
Algorithm for
Visualization of Directed Graphs

Course : Data Visualization
Lecturer : Tamara Mchedlidze
Utrecht University, Dept. of Information and Computing Sciences

Lecture Overview

• How to draw a directed graph

• Examples

• Sugiyama framework

Example

Layered Layout
Given:directed graph D = (V , A)

Find: drawing of D that emphasized the hierarchy

Layered Layout
Given:directed graph D = (V , A)

Find: drawing of D that emphasized the hierarchy

• many edges pointing to the same direction
• nodes lie on (few) horizontal lines

Layered Layout
Given:directed graph D = (V , A)

Find: drawing of D that emphasized the hierarchy

• edges as straight as possible and short
• few edge crossings
• nodes distributed evenly

Application: Java Profiler

yEd Gallery: Java profiler
JProfiler using yFiles

Application: Storylines

Source: ”Design Considerations for
Optimizing Storyline Visualizations”
Tanahashi et al.

Application: Storylines

Source: ABC news, Australia

Application: Text-Variant graphs

Source: Improving the
Layout for Text Variant
Graphs Jänicke et al.

Application: Mythological Creatures and Gods

Source:
Visualization that
won the Graph
Drawing contest
2016. Klawitter&
Mchedlidze

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

• paper cited more than 1900
times

• implemented in
– yEd
– graphviz/dot
– tulip
– . . .

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Removing Cycles
Idea: • find maximum acyclic subgraph

• inverse the directions of the other edges

Removing Cycles
Idea: • find maximum acyclic subgraph

• inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V , A)
Find: acyclic subgraph D′ = (V , A′) with maximum |A′|

Removing Cycles
Idea: • find maximum acyclic subgraph

• inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V , A)
Find: acyclic subgraph D′ = (V , A′) with maximum |A′|
MINIMUM FEEDBACK ARC SET (FAS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af) acyclic with minimum |Af |

Removing Cycles
Idea: • find maximum acyclic subgraph

• inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V , A)
Find: acyclic subgraph D′ = (V , A′) with maximum |A′|
MINIMUM FEEDBACK ARC SET (FAS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af) acyclic with minimum |Af |
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

Removing Cycles
Idea: • find maximum acyclic subgraph

• inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V , A)
Find: acyclic subgraph D′ = (V , A′) with maximum |A′|
MINIMUM FEEDBACK ARC SET (FAS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af) acyclic with minimum |Af |
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

Question: Is FS also a FAS? and the opposite?

Removing Cycles
Idea: • find maximum acyclic subgraph

• inverse the directions of the other edges
MAXIMUM ACYCLIC SUBGRAPH
Given: directed graph D = (V , A)
Find: acyclic subgraph D′ = (V , A′) with maximum |A′|
MINIMUM FEEDBACK ARC SET (FAS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af) acyclic with minimum |Af |
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

All three problems are NP-hard!

Trivial Heuristic
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

Trivial Heuristic
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

1 2

3

4

5

Trivial Heuristic
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

1 2

3

4

5

place vertices in order

Trivial Heuristic
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

1 2

3

4

5

place vertices in order

Trivial Heuristic
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

1 2

3

4

5

reverse all the
backward edges

place vertices in order

Trivial Heuristic
MINIMUM FEEDBACK SET (FS)
Given: directed graph D = (V , A)
Find: Af ⊂ A, with Df = (V , A \ Af ∪ rev(Af)) acyclic with

minimum |Af |

1 2

3

4

5

reverse all the
backward edges

place vertices in order

Benefit: Very simple to implement
Drawback: No guarantee on the number of reversed edges

Heuristic with guarantees (Eades, Lin, Smyth 1993)

N→(v) := {(v , u) : (v , u) ∈ A}
N←(v) := {(u, v) : (u, v) ∈ A}

N(v) := N→(v) ∪ N←(v)

source – no incomming edge
sink – no outgoing edge

no cycles if all vertices are only
sources and sinks

no cycles if graph can be
eliminated by always removing
either sources or sinks

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Heuristic with guarantees (Eades, Lin, Smyth 1993)

1 A′ := ∅;

2 while V 6= ∅ do
3 while in V exists a sink v do
4 A′ ← A′ ∪ N←(v)
5 remove v and N←(v)

6 Remove all isolated node from V

7 while in V exists a source v do
8 A′ ← A′ ∪ N→(v)
9 remove v and N→(v)

10 if V 6= ∅ then
11 let v ∈ V such that |N→(v)| − |N←(v)| maximal;
12 A′ ← A′ ∪ N→(v)
13 remove v and N(v)

Guarantees and related work
Theorem: Let D = (V , A) be a connected, directed graph

without 2-cycles. Heuristic of Eades at al. computes a
set of edges A′ with |A′| ≥ |A|/2 + |V |/6.
The running time is O(|A|).

Guarantees and related work
Theorem: Let D = (V , A) be a connected, directed graph

without 2-cycles. Heuristic of Eades at al. computes a
set of edges A′ with |A′| ≥ |A|/2 + |V |/6.
The running time is O(|A|).

Many other heuristics:

• based on vertex ordering – use DFS (Rowe et al. 1987)

Guarantees and related work
Theorem: Let D = (V , A) be a connected, directed graph

without 2-cycles. Heuristic of Eades at al. computes a
set of edges A′ with |A′| ≥ |A|/2 + |V |/6.
The running time is O(|A|).

Many other heuristics:

• based on vertex ordering – use DFS (Rowe et al. 1987)

• based on cycle braking – start with an empty edge set
and only add edges as long as they do not create cycles

Guarantees and related work
Theorem: Let D = (V , A) be a connected, directed graph

without 2-cycles. Heuristic of Eades at al. computes a
set of edges A′ with |A′| ≥ |A|/2 + |V |/6.
The running time is O(|A|).

Many other heuristics:

• based on vertex ordering – use DFS (Rowe et al. 1987)

• based on cycle braking – start with an empty edge set
and only add edges as long as they do not create cycles

• or remove edges that participate in many cycles, again
with a use of DFS (Gansner et al. 1993) – performs well and is
implemented in Graphvis

Guarantees and related work
Theorem: Let D = (V , A) be a connected, directed graph

without 2-cycles. Heuristic of Eades at al. computes a
set of edges A′ with |A′| ≥ |A|/2 + |V |/6.
The running time is O(|A|).

Many other heuristics:

• optimal solution integer linear programming, using
branch-and-cut technique (Grötschel et al. 1985)

• based on vertex ordering – use DFS (Rowe et al. 1987)

• based on cycle braking – start with an empty edge set
and only add edges as long as they do not create cycles

• or remove edges that participate in many cycles, again
with a use of DFS (Gansner et al. 1993) – performs well and is
implemented in Graphvis

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

dummy
node

Layer Assignement
Given.: directed acyclic graph (DAG) D = (V , A)

Find: Partition the vertex set V into disjoint subsets (layers)
L1, ... , Lh s.t. (u, v) ∈ A, u ∈ Li , v ∈ Lj ⇒ i < j

Def: y -Coordinate y (u) = i ⇔ u ∈ Li

Layer Assignement
Given.: directed acyclic graph (DAG) D = (V , A)

Find: Partition the vertex set V into disjoint subsets (layers)
L1, ... , Lh s.t. (u, v) ∈ A, u ∈ Li , v ∈ Lj ⇒ i < j

Def: y -Coordinate y (u) = i ⇔ u ∈ Li

Think for a minute and then share

What could we optimize when doing the layer assignment?

Layer Assignement
Given.: directed acyclic graph (DAG) D = (V , A)

Find: Partition the vertex set V into disjoint subsets (layers)
L1, ... , Lh s.t. (u, v) ∈ A, u ∈ Li , v ∈ Lj ⇒ i < j

Possible optimization criteria
• minimize the number of layers h (= height of the layouts)
• minimize the total length of edges (≈ number of dummy

nodes)
• minimize width, e.g. max{|Li | | 1 ≤ i ≤ h}

Def: y -Coordinate y (u) = i ⇔ u ∈ Li

Layer Assignement
Given.: directed acyclic graph (DAG) D = (V , A)

Find: Partition the vertex set V into disjoint subsets (layers)
L1, ... , Lh s.t. (u, v) ∈ A, u ∈ Li , v ∈ Lj ⇒ i < j

Possible optimization criteria
• minimize the number of layers h (= height of the layouts)
• minimize the total length of edges (≈ number of dummy

nodes)
• minimize width, e.g. max{|Li | | 1 ≤ i ≤ h}

Def: y -Coordinate y (u) = i ⇔ u ∈ Li

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G 1

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G

2

2
1

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G

3 32

2
1

3

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G 1

2

2

3

4 4

5

3

1

2

2
1

3

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G 1

2

2

3

4 4

5

3

1

2

2
1

3

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G 1

2

2

3

4 4

5

3

1

2

2
1

3

also known as topological numbering

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G

Height Optimization
Idea: assign each node v to the layer Li , where i is the

length of the longest simple path from a source to v
• all incomming neighbours lie below v
• the resulting height h is minimized

Algorithm
Input: A directed graph G
Output: Layering of G, L1, ... , Lh
S := sources of G
i = 1;

while S 6= ∅ do
Li := S
i + +
G := G \ S
S := sources of G edges that span more than two layers

get subdivided by dummy vertices

Layer Assignement
Other optimization criteria:

Total edge length:
∑

(u,v)∈A(y (v)− y (u)) – with integer linear
program (polynomial time) [Gansner et al 93]

Layer Assignement
Other optimization criteria:

Total edge length:
∑

(u,v)∈A(y (v)− y (u)) – with integer linear
program (polynomial time) [Gansner et al 93]

Width of the layout:

VS

Layer Assignement
Other optimization criteria:

Total edge length:
∑

(u,v)∈A(y (v)− y (u)) – with integer linear
program (polynomial time) [Gansner et al 93]

Width of the layout:

VS

M1

M2

M3

M4

Reduction to scheduling problem – NP-hard but there is a
2− 1

B -approximation algorithm

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Problem Statement
Given:DAG D = (V , A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number
of crossing is minimized

Problem Statement
Given:DAG D = (V , A), nodes are partitioned in disjoint layers

Find: Order of the nodes on each layer, so that the number
of crossing is minimized

• Number of crossings only depends on the order and not
on exact coordinates

• Problem is NP-hard even for two layers
(BIPARTITE CROSSING NUMBER [Garey, Johnson ’83])

• No approach over several layers simultaneously
• Usually iterative optimization based on approaches for

two adjacent layers (one-sided crossing minimization)

One-sided Crossing Minimization (OSCM)
Given:2-Layered-Graph G = (L1, L2, E) and

ordering of the nodes O1 of L1

Find: Node ordering O2 of L2, such that the number of
crossing among E is minumum

One-sided Crossing Minimization (OSCM)
Given:2-Layered-Graph G = (L1, L2, E) and

ordering of the nodes O1 of L1

Find: Node ordering O2 of L2, such that the number of
crossing among E is minumum

Observation:
• for u, v ∈ L2 the number of crossing among incident to

them edges depends on whether O2(u) < O2(v) or
O2(v) < O2(u) and not on the positions of other vertices

One-sided Crossing Minimization (OSCM)
Given:2-Layered-Graph G = (L1, L2, E) and

ordering of the nodes O1 of L1

Find: Node ordering O2 of L2, such that the number of
crossing among E is minumum

Observation:
• for u, v ∈ L2 the number of crossing among incident to

them edges depends on whether O2(u) < O2(v) or
O2(v) < O2(u) and not on the positions of other vertices

Def: cuv := |{(uw , vz) : w ∈ N(u), z ∈ N(v), O1(z) < O1(w)}|
for O2(u) < O2(v)

u v cuv = 5
cvu = 7

One-sided Crossing Minimization (OSCM)
Given:2-Layered-Graph G = (L1, L2, E) and

ordering of the nodes O1 of L1

Find: Node ordering O2 of L2, such that the number of
crossing among E is minumum

Observation:
• for u, v ∈ L2 the number of crossing among incident to

them edges depends on whether O2(u) < O2(v) or
O2(v) < O2(u) and not on the positions of other vertices

Def: cuv := |{(uw , vz) : w ∈ N(u), z ∈ N(v), O1(z) < O1(w)}|
for O2(u) < O2(v)

v u cuv = 5
cvu = 7

Further Properties
Def: Crossing number of G with orders x1 and x2 for L1 and

L2 is denoted by cr(G, O1, O2);
for fixed O1 then opt(G, O1) = minO2 cr(G, O1, O2)

• It holds that cr(G, O1, O2) =
∑

O2(u)<O2(v) cuv -
gives a way to compute cr(G, O1, O2) in O(m2),
where m-number of edges

Further Properties
Def: Crossing number of G with orders x1 and x2 for L1 and

L2 is denoted by cr(G, O1, O2);
for fixed O1 then opt(G, O1) = minO2 cr(G, O1, O2)

• It holds that cr(G, O1, O2) =
∑

O2(u)<O2(v) cuv -
gives a way to compute cr(G, O1, O2) in O(m2),
where m-number of edges

• cr(G, O1, O2) can be computed in O(m + C) time, where
C-number of crossings [Six and Tollis 2006]→ reduce to
counting crossings in a circular drawing

Further Properties
Def: Crossing number of G with orders x1 and x2 for L1 and

L2 is denoted by cr(G, O1, O2);
for fixed O1 then opt(G, O1) = minO2 cr(G, O1, O2)

• It holds that cr(G, O1, O2) =
∑

O2(u)<O2(v) cuv -
gives a way to compute cr(G, O1, O2) in O(m2),
where m-number of edges

• cr(G, O1, O2) can be computed in O(m + C) time, where
C-number of crossings [Six and Tollis 2006]→ reduce to
counting crossings in a circular drawing

v u
v u

Iterative Crossing Minimization
Let G = (V , E) be a DAG with layers L1, ... , Lh.

(1) compute a random ordering O1 for layer L1
(2) for i = 1, ... , h − 1 consider layers Li and Li+1 and

minimize cr(G, Oi , Oi+1) with fixed Oi (→ OSCM)
(3) for i = h − 1, ... , 1 consider layers Li+1 and Li and

minimize cr(G, Oi , Oi+1) with fixed Oi+1 (→ OSCM)
(4) repeat (2) and (3) until no further improvement happens
(5) repeat steps (1)–(4) with another O1
(6) return the best found solution

Iterative Crossing Minimization
Let G = (V , E) be a DAG with layers L1, ... , Lh.

(1) compute a random ordering O1 for layer L1
(2) for i = 1, ... , h − 1 consider layers Li and Li+1 and

minimize cr(G, Oi , Oi+1) with fixed Oi (→ OSCM)
(3) for i = h − 1, ... , 1 consider layers Li+1 and Li and

minimize cr(G, Oi , Oi+1) with fixed Oi+1 (→ OSCM)
(4) repeat (2) and (3) until no further improvement happens
(5) repeat steps (1)–(4) with another O1
(6) return the best found solution

Theorem 1: The One-Sided Crossing Minimization
(OSCM) problem is NP-hard [Eades, Wormald
1994].

Algorithms for OSCM
Heuristics:

• Barycenter [Sugiyama et al, 81]
• Median [Eades and Wormald, 94]

Exact:
• ILP Model [Juenger and Mutzel, 97]

...and many more...

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their
neighbours

• set
o2(u) =

1
deg(u)

∑
v∈N(u)

o1(v)

• in case of equality introduce tiny gap

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their
neighbours

• set
o2(u) =

1
deg(u)

∑
v∈N(u)

o1(v)

• in case of equality introduce tiny gap

Properties:
• trivial implementation
• quick (exactly?)
• usually very good results
• finds optimum if opt(G, o1) = 0
• there are graphs on which it performs Ω(

√
n) times worse than

optimal

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossing when nodes are close to their
neighbours

• set
o2(u) =

1
deg(u)

∑
v∈N(u)

o1(v)

• in case of equality introduce tiny gap

Properties:
• trivial implementation
• quick (exactly?)
• usually very good results
• finds optimum if opt(G, o1) = 0
• there are graphs on which it performs Ω(

√
n) times worse than

optimal

Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neightbours
• for a node v ∈ L2 with neighbours v1, ... , vk set

o2(v) = med(v) = o1(vdk/2e)
and o2(v) = 0 if N(v) = ∅

• if o2(u) = o2(v) and u, v have different degree parity,
place the node with odd degree to the left

• if o2(u) = o2(v) and u, v have the same degree parity,
place an arbitrary of them to the left

• Runs in time O(|E |)

Median-Heuristic (Eades, Wormald 1994)

Idea: use the median of the coordinates of neightbours
• for a node v ∈ L2 with neighbours v1, ... , vk set

o2(v) = med(v) = o1(vdk/2e)
and o2(v) = 0 if N(v) = ∅

• if o2(u) = o2(v) and u, v have different degree parity,
place the node with odd degree to the left

• if o2(u) = o2(v) and u, v have the same degree parity,
place an arbitrary of them to the left

• Runs in time O(|E |)
Properties:

• trivial implementation
• fast
• mostly good performance
• finds optimum when opt(G, o1) = 0
• Factor-3 Approximation: med(G, o1) ≤ 3 opt(G, o1)

Experimental Evaluation (Jünger, Mutzel 1997)

Results for 100 instances on 20 +
20 nodes with increasing density

Time for 100 instances on 20 +
20 nodes with increasing density

Experimental Evaluation (Jünger, Mutzel 1997)

Results for 10 instances of
sparse graphs with increasing
size

Time for 10 instances of sparse
graphs with increasing size

Example with Barycenter

Example with Barycenter

Example with Barycenter

Example with Barycenter

Example with Barycenter

Example with Barycenter

Example with Barycenter

Example with Barycenter

Example with Barycenter

CrossingX

There was even
an iPad game
CrossingX for the
OSCM Problem!

Winner of Graph
Drawing Game Contest
2012

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Coordinate Assignement Goals

Coordinate Assignement Goals

Think for a minute and then share

What could we optimize when doing the coordinate
assignment?

Coordinate Assignement Goals

Think for a minute and then share

What could we optimize when doing the coordinate
assignment?

Coordinate Assignement Goals

• Edges as straight as possible
• Edges as vertical as possible

Steightening Edges
Goal: minimize deviation from a straight-line for the edges

with dummy-nodes
Idea: use quadratic Program

• let puv = (u, d1, ... , dk , v) path with k dummy nodes betwen u and v
• let ai = x(u) + i

k+1 (x(v)− x(u)) the x-coordinate of di when (u, v) is
straight

• g(puv) =
∑k

i=1(x(di)− ai)2

• minimize
∑

uv∈E g(puv)
• constraints: x(w)− x(z) ≥ δ for consecutive nodes on the same

layer, w on the right of z (δ distance parameter)

Steightening Edges
Goal: minimize deviation from a straight-line for the edges

with dummy-nodes
Idea: use quadratic Program

• let puv = (u, d1, ... , dk , v) path with k dummy nodes betwen u and v
• let ai = x(u) + i

k+1 (x(v)− x(u)) the x-coordinate of di when (u, v) is
straight

• g(puv) =
∑k

i=1(x(di)− ai)2

• minimize
∑

uv∈E g(puv)
• constraints: x(w)− x(z) ≥ δ for consecutive nodes on the same

layer, w on the right of z (δ distance parameter)

Properties:
• quadratic program is time-expensive
• straight edges increase width
• width can be exponential
• optimization function can be adapted to optimize ”verticality”

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Sugiyama Framework (Sugiyama, Tagawa, Toda 1981)

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Edge Drawing

Edge Drawing

Edge Drawing

Possibility: Substitute polylines by Bézier curves

Edge Drawing

Possibility: Substitute polylines by Bézier curves

Check geometric libraries!

Summary

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

Summary

given resolve cycles layer
assignement

crossing minimization node positioning edge drawing

• flexible framework to draw directed graphs
• sequential optimization of various criteria
• drawback: decisions taken on the previous

steps influence the next steps and can not be
undone

• modeling gives NP-hard problems, which can
still can be solved quite well with heuristics

• many functionalities implemented in yEd and
GraphVis

Reading

Graph Drawing handbook: Chapter 13

Paper ”A framework and algorithms for
circular drawings of graphs” J. Six, I. Tollis
– fast computation of the number of
crossings

Additional Reading

Reading

Additional Reading
Graph Drawing handbook: Chapter 13

Paper ”A framework and algorithms for
circular drawings of graphs” J. Six, I. Tollis
– fast computation of the number of
crossings

Methods for visualization of multilayer/clustered networks
Next

Additional Reading

	Example
	Layered Layout
	Application: Storylines
	Sugiyama Framework {\tiny (Sugiyama, Tagawa, Toda 1981)}
	Removing Cycles
	Heuristic with guarantees {\tiny (Eades, Lin, Smyth 1993)}
	Guarantees and related work
	Sugiyama Framework {\tiny (Sugiyama, Tagawa, Toda 1981)}
	Layer Assignement
	Height Optimization
	Sugiyama Framework {\tiny (Sugiyama, Tagawa, Toda 1981)}
	Problem Statement
	One-sided Crossing Minimization (OSCM)
	Further Properties
	Iterative Crossing Minimization
	Algorithms for OSCM
	Barycenter Heuristic {\tiny (Sugiyama, Tagawa, Toda 1981)}
	Median-Heuristic {\tiny (Eades, Wormald 1994)}
	Example with Barycenter
	CrossingX
	Sugiyama Framework {\tiny (Sugiyama, Tagawa, Toda 1981)}
	Coordinate Assignement Goals

	Steightening Edges
	Sugiyama Framework {\tiny (Sugiyama, Tagawa, Toda 1981)}
	Edge Drawing
	Summary

