Multilayer Network Visualization

Course : Data Visualization
Lecturer : Tamara Mchedlidze
Utrecht University, Dept. of Information and Computing Sciences

Telea et al, 2011

Lecture Overview

- Multilayer network
- Visualization types for multilayer networks
- Algorithm for visualization in 2.5D
- Edge simplification - bundling
- An algorithm for edge bundling
- Proposed technique for the implementation

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

connections
in a company

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

connections
in a company

Facebook

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

connections
in a company

Facebook

- changes in one network effect changes in the other

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

Companies

connections in a company

- changes in one network effect changes in the other
- nodes of other types

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

Companies
layer of a network

connections in a company

- changes in one network effect changes in the other
- nodes of other types

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

Companies
layer of a network

connections in a company

- changes in one network effect changes in the other
- nodes of other types

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

- changes in one network effect changes in the other
- nodes of other types

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

Companies
layer of a network

connections
in a company

- changes in one network effect changes in the other
- nodes of other types

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

Companies
layer of a network

connections in a company
multilayer network

- changes in one network effect changes in the other
- nodes of other types

Adding complexity

- definition of network/graph we used till now (nodes, edges and perhaps labels) is a simplification of reality, where the network are often way more complex

Companies
layer of a network

connections
in a company
multilayer network

- changes in one network effect changes in the other
- nodes of other types
- analysis of graph patters across layers reveal complex facts about the data

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$
- For multilayer network we need to specify which layer a node belongs to - can belong to multiple layers

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$
- For multilayer network we need to specify which layer a node belongs to - can belong to multiple layers
- V - set of all distinct vertices;
L - set of layers;
$V_{m} \subseteq V \times L$ - vertices of a multilayered graph

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$
- For multilayer network we need to specify which layer a node belongs to - can belong to multiple layers
- V - set of all distinct vertices;
L - set of layers;
$V_{m} \subseteq V \times L$ - vertices of a multilayered graph
- $E_{m} \subseteq V_{m} \times V_{m}$ - edges of a multilayer graph connect pairs (v, ℓ) and $\left(v^{\prime}, \ell^{\prime}\right)$

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$
- For multilayer network we need to specify which layer a node belongs to - can belong to multiple layers
- V - set of all distinct vertices;
L - set of layers; $V_{m} \subseteq V \times L$ - vertices of a multilayered graph
- $E_{m} \subseteq V_{m} \times V_{m}$ - edges of a multilayer graph connect pairs (v, ℓ) and $\left(v^{\prime}, \ell^{\prime}\right)$

- edge $\left\{(v, \ell),\left(v^{\prime}, \ell^{\prime}\right)\right\}$ is inter-layer if $\ell \neq \ell^{\prime}$ and is intra-layer if $\ell=\ell^{\prime}$ (edge living in a layer)

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$
- For multilayer network we need to specify which layer a node belongs to - can belong to multiple layers
- V - set of all distinct vertices;
L - set of layers;
$V_{m} \subseteq V \times L$ - vertices of a multilayered graph
- $E_{m} \subseteq V_{m} \times V_{m}$ - edges of a multilayer graph connect pairs (v, ℓ) and $\left(v^{\prime}, \ell^{\prime}\right)$
- edge $\left\{(v, \ell),\left(v^{\prime}, \ell^{\prime}\right)\right\}$ is inter-layer if $\ell \neq \ell^{\prime}$

intra-layer

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$
- For multilayer network we need to specify which layer a node belongs to - can belong to multiple layers
- V - set of all distinct vertices;
L - set of layers; $V_{m} \subseteq V \times L$ - vertices of a multilayered graph
- $E_{m} \subseteq V_{m} \times V_{m}$ - edges of a multilayer graph connect pairs (v, ℓ) and $\left(v^{\prime}, \ell^{\prime}\right)$
- edge $\left\{(v, \ell),\left(v^{\prime}, \ell^{\prime}\right)\right\}$ is inter-layer if $\ell \neq \ell^{\prime}$

intra-layer and is intra-layer if $\ell=\ell^{\prime}$ (edge living in a layer)

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$
- For multilayer network we need to specify which layer a node belongs to - can belong to multiple layers
- V - set of all distinct vertices;
L - set of layers;
$V_{m} \subseteq V \times L$ - vertices of a multilayered graph
- $E_{m} \subseteq V_{m} \times V_{m}$ - edges of a multilayer graph connect pairs (v, ℓ) and $\left(v^{\prime}, \ell^{\prime}\right)$
- edge $\left\{(v, \ell),\left(v^{\prime}, \ell^{\prime}\right)\right\}$ is inter-layer if $\ell \neq \ell^{\prime}$

intra-layer and is intra-layer if $\ell=\ell^{\prime}$ (edge living in a layer)
- here layers are $\left\{\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right\}$, $\ell_{1}=$ Linkedln,
$\ell_{2}=$ connections in a company,
$\ell_{3}=$ Facebook,
$\ell_{4}=$ companies

Multilayer Network

- Standard graph definition $G=(V, E), E \subseteq V \times V$
- For multilayer network we need to specify which layer a node belongs to - can belong to multiple layers
- V - set of all distinct vertices;
L - set of layers;
$V_{m} \subseteq V \times L$ - vertices of a multilayered graph
- $E_{m} \subseteq V_{m} \times V_{m}$ - edges of a multilayer graph connect pairs (v, ℓ) and $\left(v^{\prime}, \ell^{\prime}\right)$
- edge $\left\{(v, \ell),\left(v^{\prime}, \ell^{\prime}\right)\right\}$ is inter-layer if $\ell \neq \ell^{\prime}$

intra-layer and is intra-layer if $\ell=\ell^{\prime}$ (edge living in a layer)
- here layers are $\left\{\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right\}$, $\ell_{1}=$ Linkedln,
$\ell_{2}=$ connections in a company,
$\ell_{3}=$ Facebook,

$\ell_{4}=$ companies
- node $v=(3)$ appears as $\left(v, \ell_{1}\right),\left(v, \ell_{2}\right),\left(v, \ell_{3}\right)$ in V_{m}

Multilayer Network

multilayer networks appear as models in

- biology: genomic, proteomic and metabolomic data to model intricate biological processes

Multilayer Network

multilayer networks appear as models in

- biology: genomic, proteomic and metabolomic data to model intricate biological processes
- civil infrastructure: urban planning taking into account the interplay between multiple networks such as transportation networks, energy networks, telecommunication networks and water/wastewater networks

Multilayer Network

multilayer networks appear as models in

- biology: genomic, proteomic and metabolomic data to model intricate biological processes
- civil infrastructure: urban planning taking into account the interplay between multiple networks such as transportation networks, energy networks, telecommunication networks and water/wastewater networks
- epidemiology, sociology (including criminology), digital humanities

Multilayer Network

multilayer networks appear as mode

- biology: genomic, proteomic and model intricate biological process
- civil infrastructure: urban plannin! the interplay between multiple ne transportation networks, energy r telecommunication networks and
 networks
date back to 50 s - notion of many relationships between individuals in the sociograms introduced by Moreno

Multilayer Network

multilayer networks appear as mode

- biology: genomic, proteomic and model intricate biological process
- civil infrastructure: urban plannin! the interplay between multiple ne transportation networks, energy r telecommunication networks and
 networks
date back to 50 s - notion of many relationships between individuals in the sociograms introduced by Moreno many names: multi-label, multi-edge, multirelational, multiplex, heterogeneous, multimodal, multiple edge set networks, interdependent networks, interconnected networks, networks of networks, ... - unified under a single framework by Kivelä et al. 2014

Multilayer Network

multilayer networks appear as mode

- biology: genomic, proteomic and model intricate biological process
- civil infrastructure: urban plannin! the interplay between multiple ne transportation networks, energy r telecommunication networks and
 networks

Multilayer Network Visualizations

Types of visualizations of multilayer networks

1-dimensional: circular, linear

- 1-dimensional representations rely on Gestalt principle of continuation to perceptually group the layers

Multilayer Network Visualizations

Types of visualizations of multilayer networks

1-dimensional: circular, linear

Gestalt principle: continuation, continuity

- 1-dimensional representations rely on Gestalt principle of continuation to perceptually group the layers

Multilayer Network Visualizations

Types of visualizations of multilayer networks

1-dimensional: circular, linear

2D, 2.5D, 3D
representations

- 1-dimensional representations rely on Gestalt principle of continuation to perceptually group the layers

Multilayer Network Visualizations

Types of visualizations of multilayer networks

1-dimensional: circular, linear

2D, 2.5D, 3D
representations

- 1-dimensional representations rely on Gestalt principle of continuation to perceptually group the layers
- 2D - layers indicated by separation (proximity Gestalt principle), color (similarity)

Multilayer Network Visualizations

Types of visualizations of multilayer networks

1-dimensional: circular, linear

2D, 2.5D, 3D
representations

- 1-dimensional representations rely on Gestalt principle of continuation to perceptually group the layers
- 2D - layers indicated by separation (proximity Gestalt principle), color (similarity)
- 2.5D - layers are are different planes stacked next to each other

Multilayer Network Visualizations

Types of visualizations of multilayer networks

1-dimensional: circular, linear

2D, 2.5D, 3D
representations

- 1-dimensional representations rely on Gestalt principle of continuation to perceptually group the layers
- 2D - layers indicated by separation (proximity Gestalt principle), color (similarity)
- 2.5D - layers are are different planes stacked next to each other
- 3D - depth is indicating the layer, camera movement is necessary

1-dimensional representaiton: circular

- Mushroom data set from the UC Irvine Machine Learning Repository

Visualization of Frequent Itemsets with Nested Circular Layout and Bundling Algorithm, Bothorel et al 2013

1-dimensional representaiton: circular

- Mushroom data set from the UC Irvine Machine Learning Repository
- nodes - mushrooms

Visualization of Frequent Itemsets with Nested Circular Layout and Bundling Algorithm, Bothorel et al 2013

1-dimensional representaiton: circular

- Mushroom data set from the UC Irvine Machine Learning Repository
- nodes - mushrooms
- layers - attributes: the edibility, the cap shape, the odor, the ring, etc.

Visualization of Frequent Itemsets with Nested Circular Layout and Bundling Algorithm, Bothorel et al 2013

1-dimensional representaiton: circular

- Mushroom data set from the UC Irvine Machine Learning Repository
- nodes - mushrooms
- layers - attributes: the edibility, the cap shape, the odor, the ring,

Visualization of Frequent Itemsets with Nested Circular Layout and Bundling Algorithm, Bothorel et al 2013

1-dimensional representaiton: linear

- multimodal NSF funding data consisting of Institutions, Pls (and Co-PIs), Projects, program managers (Pr-Man), NSF programs (Programs), and NSF directorates (Dir)
- remind parallel coordinate plots

Visual Analytics for Multimodal Social Network Analysis: A Design Study with Social Scientists, Ghani et al, 2013

1-dimensional representaiton: linear

- Hive plot: axes are arranged radially
- investigation among nano-toxicity type, nanomaterial and particle size

A user-centred approach to information visualisation in nano-health, Yang et al, 2016

1-dimensional representaiton: linear

- Hive plot: axes are arranged radially
- investigation among nano-toxicity type, nanomaterial and particle size
- edges are displayed only between adjacent layers

A user-centred approach to information visualisation in nano-health, Yang et al, 2016

1-dimensional representaiton: linear

- Hive plot: axes are arranged radially
- investigation among nano-toxicity type, nanomaterial and particle size
- edges are displayed only between adjacent layers
- nodes are arranged based on graph metric (e.g. degree)

A user-centred approach to information visualisation in nano-health, Yang et al, 2016

1-dimensional representaiton: linear

- Hive plot: axes are arranged radially
- investigation among nano-toxicity type, nanomaterial and particle size
- edges are displayed only between adjacent layers
- nodes are arranged based on graph metric (e.g. degree)
- reduce clutter using layer dublication

A user-centred approach to information visualisation in nano-health, Yang et al, 2016

2-dimensional representaiton: color

- flow of maritime traffic: nodes represent ports and different edge colours represent different modes of shipping

Multilayer dynamics of complex spatial networks: The case of global maritime flows, Ducuet, 2017

2-dimensional representaiton: separation

- use constrained layouts to separate the nodes of different layers spatially

nodes - physical compounds in a cell; that are separated by physical membranes, creating compartments defining their subcellular location - layeredge; edges interactions among nodes

SetCoLa: High-Level Constraints for Graph Layout, Hoffswell et al, 2018

2-dimensional representaiton: separation

- use constrained layouts to separate the nodes of different layers spatially
- not intended for multilayer networks but can be used for them

nodes - physical compounds in a cell; that are separated by physical membranes, creating compartments defining their subcellular location - layeredge; edges interactions among nodes

SetCoLa: High-Level Constraints for Graph Layout, Hoffswell et al, 2018

2-dimensional representaiton: separation

- use constrained layouts to separate the nodes of different layers spatially
- not intended for multilayer networks but can be used for them

161 plants, herbivores, and carnivores with 592 links between entities

- feeding links, groups - clustering, layers - trophic hierarchy

SetCoLa: High-Level Constraints for Graph Layout, Hoffswell et al, 2018

2-dimensional representaiton: separation

- use constrained layouts to separate the nodes of different layers spatially
- not intended for multilayer networks but can be used for them

Biological pathways: nodes - proteins, edges-interactions. Rather visualization of clusters, but can be used to show layers too.

Scalable, Versatile and Simple Constrained Graph Layout, Dwyer 2009

2.5-dimensional representaition

- each layer is drawn on a plane and planes are stacked in 3D parallel to each other
- use 2D layout algorithms for a single layer
- same node can appear on many layers - similar positions are desired. Same for reducing edge clutter.
metabolic network, protein interaction networks and gene regulatory network; inter-layer edges: proteins are the result of gene expression, special proteins known as enzymes help transforming metabolites to another.
Visual Analysis of Overlapping Biological Networks, Fung et al, 2009

2.5-dimensional representaition

- same node can appear across layers and lie at the same position
- aggregated layer is possible

- first layer: interaction of genes in Saccharomyces cerevisiae; second layer: genes with similar interaction profiles are connected to each other; third layer: aggregated network
- right - edge colors represent layers

MuxViz: A Tool for Multilayer Analysis and Visualization of Networks, De Do,enico et al, 2015.

2.5-dimensional representaition

- same node can appear across layers and lie at the same position
- aggregated layer is possible

- Multilayer analysis of HIV-1 genetic interaction network

MuxViz: A Tool for Multilayer Analysis and Visualization of Networks, De Do,enico et al, 2015.

Generating 2.5D representations

- If it is essential that same node has exactly the same position over the layers

Generating 2.5D representations

- If it is essential that same node has exactly the same position over the layers

How to construct this representation?

Generating 2.5D representations

- If it is essential that same node has exactly the same position over the layers
- Aggregate the graphs over the layers into a single graph $G=(V, E)$

Generating 2.5D representations

- If it is essential that same node has exactly the same position over the layers
- Aggregate the graphs over the layers into a single graph $G=(V, E)$
- Layout G with a favorite layout method - aggregated layer

Generating 2.5D representations

- If it is essential that same node has exactly the same position over the layers
- Aggregate the graphs over the layers into a single graph $G=(V, E)$
- Layout G with a favorite layout method - aggregated layer
- Use coordinates of the nodes of G to construct the layouts of the rest layers

Generating 2.5D representations ${ }_{\text {Funge atal, } 2009}$

- If it is not essential that same node has exactly the same position over the layers, or there are not many identical nodes over the layers

Generating 2.5D representations ${ }_{\text {Funge tat, } 2009}$

- If it is not essential that same node has exactly the same position over the layers, or there are not many identical nodes over the layers

Generating 2.5D representations ${ }_{\text {Funge tal, } 2009}$

- If it is not essential that same node has exactly the same position over the layers, or there are not many identical nodes over the layers
- Assume we have 3 layers $\ell_{1}, \ell_{2}, \ell_{3}$, let G_{i} be graph induced by $\left\{\left(v, \ell_{i}\right) \in V_{m}: v \in V\right\}, i=1,2,3$

Generating 2.5D representations ${ }_{\text {Funge tal, } 2009}$

- If it is not essential that same node has exactly the same position over the layers, or there are not many identical nodes over the layers
- Assume we have 3 layers $\ell_{1}, \ell_{2}, \ell_{3}$, let G_{i} be graph induced by $\left\{\left(v, \ell_{i}\right) \in V_{m}: v \in V\right\}, i=1,2,3$
- Draw G_{1} and G_{3} on planes P_{1} and P_{3}

Generating 2.5D representations ${ }_{\text {Funge atal, } 2009}$

- If it is not essential that same node has exactly the same position over the layers, or there are not many identical nodes over the layers
- Assume we have 3 layers $\ell_{1}, \ell_{2}, \ell_{3}$, let G_{i} be graph induced by $\left\{\left(v, \ell_{i}\right) \in V_{m}: v \in V\right\}, i=1,2,3$
- Draw G_{1} and G_{3} on planes P_{1} and P_{3}
- Assign initial position to each node $\left(v, \ell_{2}\right) \in G_{2}$ using barycenter of $\left(v, \ell_{1}\right)$ and $\left(v, \ell_{3}\right)$

Generating 2.5D representations ${ }_{\text {Funge atal, } 2009}$

- If it is not essential that same node has exactly the same position over the layers, or there are not many identical nodes over the layers
- Assume we have 3 layers $\ell_{1}, \ell_{2}, \ell_{3}$, let G_{i} be graph induced by $\left\{\left(v, \ell_{i}\right) \in V_{m}: v \in V\right\}, i=1,2,3$
- Draw G_{1} and G_{3} on planes P_{1} and P_{3}
- Assign initial position to each node $\left(v, \ell_{2}\right) \in G_{2}$ using barycenter of $\left(v, \ell_{1}\right)$ and $\left(v, \ell_{3}\right)$
- Model inter-layer edges as zero-length spring (attraction only)

Generating 2.5D representations ${ }_{\text {Funge tal } 2009}$

- If it is not essential that same node has exactly the same position over the layers, or there are not many identical nodes over the layers
- Assume we have 3 layers $\ell_{1}, \ell_{2}, \ell_{3}$, let G_{i} be graph induced by $\left\{\left(v, \ell_{i}\right) \in V_{m}: v \in V\right\}, i=1,2,3$
- Draw G_{1} and G_{3} on planes P_{1} and P_{3}
- Assign initial position to each node $\left(v, \ell_{2}\right) \in G_{2}$ using barycenter of $\left(v, \ell_{1}\right)$ and $\left(v, \ell_{3}\right)$
- Model inter-layer edges as $P_{2} \quad P_{3}$ zero-length spring (attraction only)
- Draw G_{2} and the inter-layer edges using a force directed layout

Edge clutter in multilayer visualizations

Edge clutter in multilayer visualizations

- edge bundling as a method to layout edges in multilayer network visualizations

Edge clutter in multilayer visualizations

- edge bundling as a method to layout edges in multilayer network visualizations
- bundle only the inter-layer (or intra-layer) edges

Edge clutter in multilayer visualizations

- edge bundling as a method to layout edges in multilayer network visualizations
- bundle only the inter-layer (or intra-layer) edges
- edge bundling is not specific for multilayer network visualizations.

Edge bundling

Method for reduction of clutter in a graph layout
"Change the shape of edges by visually bundling them together analogous to the way electrical wires and network cables are merged into bundles..." [Holten, van Wijk, 09]

Many methods

Multiple techniques

spring embedders (FDEB)

medial axes

Voronoi/Delaunay diagrams

tree layouts \& splines
graph clustering

kernel density estimation

Multiple techniques

Voronoi/Delaunay diagrams

graph clustering

tree layouts \& splines

kernel density estimation

Edge bundling: applications

Edge bundling: applications

Edge bundling: applications

Air traffic control

Edge bundling: applications

Bioinformatics

Air traffic control

Edge bundling: applications

Bioinformátics

Multidimensional data

Air traffic control

Edge bundling: applications

Network flow analysis

Air traffic control

Bioinformátics

Multidimensional data

Medical sciences

Edge bundling: definition

「 - drawing/layout function
B - bundling function

$$
\begin{gathered}
\forall\left(e_{i}, e_{j}\right) \in E \times E \text { such that } e_{i} \neq e_{j} \wedge k\left(e_{i}, e_{j}\right)<k_{\max } \rightarrow \\
\delta\left(B\left(\Gamma\left(e_{i}\right)\right), B\left(\Gamma\left(e_{j}\right)\right)\right) \ll \delta\left(\Gamma\left(e_{i}\right), \Gamma\left(e_{j}\right)\right)
\end{gathered}
$$

$k_{\text {max }}$ - maximum similarity of the edges that still need to be bundled
k-similarity of two edges; δ - similarity of two curves

Edge bundling: definition

「 - drawing/layout function
B - bundling function
two edges are similar
$\forall\left(e_{i}, e_{j}\right) \in E \times E$ such that $e_{i} \neq e_{j} \wedge k\left(e_{i}, e_{j}\right)<k_{\max } \rightarrow$

$$
\delta\left(B\left(\Gamma\left(e_{i}\right)\right), B\left(\Gamma\left(e_{j}\right)\right)\right) \ll \delta\left(\Gamma\left(e_{i}\right), \Gamma\left(e_{j}\right)\right)
$$

$k_{\text {max }}$ - maximum similarity of the edges that still need to be bundled
k-similarity of two edges; δ - similarity of two curves

Edge bundling: definition

「 - drawing/layout function
B - bundling function
two edges are similar
$\forall\left(e_{i}, e_{j}\right) \in E \times E$ such that $e_{i} \neq e_{j} \wedge k\left(e_{i}, e_{j}\right)<k_{\max } \rightarrow$

$$
\delta\left(B\left(\Gamma\left(e_{i}\right)\right), B\left(\Gamma\left(e_{j}\right)\right)\right) \ll \delta\left(\Gamma\left(e_{i}\right), \Gamma\left(e_{j}\right)\right)
$$

the distance between curves after bundling is small
$k_{\text {max }}$ - maximum similarity of the edges that still need to be bundled
k-similarity of two edges; δ - similarity of two curves

Edge bundling: definition

$\forall\left(e_{i}, e_{j}\right) \in E \times E$ such that $e_{i} \neq e_{j} \wedge k\left(e_{i}, e_{j}\right)<k_{\max } \rightarrow$

$$
\delta\left(B\left(\Gamma\left(e_{i}\right)\right), B\left(\Gamma\left(e_{j}\right)\right)\right) \ll \delta\left(\Gamma\left(e_{i}\right), \Gamma\left(e_{j}\right)\right)
$$

k-similarity of two edges; δ - similarity of two curves

Edge bundling: definition

$\forall\left(e_{i}, e_{j}\right) \in E \times E$ such that $e_{i} \neq e_{j} \wedge k\left(e_{i}, e_{j}\right)<k_{\max } \rightarrow$

$$
\delta\left(B\left(\Gamma\left(e_{i}\right)\right), B\left(\Gamma\left(e_{j}\right)\right)\right) \ll \delta\left(\Gamma\left(e_{i}\right), \Gamma\left(e_{j}\right)\right)
$$

k-similarity of two edges; δ - similarity of two curves

Data-based similarities

- Structured-based
- Attribute-based

Edge bundling: definition

$\forall\left(e_{i}, e_{j}\right) \in E \times E$ such that $e_{i} \neq e_{j} \wedge k\left(e_{i}, e_{j}\right)<k_{\max } \rightarrow$

$$
\delta\left(B\left(\Gamma\left(e_{i}\right)\right), B\left(\Gamma\left(e_{j}\right)\right)\right) \ll \delta\left(\Gamma\left(e_{i}\right), \Gamma\left(e_{j}\right)\right)
$$

k-similarity of two edges; δ - similarity of two curves

Data-based similarities

- Structured-based
- Attribute-based

Drawing-based similarities

- Geometric-based
- Image-based

Edge bundling: definition

$\forall\left(e_{i}, e_{j}\right) \in E \times E$ such that $e_{i} \neq e_{j} \wedge k\left(e_{i}, e_{j}\right)<k_{\max } \rightarrow$

$$
\delta\left(B\left(\Gamma\left(e_{i}\right)\right), B\left(\Gamma\left(e_{j}\right)\right)\right) \ll \delta\left(\Gamma\left(e_{i}\right), \Gamma\left(e_{j}\right)\right)
$$

k-similarity of two edges; δ - similarity of two curves

Data-based similarities

- Structured-based
- Attribute-based

Drawing-based similarities

- Geometric-based
- Image-based

Edge bundling Holten and van Wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.

Edge bundling Holten and van Wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)

Edge bundling Holten and van Wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)
- The position of edge end-points P_{0}, P_{1}, Q_{0}, and Q_{1} remain fixed

Edge bundling Holten and van wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)
- The position of edge end-points P_{0}, P_{1}, Q_{0}, and Q_{1} remain fixed
- Spring (attraction) force F_{s} between the consecutive vertices of each edge - tries to keep the edges straight

Edge bundling Holten and van wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)
- The position of edge end-points P_{0}, P_{1}, Q_{0}, and Q_{1} remain fixed
- Spring (attraction) force F_{s} between the consecutive vertices of each edge - tries to keep the edges straight

Spring force
$F_{s}\left(\left\{p_{i}, p_{i+1}\right\}\right)=k_{P}\left\|p_{i-1}-p_{i}\right\|$

Edge bundling Holten and van Wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)
- The position of edge end-points P_{0}, P_{1}, Q_{0}, and Q_{1} remain fixed
- Spring (attraction) force F_{s} between the consecutive vertices of each edge - tries to keep the edges straight

Spring force
$F_{s}\left(\left\{p_{i}, p_{i+1}\right\}\right)=k_{P} \| p_{i-1}-p_{i}| |$
n_{P} - number of segments on P,

Edge bundling Holten and van wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)
- The position of edge end-points P_{0}, P_{1}, Q_{0}, and Q_{1} remain fixed
- Spring (attraction) force F_{s} between the consecutive vertices of each edge - tries to keep the edges straight

Spring force
$F_{s}\left(\left\{p_{i}, p_{i+1}\right\}\right)=k_{P} \| p_{i-1}-p_{i}| |$
n_{P} - number of segments on P,
$\frac{|P|}{n_{P}}$ - initial length of a segment of P

Edge bundling Holten and van wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)
- The position of edge end-points P_{0}, P_{1}, Q_{0}, and Q_{1} remain fixed
- Spring (attraction) force F_{s} between the consecutive vertices of each edge - tries to keep the edges straight

Spring force
$F_{s}\left(\left\{p_{i}, p_{i+1}\right\}\right)=k_{P} \| p_{i-1}-p_{i}| |$
n_{P} - number of segments on P,
$\frac{|P|}{n_{P}}$ - initial length of a segment of P
$k_{P}=K / \frac{|P|}{n_{P}}=\frac{K}{|P|} n_{P}$

Edge bundling Holten and van wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)
- The position of edge end-points P_{0}, P_{1}, Q_{0}, and Q_{1} remain fixed
- Spring (attraction) force F_{s} between the consecutive vertices of each edge - tries to keep the edges straight

Spring force
$F_{s}\left(\left\{p_{i}, p_{i+1}\right\}\right)=k_{P} \| p_{i-1}-p_{i}| |$
n_{P} - number of segments on P,
$\frac{|P|}{n_{P}}$ - initial length of a segment of P
$k_{P}=K / \frac{|P|}{n_{P}}=\frac{K}{|P|} n_{P}$
here K - global stiffness constant

Edge bundling Holten and van wijk, 2009

- Assume two edges P and Q need to be bundled (which - later). We say they are interacting.
- P and Q are subdivided using a few subdivision points per edge (how many - later)
- The position of edge end-points P_{0}, P_{1}, Q_{0}, and Q_{1} remain fixed
- Spring (attraction) force F_{s} between the consecutive vertices of each edge - tries to keep the edges straight

Spring force
$F_{s}\left(\left\{p_{i}, p_{i+1}\right\}\right)=k_{P} \|\left|p_{i-1}-p_{i}\right| \mid$
n_{P} - number of segments on P,
$\frac{|P|}{n_{P}}$ - initial length of a segment of P
$k_{P}=K / \frac{|P|}{n_{P}}=\frac{K}{|P|} n_{P}$
here K - global stiffness constant

Large values of K make system very stiff

Edge bundling Holten and van Wijk, 2009

- An attraction electrostatic force $F_{e}\left(\left\{p_{i}, q_{i}\right\}\right)=\frac{1}{\left\|p_{i}-q_{i}\right\|}$ is used between each pair of corresponding subdivision points of P and Q, thus between p_{0} and q_{0}, p_{1} and q_{1}, \ldots

Edge bundling Holten and van Wijk, 2009

- An attraction electrostatic force $F_{e}\left(\left\{p_{i}, q_{i}\right\}\right)=\frac{1}{\left\|p_{i}-q_{i}\right\|}$ is used between each pair of corresponding subdivision points of P and Q, thus between p_{0} and q_{0}, p_{1} and q_{1}, \ldots
- F_{e} tries to bundle the edges

Edge bundling Holten and van Wijk, 2009

- An attraction electrostatic force $F_{e}\left(\left\{p_{i}, q_{i}\right\}\right)=\frac{1}{\left\|p_{i}-q_{i}\right\|}$ is used between each pair of corresponding subdivision points of P and Q, thus between p_{0} and q_{0}, p_{1} and q_{1}, \ldots
- F_{e} tries to bundle the edges
- F_{e} can be calculated for all pairs $\left(p_{i}, q_{j}\right)$ but this slows down the performance and does not increase the performance significantly (Experiment!)

Edge bundling Holten and van Wijk, 2009

- An attraction electrostatic force $F_{e}\left(\left\{p_{i}, q_{i}\right\}\right)=\frac{1}{\left\|p_{i}-q_{i}\right\|}$ is used between each pair of corresponding subdivision points of P and Q, thus between p_{0} and q_{0}, p_{1} and q_{1}, \ldots
- F_{e} tries to bundle the edges
- F_{e} can be calculated for all pairs $\left(p_{i}, q_{j}\right)$ but this slows down the performance and does not increase the performance significantly (Experiment!)
- The overall force on point p_{i} is

$$
\left.F_{p_{i}}=k_{P} \cdot\left(\| p_{i-1}-p_{i}\right)\|+\| p_{i}-p_{i+1} \|\right)+\sum_{Q \in E} \frac{1}{\left\|p_{i}-q_{i}\right\|}
$$

Edge bundling Holten and van Wijk, 2009

- An attraction electrostatic force $F_{e}\left(\left\{p_{i}, q_{i}\right\}\right)=\frac{1}{\left\|p_{i}-q_{i}\right\|}$ is used between each pair of corresponding subdivision points of P and Q, thus between p_{0} and q_{0}, p_{1} and q_{1}, \ldots
- F_{e} tries to bundle the edges
- F_{e} can be calculated for all pairs $\left(p_{i}, q_{j}\right)$ but this slows down the performance and does not increase the performance significantly (Experiment!)
- The overall force on point p_{i} is
$\left.F_{p_{i}}=k_{P} \cdot\left(\| p_{i-1}-p_{i}\right)\|+\| p_{i}-p_{i+1} \|\right)+\sum_{Q \in E} \frac{1}{\left\|p_{i}-q_{i}\right\|}$ k_{P} - constant for edge P

Edge bundling: performance

- Fig.b - performance of the model given up to now. Here all edges interact with all.

Edge bundling: performance

- Fig.b - performance of the model given up to now. Here all edges interact with all.
- Increasing the value of K gives less bundling overall and therefore in parts of the graph where a high amount of bundling is still desirable

Edge compatibility measures: angle

- edges that are almost perpendicular should not be bundled together, i.e. should not interact

Edge compatibility measures: angle

- edges that are almost perpendicular should not be bundled together, i.e. should not interact
- angle compatibility of P and Q is defined as $C_{a}(P, Q)=|\cos \alpha|, \alpha$ is angle between P_{-}and Q

Edge compatibility measures: angle

- edges that are almost perpendicular should not be bundled together, i.e. should not interact
- angle compatibility of P and Q is defined as $C_{a}(P, Q)=|\cos \alpha|, \alpha$ is angle between P and Q
- calculate through dot product $\cos \alpha=\frac{P \cdot Q}{\|P\|\|Q\|}$

Edge compatibility measures: angle

- edges that are almost perpendicular should not be bundled together, i.e. should not interact
- angle compatibility of P and Q is defined as $C_{a}(P, Q)=|\cos \alpha|, \alpha$ is angle between P and Q
- calculate through dot product $\cos \alpha=\frac{P \cdot Q}{\|P\|\|Q\|}$
- the larger α, the smaller $C_{a}(P, Q)$

Edge compatibility measures: angle

- edges that are almost perpendicular should not be bundled together, i.e. should not interact
- angle compatibility of P and Q is defined as $C_{a}(P, Q)=|\cos \alpha|, \alpha$ is angle between P and Q
- calculate through dot product $\cos \alpha=\frac{P \cdot Q}{\|P\|\|Q\|}$
- the larger α, the smaller $C_{a}(P, Q)$
- $C_{a}(P, Q)=0$ if $\alpha=90^{\circ}$ and $C_{a}(P, Q)=1$ if $\alpha=0$, i.e. P and Q are parallel

Edge compatibility measures: scale

- edges that differ a lot in length should not be bundled together

Edge compatibility measures: scale

- edges that differ a lot in length should not be bundled together
- doing so might result in stretching and curving of short edges

Edge compatibility measures: scale

- edges that differ a lot in length should not be bundled together
- doing so might result in stretching and curving of short edges
- scale compartibility is defined as

$$
C_{s}(P, Q)=\frac{2}{\ell_{\text {avg }} \cdot \min (|P|,|Q|)+\max (|P|,|Q|) / \ell_{\text {avg }}} \text {, where } \ell_{\text {avg }}=\frac{|P|+|Q|}{2}
$$

Edge compatibility measures: scale

- edges that differ a lot in length should not be bundled together
- doing so might result in stretching and curving of short edges
- scale compartibility is defined as
$C_{S}(P, Q)=\frac{2}{\ell_{\text {avg }} \cdot \min (|P|,|Q|)+\max (|P|,|Q|) / \ell_{\text {avg }}}$, where $\ell_{\text {avg }}=\frac{|P|+|Q|}{2}$
- $C_{s}(P, Q)=1$ if $|P|=|Q|$

Edge compatibility measures: scale

- edges that differ a lot in length should not be bundled together
- doing so might result in stretching and curving of short edges
- scale compartibility is defined as

$$
C_{S}(P, Q)=\frac{2}{\ell_{\text {avg }} \cdot \min (|P|,|Q|)+\max (|P|,|Q|) / \ell_{\text {avg }}} \text {, where } \ell_{\text {avg }}=\frac{|P|+|Q|}{2}
$$

- $C_{s}(P, Q)=1$ if $|P|=|Q|$
$C_{s}(P, Q) \rightarrow 0$ if $\|P|-| Q\| \rightarrow \infty$

Edge compatibility measures: distance

- edges that are far apart should not be bundled together

Edge compatibility measures: distance

- edges that are far apart should not be bundled together
- position compatibility is defines as $C_{p}(P, Q)=\ell_{\text {avg }} /\left(\ell_{\text {avg }}+\left\|P_{m}-Q_{m}\right\|\right)$, with P_{m} and Q_{m} - midpoints of P and Q, respectively

Edge compatibility measures: distance

- edges that are far apart should not be bundled together
- position compatibility is defines as $C_{p}(P, Q)=\ell_{\text {avg }} /\left(\ell_{\text {avg }}+\left\|P_{m}-Q_{m}\right\|\right)$, with P_{m} and Q_{m} - midpoints of P and Q, respectively
- $C_{p}(P, Q)=1$ if $P_{m}=Q_{m}$

$$
C_{p}(P, Q) \rightarrow 0 \text { if }\left\|P_{m}-Q_{m}\right\| \rightarrow \infty
$$

Edge compatibility measures: visibility

- it is possible that edges are parallel, equal in length, and close together, but should nevertheless have a low bundling

Edge compatibility measures: visibility

- it is possible that edges are parallel, equal in length, and close together, but should nevertheless have a low bundling
- these are the opposite edges of a skewed parallelogram

Edge compatibility measures: visibility

- it is possible that edges are parallel, equal in length, and close together, but should nevertheless have a low bundling
- these are the opposite edges of a skewed parallelogram
- visibility compatibility
$C_{V}(P, Q)=\min (\operatorname{vis}(P, Q), \operatorname{vis}(Q, P))$, with

Edge compatibility measures: visibility

- it is possible that edges are parallel, equal in length, and close together, but should nevertheless have a low bundling
- these are the opposite edges of a skewed parallelogram
- visibility compatibility
$C_{v}(P, Q)=\min (\operatorname{vis}(P, Q)$, vis $(Q, P))$, with $\operatorname{vis}(P, Q)=\max \left(1-\frac{2\left\|\mid P_{m}-I_{m}\right\|}{\left\|I_{0}-I_{1}\right\|}, 0\right), I_{m}-\operatorname{mid}$ point of I_{0} and I_{1}.

Edge compatibility measures: visibility

- it is possible that edges are parallel, equal in length, and close together, but should nevertheless have a low bundling
- these are the opposite edges of a skewed parallelogram
- visibility compatibility
$C_{V}(P, Q)=\min (\operatorname{vis}(P, Q)$, vis $(Q, P))$, with $\operatorname{vis}(P, Q)=\max \left(1-\frac{2\left\|\mid P_{m}-I_{m}\right\|}{\left\|I_{0}-I_{1}\right\|}, 0\right), I_{m}-\operatorname{mid}$ point of I_{0} and I_{1}.

Edge compatibility measures: visibility

- it is possible that edges are parallel, equal in length, and close together, but should nevertheless have a low bundling
- these are the opposite edges of a skewed parallelogram
- visibility compatibility
$C_{V}(P, Q)=\min (\operatorname{vis}(P, Q)$, vis $(Q, P))$, with $\operatorname{vis}(P, Q)=\max \left(1-\frac{2\left\|\mid P_{m}-I_{m}\right\|}{\left\|I_{0}-I_{1}\right\|}, 0\right), I_{m}-\operatorname{mid}$ point of I_{0} and I_{1}.
band of sight of (Q_{0}, Q_{1})

Edge compatibility measures: visibility

- it is possible that edges are parallel, equal in length, and close together, but should nevertheless have a low bundling
- these are the opposite edges of a skewed parallelogram
- visibility compatibility
$C_{V}(P, Q)=\min (\operatorname{vis}(P, Q)$, vis $(Q, P))$, with $\operatorname{vis}(P, Q)=\max \left(1-\frac{2\left\|\mid P_{m}-I_{m}\right\|}{\left\|I_{0}-I_{1}\right\|}, 0\right), I_{m}-\operatorname{mid}$ point of I_{0} and I_{1}.
- $C_{V}(P, Q)=1$ if P_{m} coincides with I_{m} (ideal position),

Edge compatibility measures: visibility

- it is possible that edges are parallel, equal in length, and close together, but should nevertheless have a low bundling
- these are the opposite edges of a skewed parallelogram
- visibility compatibility
$C_{V}(P, Q)=\min (\operatorname{vis}(P, Q)$, vis $(Q, P))$, with $\operatorname{vis}(P, Q)=\max \left(1-\frac{2\left\|\mid P_{m}-I_{m}\right\|}{\left\|I_{0}-I_{1}\right\|}, 0\right), I_{m}-\operatorname{mid}$ point of I_{0} and I_{1}.
- $C_{v}(P, Q)=1$ if P_{m} coincides with I_{m} (ideal position), $C_{v}(P, Q)=0$ if P is outside the band of sight of Q

Edge compatibility measures: combined

- The overall compatibility is defined as

$$
C_{e}(P, Q)=C_{a}(P, Q) \cdot C_{s}(P, Q) \cdot C_{p}(P, Q) \cdot C_{v}(P, Q)
$$

Edge compatibility measures: combined

- The overall compatibility is defined as

$$
C_{e}(P, Q)=C_{a}(P, Q) \cdot C_{s}(P, Q) \cdot C_{p}(P, Q) \cdot C_{v}(P, Q)
$$

- The overall force on point p_{i} is then redefined as $\left.F_{p_{i}}=k_{P} \cdot\left(\| p_{i-1}-p_{i}\right)\|+\| p_{i}-p_{i+1} \|\right)+\sum_{Q \in E} \frac{C_{e}(P, Q)}{\left\|p_{i}-q_{i}\right\|}$ k_{P} - constant for edge P

Edge bundling summary

Input: $G=(V, E)$ undirected graph with vertex placement,
number of cycles $C \in \mathbb{N}$, number of iterations in the first cycle $I_{0} \in \mathbb{N}$, step size $s_{0} \in \mathbb{N}$, number of subdivision points in the first cycle n_{0} interaction function $C_{e}: E \times E \rightarrow \mathbb{R}$
Output: Layout with bundled edges
$n \leftarrow n_{0}$ initial number of subdivisions
$t \leftarrow 1$ iteration counter
$I \leftarrow I_{0}$ number of iterations in the first cycle
$c \leftarrow 1$ cycle counter
$s \leftarrow s_{0}$ step size

Edge bundling summary

while $c<C$ do
foreach $P \in E$ do
subdivide P by n_{0} points $P_{1} \ldots P_{n} ; B \leftarrow B \cup \bigcup_{P \in E}\left\{P_{1} \ldots P_{n}\right\}$
foreach $P \in E$ do

$$
\text { foreach } 0<i<n \text { do }
$$

$\left.F_{P_{i}}=k_{P} \cdot\left(\| P_{i-1}-P_{i}\right)\|+\| P_{i}-P_{i+1} \|\right)$
foreach $Q \neq P \in E$ do foreach $0<j<n$ do

$$
F_{P_{i}}=F_{P_{i}}+\frac{C_{e}(P, Q)}{\left\|P_{i}-Q_{j}\right\|} ;
$$

foreach $p \in B$ do
$\left\lfloor p \leftarrow p+s \cdot F_{p}\right.$
$t \leftarrow t+1$
if $t==l$ then

$t \leftarrow 1 ; c \leftarrow c+1 ; n \leftarrow 2 n ;$
$s \leftarrow s / 2$; decrease(I);

Edge bundling: experiments

- experimentally the following values are suggested $n_{0}=1, s_{0}=0.04, C=6$, and $I_{0}=50$.

Edge bundling: experiments

- experimentally the following values are suggested $n_{0}=1, s_{0}=0.04, C=6$, and $I_{0}=50$.
- I is decreased by factor $\frac{2}{3}$

Edge bundling: experiments

- experimentally the following values are suggested $n_{0}=1, s_{0}=0.04, C=6$, and $I_{0}=50$.
- I is decreased by factor $\frac{2}{3}$
- this gives the following

cycle	0	1	2	3	4	5
η	1	2	4	8	16	32
S	.04	.02	.01	.005	.0025	.00125
I	50	33	22	15	9	7

Edge bundling: experiments

- experimentally the following values are suggested $n_{0}=1, s_{0}=0.04, C=6$, and $I_{0}=50$.
- I is decreased by factor $\frac{2}{3}$
- this gives the following

cycle	0	1	2	3	4	5
η	1	2	4	8	16	32
S	.04	.02	.01	.005	.0025	.00125
I	50	33	22	15	9	7

- performance can be significantly increased without compromising the bundling result by using a threshold for the total edge compatibility $C_{e}(P, Q)$

Edge bundling: experiments

- experimentally the following values are suggested $n_{0}=1, s_{0}=0.04, C=6$, and $I_{0}=50$.
- I is decreased by factor $\frac{2}{3}$
- this gives the following

cycle	0	1	2	3	4	5
η	1	2	4	8	16	32
S	.04	.02	.01	.005	.0025	.00125
I	50	33	22	15	9	7

- performance can be significantly increased without compromising the bundling result by using a threshold for the total edge compatibility $C_{e}(P, Q)$
- edges P and Q are considered for calculation if $C_{e}(P, Q)>\lambda$, e.g. $\lambda=0.05$

Edge bundling: experiments

- experimentally the following values are suggested $n_{0}=1, s_{0}=0.04, C=6$, and $I_{0}=50$.
- I is decreased by factor $\frac{2}{3}$
- this gives the following

cycle	0	1	2	3	4	5
η	1	2	4	8	16	32
S	.04	.02	.01	.005	.0025	.00125
I	50	33	22	15	9	7

- performance can be significantly increased without compromising the bundling result by using a threshold for the total edge compatibility $C_{e}(P, Q)$
- edges P and Q are considered for calculation if $C_{e}(P, Q)>\lambda$, e.g. $\lambda=0.05$
- US airlines graph with inverse linear and inverse quadratic model

Edge bundling: inspiration

Inspiration: edges are ancestor-descendant relationship in the genealogy of modern and ancient genomes. Edge width - how many times the relationship is observed, color - age of the ancestor

A unified genealogy of modern and ancient genomes, Wohns et al. Nature 2022

Edge bundling: discussion

Air traffic control

Bioinformatics

Multidimensional data

Medical sciences

Edge bundling: discussion

- What are the benefits and the drawbacks of the bundled layouts?
- When are the edge bundling techniques appropriate to use?

Air traffic control

Medical sciences

Tutorial task

- clustered graphs : each node appears in a single layer (cluster) and relationships between nodes are of the same type

Tutorial task

- clustered graphs : each node appears in a single layer (cluster) and relationships between nodes are of the same type
- task: visualize a clustered graph - should work for two clusters

Tutorial task

- clustered graphs : each node appears in a single layer (cluster) and relationships between nodes are of the same type
- task: visualize a clustered graph - should work for two clusters

Tutorial task

- clustered graphs : each node appears in a single layer (cluster) and relationships between nodes are of the same type
- task: visualize a clustered graph - should work for two clusters

- draw each cluster (layer) independently applying a force-directed implementation within a rectangle

Tutorial task

- clustered graphs : each node appears in a single layer (cluster) and relationships between nodes are of the same type
- task: visualize a clustered graph - should work for two clusters

- draw each cluster (layer) independently applying a force-directed implementation within a rectangle
- place the two rectangles at some distance (parameter)

Tutorial task

- clustered graphs : each node appears in a single layer (cluster) and relationships between nodes are of the same type
- task: visualize a clustered graph - should work for two clusters

- draw each cluster (layer) independently applying a force-directed implementation within a rectangle
- place the two rectangles at some distance (parameter)
- implement the bundling algorithm and apply it to inter-cluster (inter-layer) edges

Tutorial task

- clustered graphs : each node appears in a single layer (cluster) and relationships between nodes are of the same type
- task: visualize a clustered graph - should work for two clusters

- draw each cluster (layer) independently applying a force-directed implementation within a rectangle
- place the two rectangles at some distance (parameter)
- implement the bundling algorithm and apply it to inter-cluster (inter-layer) edges

Tutorial task

- clustered graphs : each node appears in a single layer (cluster) and relationships between nodes are of the same type
- task: visualize a clustered graph - should work for two clusters

- draw each cluster (layer) independently applying a force-directed implementation within a rectangle
- place the two rectangles at some distance (parameter)
- implement the bundling algorithm and apply it to inter-cluster (inter-layer) edges
- experiment with political blogosphere, argument network (besides the two clusters, nodes and edges have different types)

Tutorial task (bonus)

- expand your method to work for many layers/clusters
- you need to find a way to arrange an arbitrary number of boxes - inspiration cola.js, yEd

Reading and Next

Additional Reading

Paper "The State of the Art in Multilayer Network Visualization" (F. McGee, M. Ghoniem, G. Melancon, B. Otjacques and B. Pinaud)

Paper "Force Directed Edge Bundling" (D. Holten, J. J. van Wijk)

Reading and Next

Additional Reading

Paper "The State of the Art in Multilayer Network Visualization" (F. McGee, M. Ghoniem, G. Melancon, B. Otjacques and B. Pinaud)

Paper "Force Directed Edge Bundling" (D. Holten, J. J. van Wijk)

Next

12	March 20	Tutorial: multilevel and bundling	Alister
	March 22	High-dimensional data visualization: basics	Alex
13	March 27	Tutorial	Alister
	March 29	High-dimensional data visualization: advanced	Alex
14	April 3	Final Presentations	Students
	April 5	Final Presentations	Students

Final Remarks

- For all organizational questions please ask me (course coordinator)

Final Remarks

- For all organizational questions please ask me (course coordinator)
- Please give us feedback (official, unofficial) - give details and be constructive so that we can improve!

Final Remarks

- For all organizational questions please ask me (course coordinator)
- Please give us feedback (official, unofficial) - give details and be constructive so that we can improve!
- If you like network visualization (algorithms, computational experiments, user studies) - ask me for a topic of master's thesis!

Final Remarks

- For all organizational questions please ask me (course coordinator)
- Please give us feedback (official, unofficial) - give details and be constructive so that we can improve!
- If you like network visualization (algorithms, computational experiments, user studies) - ask me for a topic of master's thesis!
- Possible direction: use of the machine learning methods for generation of better graph layouts.

Final Remarks

- For all organizational questions please ask me (course coordinator)
- Please give us feedback (official, unofficial) - give details and be constructive so that we can improve!
- If you like network visualization (algorithms, computational experiments, user studies) - ask me for a topic of master's thesis!
- Possible direction: use of the machine learning methods for generation of better graph layouts.
- Possible direction: just check https://evm.science.uu.nl!

Final Remarks

- For all organizational questions please ask me (course coordinator)
- Please give us feedback (official, unofficial) - give details and be constructive so that we can improve!
- If you like network visualization (algorithms, computational experiments, user studies) - ask me for a topic of master's thesis!
- Possible direction: use of the machine learning methods for generation of better graph layouts.
- Possible direction: just check https://evm.science.uu.nl!

