Algorithm for
Visualization of Directed Graphs

Course : Data Visualization
Lecturer : Tamara Mchedlidze

Utrecht University, Dept. of Information and Computing Sciences
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Lecture Overview

 How to draw a directed graph
 Examples

- Sugiyama framework






Layered Layout
Given:directed graph D = (V, A)
Find: drawing of D that emphasized the hierarchy




Layered Layout
Given:directed graph D = (V, A)
Find: drawing of D that emphasized the hierarchy

* many edges pointing to the same direction
* nodes lie on (few) horizontal lines



Layered Layout
Given:directed graph D = (V, A)
Find: drawing of D that emphasized the hierarchy

* edges as straight as possible and short
 few edge crossings
* nodes distributed evenly



Application: Java Profiler
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Application: Storylines
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Application: Storylines
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Application: Text-Variant graphs
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Application:

Mythological Creatures and Gods
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Suglyama Framework (Sugiyama, Tagawa, Toda 1981)

given



S U g |yam a Fram eWO rk (Sugiyama, Tagawa, Toda 1981)

given resolve cycles



S U g |ya m a Fra m eWO I'k (Sugiyama, Tagawa, Toda 1981)

resolve cycles layer
assigneme



S U g |ya m a Fra m eWO rk (Sugiyama, Tagawa, Toda 1981)

resolve cycles layer
assifjneme

crossing minimizatiol



S U g |ya m a Fra m eWO rk (Sugiyama, Tagawa, Toda 1981)

—
resolve cycles layer
assifjneme

crossing minimization node positioning
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layer

crossing minimization node positioning edge drawing



S U g Iyam a Fra m eWO rk (Sugiyama, Tagawa, Toda 1981)
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crossing minimization node positioning edge drawing
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layer

crossing minimization node positioning edge drawing



S U g |ya m a Fra m eWO rk (Sugiyama, Tagawa, Toda 1981)

layer

crossing minimization node positioning edge drawing



Removing Cycles

Idea: - find maximum acyclic subgraph
* inverse the directions of the other edges



Removing Cycles

Idea: - find maximum acyclic subgraph
* inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V, A)
Find: acyclic subgraph D’ = (V, A’) with maximum |A’|
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Removing Cycles

Idea: - find maximum acyclic subgraph
* inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V, A)
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minimum | Ay



Removing Cycles

Idea: - find maximum acyclic subgraph
* inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V, A)
Find: acyclic subgraph D’ = (V, A’) with maximum |A’|
MINIMUM FEEDBACK ARC SET (FAS)
Given: directed graph D = (V, A)
Find: A; C A, with Df = (V, A\ Af) acyclic with minimum | Ay

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)

Find: A; C A, with Df = (V, A\ Ar U rev(Ay)) acyclic with
minimum | Ay

‘s e Question: Is FS also a FAS? and the opposite?

&7



Removing Cycles

Idea: - find maximum acyclic subgraph
* inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V, A)
Find: acyclic subgraph D’ = (V, A’) with maximum |A’|
MiNIMUM FEEDBACK ARC SET (FAS)
Given: directed graph D = (V, A)
Find: A; C A, with Df = (V, A\ Af) acyclic with minimum | Ay

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)

Find: A; C A, with Df = (V, A\ Ar U rev(Ay)) acyclic with
minimum | Ay

All three problems are NP-hard!



Trivial Heuristic
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MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)

Find: A; C A, with Df = (V, A\ Af U rev(Ay)) acyclic with
minimum | Ay
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Trivial Heuristic

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)

Find: A; C A, with Df = (V, A\ Af U rev(Ay)) acyclic with
minimum | Ay

4

e

1 5 place vertices in order




Trivial Heuristic

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)

Find: A; C A, with Df = (V, A\ Af U rev(Ay)) acyclic with
minimum | Ay

------------
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1 5 place vertices in order



Trivial Heuristic

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)

Find: A; C A, with Df = (V, A\ Af U rev(Ay)) acyclic with
minimum | Ay

------------------------

- ~ - ~
‘‘‘‘‘‘‘‘
NNNN

place vertices in order reverse all the
backward edges



Trivial Heuristic

MINIMUM FEEDBACK SET (FS)

Given: directed graph D = (V, A)

Find: A; C A, with Df = (V, A\ Af U rev(Ay)) acyclic with
minimum | Ay

------------------------

- ~ - ~
‘‘‘‘‘‘‘‘
NNNN

place vertices in order reverse all the
backward edges

Benefit: Very simple to implement
Drawback: No guarantee on the number of reversed edges



Heuristic with guarantees (ases, tin, smyn 19s3)

source — No incomming edge
: sink — no outgoing edge

no cycles if all vertices are only no cycles if graph can be
sources and sinks eliminated by always removing
either sources or sinks



Heuristic with guarantees (ases, tin, smyn 19s3)
1 A = ();

2 while V +# () do

3 while in V exists a sink v do
4 A +— A UNT(v)

5 L remove v and N (v)
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Heuristic with guarantees (ases, tin, smyn 19s3)

1 A = ();
2 while V +# () do

3
4
5

6

while in V exists a sink v do
A +— A UN(v)
remove v and N (v)

Remove all isolated node from V




Heuristic with guarantees (ases, tin, smyn 19s3)

1 A = ();
2 while V +# () do

3
4
5

6

while in V exists a sink v do
A +— A UN(v)
remove v and N (v)

Remove all isolated node from V

while in V exists a source v do
A« AUN—(v)
remove v and N~ (v)
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5
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Heuristic with guarantees (ases, tin, smyn 19s3)

A = 0;

while V # () do

while in V exists a sink v do
A +— A UN(v)

L remove v and N (v)

Remove all isolated node from V

while in V exists a source v do
A« AUN—(v)
remove v and N~ (v)

if V #( then

let v € V such that [N~ (v)| — [N (v)| maxima
A — AUN7(v)

remove v and N(v)
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Guarantees and related work

Theorem: Let D = (V, A) be a connected, directed graph
without 2-cycles. Heuristic of Eades at al. computes a
set of edges A’ with |A'| > |A|/2 +|V/|/6.

The running time is O(|A|).
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Guarantees and related work

Theorem: Let D = (V, A) be a connected, directed graph
without 2-cycles. Heuristic of Eades at al. computes a
set of edges A’ with |A'| > |A|/2 +|V/|/6.

The running time is O(|A|).

Many other heuristics:

* based on vertex ordering — use DFS (rowe etal. 1987)

* based on cycle braking — start with an empty edge set
and only add edges as long as they do not create cycles

* Or remove edges that participate in many cycles, again
with a use of DFS (cansneretal. 1003y — performs well and is
implemented in Graphvis

« optimal solution integer linear programming, using
branch-and-cut technique (Grétschel et al. 1985)
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layer

crossing minimization node positioning edge drawing
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Layer Assignement
Given.: directed acyclic graph (DAG) D = (V, A)
Find: Partition the vertex set V into disjoint subsets (layers)
Ly,....,Lpst. (U, v)eEA uelL;,ve L/:>I<j

Def: y-Coordinate y(u) =i < u € L;



Layer Assignement
Given.: directed acyclic graph (DAG) D = (V, A)
Find: Partition the vertex set V into disjoint subsets (layers)
Ly,....,Lpst. (U, v)eEA uelL;,ve L/:>I<j

Def: y-Coordinate y(u) =i < u € L;

D Think for a minute and then share

o 0
o ‘@ -@

&7 what could we optimize when doing the layer assignment?



Layer Assignement
Given.: directed acyclic graph (DAG) D = (V, A)

Find: Partition the vertex set V into disjoint subsets (layers)
Ly,....,Lpst. (U, v)eEA uelL;,ve L/:>I<j

Def: y-Coordinate y(u) =i < u € L;

Possible optimization criteria

* minimize the number of layers h (= height of the layouts)

* minimize the total length of edges (~ number of dummy
nodes)

* minimize width, e.g. max{|L;| | 1 < i< h}
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length of the longest simple path from a source to v
» all incomming neighbours lie below v
* the resulting height h is minimized
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G=G\S

S :=sources of G
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L; =S 2 3
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Height Optimization

Idea: assign each node v to the layer L;, where i is the
length of the longest simple path from a source to v
» all incomming neighbours lie below v
* the resulting height h is minimized

Algorithm also known as topological numbering

Input: A directed graph G
Output: Layering of G, L4, ..., L
S = sources of G
I =1;
while S # () do

L,' =8

I+ +

G=G\S

S := sources of G




Height Optimization

Idea: assign each node v to the layer L;, where i is the
length of the longest simple path from a source to v
» all incomming neighbours lie below v
* the resulting height h is minimized

Algorithm

Input: A directed graph G
Output: Layering of G, L4, ..., L
S = sources of G

I =1;

while S # () do

L,' =8

I+ +

G=G\S >
S :=sources of G




Height Optimization

Idea: assign each node v to the layer L;, where i is the
length of the longest simple path from a source to v
» all incomming neighbours lie below v
* the resulting height h is minimized

Algorithm

Input: A directed graph G
Output: Layering of G, L4, ..., L
S := sources of G

=1

while S #( do
L,' =8

I+ +
G=G\S -

S -= sources of G edges that span more than two layers
B get subdivided by dummy vertices




Layer Assignement

Other optimization criteria:

Total edge length: Z wealy(v) — y(u)) — with integer linear
program (pOlyn0m|a| t|me) [Gansner et al 93]



Layer Assignement

Other optimization criteria:

Total edge length: Z wealy(v) — y(u)) — with integer linear
program (pOlyn0m|a| t|me) [Gansner et al 93]

Width of the layout:

A& VS




Layer Assignement

Other optimization criteria:

Total edge length: Z wealy(v) — y(u)) — with integer linear
program (pOlyn0m|a| t|me) [Gansner et al 93]

Width of the layout:

M >
1 //'

M /\‘
> 1~

M- —>

M,

Reduction to scheduling problem — NP-hard but there is a
2 — L-approximation algorithm
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Problem Statement

Given:DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number
of crossing is minimized



Problem Statement

Given:DAG D = (V, A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number
of crossing is minimized

. /

* Number of crossings only depends on the order and not
on exact coordinates

* Problem is NP-hard even for two layers
(BIPARTITE CROSSING NUMBER [Garey, Johnson '83])

* No approach over several layers simultaneously

« Usually iterative optimization based on approaches for
two adjacent layers (one-sided crossing minimization)




One-sided Crossing Minimization (OSCM)

Given:2-Layered-Graph G = (L4, Lo, E) and
ordering of the nodes O; of L;

Find: Node ordering O of Ly, such that the number of
crossing among E is minumum
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Os>(v) < Oo(u) and not on the positions of other vertices
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Given:2-Layered-Graph G = (L4, Lo, E) and
ordering of the nodes O; of L;

Find: Node ordering O of Ly, such that the number of
crossing among E is minumum

Observation:
 for u, v € L, the number of crossing among incident to
them edges depends on whether Os(u) < Os(V) or
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Further Properties

Def: Crossing number of G with orders x; and x» for Ly and
L- is denoted by cr(G, Oq, O2);
for fixed Oy then opt(G, O1) = ming, cr(G, Oy, O»)

» It holds that cr(G, O1, O2) = >0, <0,(v) Cuv -

gives a way to compute cr(G, Oy, O,) in O(m?),
where m-number of edges
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« cr(@G, Oy, Os) can be computed in O(m + C) time, where
C-number of crossings [Six and Tollis 2006] — reduce to

counting crossings in a circular drawing



Further Properties

Def: Crossing number of G with orders x; and x» for Ly and

L» is denoted by cr(G, O, O»);
for fixed Oy then opt(G, O1) = ming, cr(G, Oy, O»)

» It holds that cr(G, O1, O2) = >0, <0,(v) Cuv -
gives a way to compute cr(G, Oy, O2) in O(m?),
where m-number of edges

« cr(@G, Oy, Os) can be computed in O(m + C) time, where
C-number of crossings [Six and Tollis 2006] — reduce to

counting crossings in a circular drawing
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lterative Crossing Minimization

Let G = (V, E) be a DAG with layers L4, ..., L.

(1) compute a random ordering O; for layer L,

(2) fori=1,..., h— 1 consider layers L; and L;,1 and
minimize cr(G, O;, O;;1) with fixed O; (— OSCM)

(3) fori=h—1,...,1 consider layers L;,1 and L; and
minimize cr(G, O;, O;,1) with fixed O;,¢1 (— OSCM)

(4) repeat (2) and (3) until no further improvement happens

(5) repeat steps (1)—(4) with another Oy

(6) return the best found solution



lterative Crossing Minimization

Let G = (V, E) be a DAG with layers L4, ..., L.

(1) compute a random ordering O; for layer L,

(2) fori=1,..., h— 1 consider layers L; and L;,1 and
minimize cr(G, O;, O;;1) with fixed O; (— OSCM)

(3) fori=h—1,...,1 consider layers L;,1 and L; and
minimize cr(G, O;, O;,1) with fixed O;,¢1 (— OSCM)

(4) repeat (2) and (3) until no further improvement happens

(5) repeat steps (1)—(4) with another Oy

(6) return the best found solution

Theorem 1: The One-Sided Crossing Minimization
(OSCM) problem is NP-hard [Eades, Wormald
1994].



Algorithms for OSCM

Heuristics:

« Barycenter [Sugiyama et al, 81]
* Median [Eades and Wormald, 94]

Exact:
 [LP Model [Juenger and Mutzel, 97]

...and many more...



BaFYCenter HeUFIStIC (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their
neighbours
e set

oo(t) = —— 3 or(v)

] deg(u) veN(u)

* in case of equality introduce tiny gap
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usually very good results

finds optimum if opt(G, 01) =0

there are graphs on which it performs Q(1/n) times worse than
optimal
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e set
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* in case of equality introduce tiny gap
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quick (exactly?)

usually very good results
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there are graphs on which it performs Q(1/n) times worse than
optimal



Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neightbours

 for a node v € L, with neighbours vy, ..., vk set
O2(v) = med(v) = 01(Vk/21)
and 0x(v) = 0 if N(v) =0

* if 0o(U) = 02(v) and u, v have different degree parity,
place the node with odd degree to the left

 If 0o(u) = 0o(v) and u, v have the same degree parity,
place an arbitrary of them to the left

* Runs in time O(|E|)



Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neightbours

 for a node v € L, with neighbours vy, ..., vk set
O2(v) = med(v) = 01(Vk/21)
and 0x(v) = 0 if N(v) =0

* if 0o(U) = 02(v) and u, v have different degree parity,
place the node with odd degree to the left

 If 0o(u) = 0o(v) and u, v have the same degree parity,
place an arbitrary of them to the left

* Runs in time O(|E|)

Properties:
« trivial implementation
* fast
* mostly good performance
» finds optimum when opt(G, 01) =0
» Factor-3 Approximation: med(G, o1) < 3opt(G, 01)
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CrossingX

There was even
an iPad game
CrossingX for the
OSCM Problem!

Winner of Graph
Drawing Game Contest
2012
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Coordinate Assignement Goals

D Think for a minute and then share

B-M-A what could we optimize when doing the coordinate
assignment?
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Q Think for a minute and then share

Q—Lu P What could we optimize when doing the coordinate
assignment?



Coordinate Assignement Goals

« Edges as straight as possible
« Edges as vertical as possible



Steightening Edges

Goal: minimize deviation from a straight-line for the edges
with dummy-nodes

Idea: use quadratic Program

 let pyv = (U, dy, ..., dk, v) path with kK dummy nodes betwen u and v

- let a; = x(u) + 5 (x(v) — x(u)) the x-coordinate of d; when (u, v) is
straight

* 9(Ppw) = 2511 (x(di) — aj)°

* minimize » . . 9(Puv)

« constraints: x(w) — x(z) > ¢ for consecutive nodes on the same
layer, w on the right of z (0 distance parameter)



Steightening Edges

Goal: minimize deviation from a straight-line for the edges
with dummy-nodes

Idea: use quadratic Program

* let pyv = (U, 01, ..., dk, v) path with kK dummy nodes betwen u and v
let a; = x(u) + 7 (x(v) — x(u)) the x-coordinate of d; when (u, v) is
straight

g(Puw) = 2511 (x(d) — a))?

minimize .- 9(Puv)
constraints: x(w) — x(z) > ¢ for consecutive nodes on the same

layer, w on the right of z (0 distance parameter)

Properties:

« quadratic program is time-expensive

« straight edges increase width

 width can be exponential

« optimization function can be adapted to optimize "verticality”
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crossing minimization node positioning



Edge Drawing
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Edge Drawing

Possibility: Substitute polylines by Bézier curves



Edge Drawing

A

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Possibility: Substitute polylines by Bézier curves



Summary

layer

crossing minimization node positioning edge drawing



Summary

e . ST . S

flexible framework to draw directed graphs j
sequential optimization of various criteria
drawback: decisions taken on the previous i~
steps influence the next steps and can not be :
undone 3
modeling gives NP-hard problems, which can :
still can be solved quite well with heuristics
many functionalities implemented in yEd and
GraphVis

crossing minimization node positioning edge drawing



Reading
Additional Reading

Graph Drawing handbook: Chapter 13

-V -

Paper "A framework and algorithms for

circular drawings of graphs” J. Six, |. Tollis

fast computation of the number of
crossings

— A

Star Wars (Original Trilogy)
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Reading

Additional Reading
Graph Drawing handbook: Chapter 13

Paper A framework and algorithms for
circular drawings of graphs” J. Six, |. Tollis

TN~ —fast computation of the number of

crossings
Next
Methods for visualization of multilayer/clustered networks
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