1, \ldots, v_k set $o_2(v) = med(v) = o_1(v_{\lceil k/2 \rceil})$ and $o_2(v) = 0$ if $N(v) = \emptyset$
- if $o_2(u) = o_2(v)$ and u, v have different degree parity, place the node with odd degree to the left
- if $o_2(u) = o_2(v)$ and u, v have the same degree parity, place an arbitrary of them to the left
- Runs in time O(|E|)

Properties:

- trivial implementation
- fast
- mostly good performance
- finds optimum when $opt(G, o_1) = 0$
- Factor-3 Approximation: $med(G, o_1) \leq 3 opt(G, o_1)$

Experimental Evaluation (Jünger, Mutzel 1997)

Results for 100 instances on 20 + 20 nodes with increasing density

Time for 100 instances on 20 + 20 nodes with increasing density

Experimental Evaluation (Jünger, Mutzel 1997)

Time for 10 instances of sparse graphs with increasing size

CrossingX

There was even an iPad game **CrossingX** for the OSCM Problem!

Winner of Graph Drawing Game Contest 2012

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Coordinate Assignement Goals

Coordinate Assignement Goals

Think for a minute and then share

What could we optimize when doing the coordinate assignment?

Coordinate Assignement Goals

Think for a minute and then share

What could we optimize when doing the coordinate assignment?
Coordinate Assignement Goals

- Edges as straight as possible
- Edges as vertical as possible

Steightening Edges

Goal: minimize deviation from a straight-line for the edges with dummy-nodes

Idea: use quadratic Program

- let $p_{uv} = (u, d_1, \dots, d_k, v)$ path with k dummy nodes betwen u and v
- let $a_i = x(u) + \frac{i}{k+1}(x(v) x(u))$ the x-coordinate of d_i when (u, v) is straight
- $g(p_{uv}) = \sum_{i=1}^{k} (x(d_i) a_i)^2$
- minimize $\sum_{uv \in E} g(p_{uv})$
- constraints: $x(w) x(z) \ge \delta$ for consecutive nodes on the same layer, w on the right of z (δ distance parameter)

Steightening Edges

Goal: minimize deviation from a straight-line for the edges with dummy-nodes

Idea: use quadratic Program

- let $p_{uv} = (u, d_1, \dots, d_k, v)$ path with k dummy nodes betwen u and v
- let $a_i = x(u) + \frac{i}{k+1}(x(v) x(u))$ the x-coordinate of d_i when (u, v) is straight
- $g(p_{uv}) = \sum_{i=1}^{k} (x(d_i) a_i)^2$
- minimize $\sum_{uv \in E} g(p_{uv})$
- constraints: $x(w) x(z) \ge \delta$ for consecutive nodes on the same layer, w on the right of z (δ distance parameter)

Properties:

- quadratic program is time-expensive
- straight edges increase width
- width can be exponential
- optimization function can be adapted to optimize "verticality"

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

Possibility: Substitute polylines by Bézier curves

Possibility: Substitute polylines by Bézier curves

Summary

Summary

- flexible framework to draw directed graphs
- sequential optimization of various criteria
- drawback: decisions taken on the previous steps influence the next steps and can not be undone

e

- modeling gives NP-hard problems, which can still can be solved quite well with heuristics
- many functionalities implemented in yEd and GraphVis

Reading

Additional Reading

Graph Drawing handbook: Chapter 13

Paper "A framework and algorithms for circular drawings of graphs" J. Six, I. Tollis – fast computation of the number of crossings

Reading

Additional Reading

Graph Drawing handbook: Chapter 13

Paper "A framework and algorithms for circular drawings of graphs" J. Six, I. Tollis – fast computation of the number of crossings

Next

Methods for visualization of multilayer/clustered networks

