
Algorithm for
Visualization of Directed Graphs

Course : Data Visualization
Lecturer : Tamara Mchedlidze
Utrecht University, Dept. of Information and Computing Sciences



Lecture Overview

• How to draw a directed graph

• Examples

• Sugiyama framework



Example
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Layered Layout
Given:directed graph D = (V , A)

Find: drawing of D that emphasized the hierarchy

• edges as straight as possible and short
• few edge crossings
• nodes distributed evenly



Application: Java Profiler

yEd Gallery: Java profiler
JProfiler using yFiles



Application: Storylines

Source: ”Design Considerations for
Optimizing Storyline Visualizations”
Tanahashi et al.



Application: Storylines

Source: ABC news, Australia



Application: Text-Variant graphs

Source: Improving the
Layout for Text Variant
Graphs Jänicke et al.



Application: Mythological Creatures and Gods

Source:
Visualization that
won the Graph
Drawing contest
2016. Klawitter&
Mchedlidze
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Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

• paper cited more than 1900
times

• implemented in
– yEd
– graphviz/dot
– tulip
– . . .
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Question: Is FS also a FAS? and the opposite?



Removing Cycles
Idea: • find maximum acyclic subgraph

• inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V , A)
Find: acyclic subgraph D′ = (V , A′) with maximum |A′|
MINIMUM FEEDBACK ARC SET (FAS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ) acyclic with minimum |Af |
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af )) acyclic with

minimum |Af |

All three problems are NP-hard!
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Trivial Heuristic
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af )) acyclic with

minimum |Af |
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5

reverse all the
backward edges

place vertices in order

Benefit: Very simple to implement
Drawback: No guarantee on the number of reversed edges



Heuristic with guarantees (Eades, Lin, Smyth 1993)

N→(v ) := {(v , u) : (v , u) ∈ A}
N←(v ) := {(u, v ) : (u, v ) ∈ A}

N(v ) := N→(v ) ∪ N←(v )

source – no incomming edge
sink – no outgoing edge

no cycles if all vertices are only
sources and sinks

no cycles if graph can be
eliminated by always removing
either sources or sinks



Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v )
5 remove v and N←(v )

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v )
9 remove v and N→(v )

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v )| − |N←(v )| maximal;
12 A′ ← A′ ∪ N→(v )
13 remove v and N(v )
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Theorem: Let D = (V , A) be a connected, directed graph

without 2-cycles. Heuristic of Eades at al. computes a
set of edges A′ with |A′| ≥ |A|/2 + |V |/6.
The running time is O(|A|).

Many other heuristics:

• optimal solution integer linear programming, using
branch-and-cut technique (Grötschel et al. 1985)

• based on vertex ordering – use DFS (Rowe et al. 1987)
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Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

dummy
node



Layer Assignement
Given.: directed acyclic graph (DAG) D = (V , A)

Find: Partition the vertex set V into disjoint subsets (layers)
L1, ... , Lh s.t. (u, v ) ∈ A, u ∈ Li , v ∈ Lj ⇒ i < j

Def: y -Coordinate y (u) = i ⇔ u ∈ Li



Layer Assignement
Given.: directed acyclic graph (DAG) D = (V , A)

Find: Partition the vertex set V into disjoint subsets (layers)
L1, ... , Lh s.t. (u, v ) ∈ A, u ∈ Li , v ∈ Lj ⇒ i < j

Def: y -Coordinate y (u) = i ⇔ u ∈ Li

Think for a minute and then share

What could we optimize when doing the layer assignment?
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Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G edges that span more than two layers

get subdivided by dummy vertices
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Layer Assignement
Other optimization criteria:

Total edge length:
∑

(u,v )∈A(y (v )− y (u)) – with integer linear
program (polynomial time) [Gansner et al 93]

Width of the layout:

VS

M1

M2

M3

M4

Reduction to scheduling problem – NP-hard but there is a
2− 1

B -approximation algorithm
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Problem Statement
Given:DAG D = (V , A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number
of crossing is minimized

• Number of crossings only depends on the order and not
on exact coordinates

• Problem is NP-hard even for two layers
(BIPARTITE CROSSING NUMBER [Garey, Johnson ’83])

• No approach over several layers simultaneously
• Usually iterative optimization based on approaches for

two adjacent layers (one-sided crossing minimization)
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Find: Node ordering O2 of L2, such that the number of
crossing among E is minumum
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• for u, v ∈ L2 the number of crossing among incident to
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u v cuv = 5
cvu = 7



One-sided Crossing Minimization (OSCM)
Given:2-Layered-Graph G = (L1, L2, E) and

ordering of the nodes O1 of L1

Find: Node ordering O2 of L2, such that the number of
crossing among E is minumum

Observation:
• for u, v ∈ L2 the number of crossing among incident to
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for O2(u) < O2(v )

v u cuv = 5
cvu = 7



Further Properties
Def: Crossing number of G with orders x1 and x2 for L1 and

L2 is denoted by cr(G, O1, O2);
for fixed O1 then opt(G, O1) = minO2 cr(G, O1, O2)

• It holds that cr(G, O1, O2) =
∑

O2(u)<O2(v ) cuv -
gives a way to compute cr(G, O1, O2) in O(m2),
where m-number of edges
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Further Properties
Def: Crossing number of G with orders x1 and x2 for L1 and

L2 is denoted by cr(G, O1, O2);
for fixed O1 then opt(G, O1) = minO2 cr(G, O1, O2)

• It holds that cr(G, O1, O2) =
∑

O2(u)<O2(v ) cuv -
gives a way to compute cr(G, O1, O2) in O(m2),
where m-number of edges

• cr(G, O1, O2) can be computed in O(m + C) time, where
C-number of crossings [Six and Tollis 2006]→ reduce to
counting crossings in a circular drawing

v u
v u



Iterative Crossing Minimization
Let G = (V , E) be a DAG with layers L1, ... , Lh.

(1) compute a random ordering O1 for layer L1
(2) for i = 1, ... , h − 1 consider layers Li and Li+1 and

minimize cr(G, Oi , Oi+1) with fixed Oi (→ OSCM)
(3) for i = h − 1, ... , 1 consider layers Li+1 and Li and

minimize cr(G, Oi , Oi+1) with fixed Oi+1 (→ OSCM)
(4) repeat (2) and (3) until no further improvement happens
(5) repeat steps (1)–(4) with another O1
(6) return the best found solution



Iterative Crossing Minimization
Let G = (V , E) be a DAG with layers L1, ... , Lh.

(1) compute a random ordering O1 for layer L1
(2) for i = 1, ... , h − 1 consider layers Li and Li+1 and

minimize cr(G, Oi , Oi+1) with fixed Oi (→ OSCM)
(3) for i = h − 1, ... , 1 consider layers Li+1 and Li and

minimize cr(G, Oi , Oi+1) with fixed Oi+1 (→ OSCM)
(4) repeat (2) and (3) until no further improvement happens
(5) repeat steps (1)–(4) with another O1
(6) return the best found solution

Theorem 1: The One-Sided Crossing Minimization
(OSCM) problem is NP-hard [Eades, Wormald
1994].



Algorithms for OSCM
Heuristics:

• Barycenter [Sugiyama et al, 81]
• Median [Eades and Wormald, 94]

Exact:
• ILP Model [Juenger and Mutzel, 97]

...and many more...



Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their
neighbours

• set
o2(u) =

1
deg(u)

∑
v∈N(u)

o1(v )

• in case of equality introduce tiny gap
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Properties:
• trivial implementation
• quick (exactly?)
• usually very good results
• finds optimum if opt(G, o1) = 0
• there are graphs on which it performs Ω(

√
n) times worse than

optimal
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o2(u) =

1
deg(u)

∑
v∈N(u)

o1(v )

• in case of equality introduce tiny gap

Properties:
• trivial implementation
• quick (exactly?)
• usually very good results
• finds optimum if opt(G, o1) = 0
• there are graphs on which it performs Ω(

√
n) times worse than

optimal



Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neightbours
• for a node v ∈ L2 with neighbours v1, ... , vk set

o2(v ) = med(v ) = o1(vdk/2e)
and o2(v ) = 0 if N(v ) = ∅

• if o2(u) = o2(v ) and u, v have different degree parity,
place the node with odd degree to the left

• if o2(u) = o2(v ) and u, v have the same degree parity,
place an arbitrary of them to the left

• Runs in time O(|E |)



Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neightbours
• for a node v ∈ L2 with neighbours v1, ... , vk set

o2(v ) = med(v ) = o1(vdk/2e)
and o2(v ) = 0 if N(v ) = ∅

• if o2(u) = o2(v ) and u, v have different degree parity,
place the node with odd degree to the left

• if o2(u) = o2(v ) and u, v have the same degree parity,
place an arbitrary of them to the left

• Runs in time O(|E |)
Properties:

• trivial implementation
• fast
• mostly good performance
• finds optimum when opt(G, o1) = 0
• Factor-3 Approximation: med(G, o1) ≤ 3 opt(G, o1)



Experimental Evaluation (Jünger, Mutzel 1997)

Results for 100 instances on 20 +
20 nodes with increasing density

Time for 100 instances on 20 +
20 nodes with increasing density



Experimental Evaluation (Jünger, Mutzel 1997)

Results for 10 instances of
sparse graphs with increasing
size

Time for 10 instances of sparse
graphs with increasing size
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CrossingX

There was even
an iPad game
CrossingX for the
OSCM Problem!

Winner of Graph
Drawing Game Contest
2012



Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing
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What could we optimize when doing the coordinate
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What could we optimize when doing the coordinate
assignment?



Coordinate Assignement Goals

• Edges as straight as possible
• Edges as vertical as possible



Steightening Edges
Goal: minimize deviation from a straight-line for the edges

with dummy-nodes
Idea: use quadratic Program

• let puv = (u, d1, ... , dk , v ) path with k dummy nodes betwen u and v
• let ai = x(u) + i

k+1 (x(v )− x(u)) the x-coordinate of di when (u, v ) is
straight

• g(puv ) =
∑k

i=1(x(di )− ai )2

• minimize
∑

uv∈E g(puv )
• constraints: x(w)− x(z) ≥ δ for consecutive nodes on the same

layer, w on the right of z (δ distance parameter)



Steightening Edges
Goal: minimize deviation from a straight-line for the edges

with dummy-nodes
Idea: use quadratic Program

• let puv = (u, d1, ... , dk , v ) path with k dummy nodes betwen u and v
• let ai = x(u) + i

k+1 (x(v )− x(u)) the x-coordinate of di when (u, v ) is
straight

• g(puv ) =
∑k

i=1(x(di )− ai )2

• minimize
∑

uv∈E g(puv )
• constraints: x(w)− x(z) ≥ δ for consecutive nodes on the same

layer, w on the right of z (δ distance parameter)

Properties:
• quadratic program is time-expensive
• straight edges increase width
• width can be exponential
• optimization function can be adapted to optimize ”verticality”
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Edge Drawing

Possibility: Substitute polylines by Bézier curves



Edge Drawing

Possibility: Substitute polylines by Bézier curves

Check geometric libraries!



Summary

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing



Summary

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

• flexible framework to draw directed graphs
• sequential optimization of various criteria
• drawback: decisions taken on the previous

steps influence the next steps and can not be
undone

• modeling gives NP-hard problems, which can
still can be solved quite well with heuristics

• many functionalities implemented in yEd and
GraphVis



Reading

Graph Drawing handbook: Chapter 13

Paper ”A framework and algorithms for
circular drawings of graphs” J. Six, I. Tollis
– fast computation of the number of
crossings

Additional Reading



Reading

Additional Reading
Graph Drawing handbook: Chapter 13

Paper ”A framework and algorithms for
circular drawings of graphs” J. Six, I. Tollis
– fast computation of the number of
crossings

Methods for visualization of multilayer/clustered networks
Next

Additional Reading
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