Multidimensional Data Visualization

Low-dimensional Data

Department of Information and Computing Science Utrecht University, the Netherlands

Alexandru Telea

Professor Visual Data Analytics, Utrecht University, Netherlands

- full professor (UU, since 2019; RUG 2007-2019)

- 30 PhD students
- group leader Visualization and Graphics

Visualizing Relational Data

You have learned how to do this

What about data attributes?

1 attribute
general graphs (color)

2 attributes (color, size)

What about data attributes?

How to visualize this?

Examples of trees with data attributes

Attributes (per node)

- type (color)
- image

Attributes (per node)

- type (color)
- multiple text tags

The Visualization Pipeline

Direct vs Inverse Mapping Principles

$\xrightarrow[\text { direct mapping }]{\longrightarrow}$ inverse mapping
A. Telea, Data Visualization - Principles and Practice, $2^{\text {nd }}$ ed., CRC Press, 2014

What are data attributes?

ute type	operations	examples	K	$\left\lvert\, \begin{aligned} & \text { less } \\ & \text { general } \end{aligned}\right.$
categorical(1)	equality	gender		
ordinal	above, <,>	weekdays	InfoVis data	
discrete	above, +,-	\#persons		
quantitative	above, *,/	voltage	- SciVis data	\downarrow general

${ }^{1}$ relations can be seen as ordered pairs of categorical attributes

Structure of a relational+attribute dataset

node ID		attrib	s per			ges	most)	node
Node	A_{1}	A_{2}	...	A_{n}	E_{1}	E_{2}	\ldots	E_{m}
1	any kinds/values of all above four attribute types				2	6		3
2					5	1		8

What about 'big data'?

Two independent things to measure

node ID	n attributes per node				m edges (at most) per node				
Node	A_{1}	A_{2}	...	A_{n}	E_{1}	E_{2}	\ldots	E_{m}	
1					2	6		3	
2					5	1		8	
\ldots									

Number of nodes N

- each node (table row) has the same type and number of attributes
- also called samples, observations, or data points

Number of attributes n

- each attribute (table column) is of a given type (ordinal, categorical, etc)
- also called dimensions or variables

What about 'big data'?

Quiz

What is harder to visualize?

1000 data points having each 1 numerical attribute

100 data points having each 10 numerical attributes

Why?

What about 'big data'?

What is harder to visualize

- $\mathrm{N}=1000$ data points having $\mathrm{n}=1$ single numerical attribute each
- $\mathrm{N}=100$ data points having $\mathrm{n}=10$ numerical attributes each

The number of values $\mathbf{n *} \mathbf{N}$ to show is the same, but...

1000 samples $\mathbf{x} 1$ attribute
100 samples $\times 10$ attributes

1D graphs/charts work pretty well :)

many chart kinds, many problems (not scalable, cluttered, abstract, ...)

Solution: Aggregation

Aggregating the samples (N)

Simple idea: reduce \#data points (N) by grouping related samples (e.g. averaging) Does this always work?

Sample Aggregation Challenges

Continuous, numerical, spatial data

bone dataset, 80 K points

bone detail, 88 polygons

Discrete, non-numerical, non-spatial data

- we throw away 75% of the data
- the semantics stays the same
- interpolation: simple
- resampling: Cauchy-continuous ©
- we throw away one single character
- the semantics becomes fully different!
-interpolation: often not possible
- resampling: not Cauchy continuous $;$

Solution: Aggregation

Aggregating the dimensions (n) by selection

Advantages

- very easy to do

Problems

- which (few) dimensions to select to visualize?
- what to do with the other (tens..hundreds of) dimensions?

Solution: Aggregation

Aggregating the dimensions (n) by synthesis

2D projection

Advantages

- visualization encodes all the data (samples, attributes)

Problems

- what do the visual variables mean?
- how to decode the n attributes from them?

1. Scatterplots

Scatterplots

- show the correlation of $2 . .5$ ordinal/quantitative variables (measured at the same points)

Correlation between life expectancy, fertility rate and population of some world countries (2010)

Five variables (x/y position, size, color, label)

Scatterplot challenges

Size coding vs occlusion

- stock data (dot $=$ stock, $x=$ traded volume, $y=$ percentage change, color $=$ industry sector)

disk size $=$ market capitalization shows more data, but too much occlusion!

disk size = constant
shows less data (3 variables), but less occlusion

Color coding vs occlusion

color = 1-year performance (quantitative) less clutter than when mapping categorical variable industry sector to color

color $=$ constant
shows less data (2 variables) - classical scatterplot
easiest plot to interpret from all

Encoding density

Take a very large scatterplot

- tens..hundreds of thousands of data items (points)
- how to handle overplotting (occlusion)?

standard scatterplot
we have no idea what happens inside the big blob!

Transparency coding

- very simple technique
- emphasizes data-rich regions, suppresses outliers
- in the limit: scatterplots become continuous density fields (for millions of points)

Encoding density

Going from discrete scatterplots to continuous fields

color-coded density field we see local point density well

color-coded density field
we see local point density well

color-and-height coded density field we see local point density even better

Main idea

- interpret the point-density as a continuous 2D scalar field
- this transforms the discrete scatterplot into a continuous field
- visualize this continuous field using classical field visualization methods
- continuous color coding (e.g. using rainbow colormap)
- 3D height plots, contours
- abstract from details, show overview (good for big data)

Scatterplot matrices (SPLOMs)

- consider all pairs of columns c_{i}, c_{j}
- construct scatterplots $P_{i j}$ for all pairs c_{i}, c_{j} over all rows
- arrange $P_{i j}$ in a (symmetric) matrix; shows correlation of any c_{i} with any c_{j}
- nice, but does not scale to tens..hundreds of columns

2. Data Tables

Tables

- one of the most ubiquitous types of (InfoVis) data
- table: set of rows (observations) and columns (dimensions)
- columns can have different types
- rows and columns are not uniquely ordered
- drawing a large table (> 10 columns or 50 rows) becomes useless...

How to visualize big tables?

Tables

First enhancement: overlay bar charts on columns

Added value

- quickly scrolling through the table pre-attentively highlights minima, maxima, and large changes
- this allows us to explore large tables easily

Tables

Second enhancement: the 'table lens' technique [Rao et al, '94]

- shows the table at any user-chosen level of detail

國Table: sif							[x
id	date	time	open	high	low	close	\wedge
472	2005-02-15	11:00	1.480000	$=1.480000$	1.480000	1.480000	
473	2005-02-14	15:00	1.490000	+1.490000	1.480000	1.480000	
474	2005-02-14	14:00	1.500000	+1.500000	1.470000	1.470000	
475	2005-02-14	13:00	1.500000	*1.52000	1.500000	1.520000	
476	2005-02-14	12:00	1.470000	-1.500000	1.470000	1.50000	
477	2005-02-14	11:00	1.510000	$=1.510000$	1.510000	1.510000	
478	2005-02-10	14:00	1.340000	-1.340000	1.330000	1.330000	
479	2005-02-10	13:00	1.310000	\$1.360000	1.310000	1.360000	
480	2005-02-10	12:00	1.300000	-1.310000	1.300000	1.310000	
481	2005-02-10	11:00	1.300000	$=1.300000$	1.300000	1.30000	
482	2005-02-09	16:00	1.190000	-1.22000d	1.190000	1.220000	
483	2005-02-09	15:00	1.090000	= 1.090000	1.090000	1.09000	
484	2005-02-09	14:00	1.100000	= 1.100000	1.100000	1.10000	
485	2005-02-09	13:00	1.177000	-1.170006	1.130000	1.130000	
486	2005-02-09	12:00	1.250000	-1.25000d	1.200000	1.20000	
487	2005-02-07	15:00	1.290000	-1.290000	1.280000	1.280000	
488	2005-02.07	14:00	1.280000	$=1.280000$	1.280000	1.280000	
489	2005-02-07	13:00	1.280000	$=1.280000$	1.280000	1.280000	
490	2005-02-07	12:00	1.230000	-1.260000	1.230000	1.260000	
491	2005-02.04	15:00	1.300000	-1.300000	1.290000	1.29000	
492	2005-02-04	14:00	1.280000	-1.200000	1.280000	1.200000	
493	2005-02.04	13:00	1.350000	+1.350000	1.310000	1.310000	
494	2005-02-04	12:00	1.350000	= 1.350000	1.350000	1.350000	
455	2005-02-03	15:00	1.320000	-1.330000	1.320000	1.330000	
496	2005-02-03	14:00	1.340000	-1.340000	1.310000	1.310000	
497	2005-02-03	13:00	1.310000	= 1.310000	1.310000	1.310000	
498	2005-02-03	12:00	1.300000	\$1.310000	1.300000	1.310000	
499	2005-02-02	15:00	1.290000	+1.290000	1.270000	1.270000	
500	2005-02-02	14:00	1.230000	-1.24000	1.230000	1.240000	
501	2005-02.02	13:00	1.210000	\$1.22000	1.210000	1.220000	
502	2005-02-02	12:00	1.190000	-1.24000	1.190000	1.240000	
503	2005-02-01	16:00	1.190000	$=1.190000$	1.190000	1.19000	
504	2005-02-01	15:00	1.180000	\$1.190000	1.180000	1.19000	
505	2005-02-01	13:00	1.160000	$=1.160000$	1.160000	1.160000	
506	2005-02-01	12:00	1.150000	$=1.150000$	1.150000	1.150000	
507	2005-02-03	16:00	1.130000	$=1.130006$	1.130000	1.130000	
508	2005-02.03	15:00	1.120000	$=1.120000$	1.120000	1.120000	
509	2005-02-03	14:00	1.110000	$=1.110000$	1.1110000	1.111000	
510	2005-02-03	13:00	1.100000	\$1.11000	1.100000	1.110000	
511	2005-02.03	12:00	1.100000	=1.100000	1.100000	1.100000	

text opacity=1 font size=12pt

text opacity \downarrow font size \downarrow

text not drawn bar opacity \uparrow

bar opacity=1
simplification=on

[^0]
Tables

Third enhancement: single-column sorting

- sort table on values of user-selected column (attribute)
- zoom-out mode shows distribution and correlation of column values

Stock data example

Tables

Fourth enhancement: multiple-column sorting and row grouping

- sort table on multiple user-selected column values
- emphasize same-value column ranges with cushions ${ }^{1}$

Show stock data grouped by industry, company, and date

Sorting has two roles

- group rows having same value in an attribute
- show how other attributes vary within a group

Tables

Multiple sorting: generates on-the-fly a hierarchy (tree) from the table

- one tree-level per sort
- one node per group of sorted rows having the same value

We'll see soon how to visualize this tree!

Design Question: Trees or Tables?

Consider this simple table:

Name	Age	Salary	Function
John Doe	47	$65 K$	management
Bill Smith	35	40 K	IT
Fanny Mae	37	35 K	administration

Conclusion

- both designs are possible
- 'right' one depends on type of task
- compare items per category: use tree design
- compare all items across categories: use table design

Icicle plots

Basic idea

- nodes: rectangles; edges: not drawn explicitly, but shown by node positions
- one level per vertical band (root at left, leaves at right)
- siblings stacked vertically within a band
- compact display, no clutter; node size = sum of subtree importance

We shall see several variations of the icicle plot further!
¹J. Kruskal, J. Landwehr, Icicle plots: Better displays for hierarchical clustering, JSTOR, 1983

3. Treemaps

Treemaps [Shneiderman '92]

Basic idea: ‘slice and dice’ layout

- 1 node $=1$ rectangle
- child node rectangles: nested in the parent node rectangle (recursive subdivision)
- leaf rectangle size and color show data attributes
- edges: not drawn explicitly!
- very compact: tens of thousands of nodes on one screen! no pixel wasted
- aspect ratios are not very good; hierarchy depth unclear

How can we improve the basic idea?

Squarified Cushion Treemaps

Two extensions of basic treemaps

- enforce near-square aspect ratios during rectangle subdivision ${ }^{1}$
- use shading: cushion profiles to convey hierarchical structure ${ }^{2}$

For each rectangle r_{i} (except root)

- define 2D parabola $h_{i}(x, y)$ with height $H_{i}=f^{d}$ ($d=$ depth of r_{i} in tree)

Compute global height $h=\Sigma_{\mathrm{i}} h_{i}$
For each image pixel $I(x, y)$

- $I(x, y)=\operatorname{shading}(h(x, y))$
- use an oblique light source for better results

[^1]${ }^{2}$ J. J. van Wijk, H. van de Wetering (1999) Cushion treemaps: Visualization of hierarchical information, Proc. InfoVis, 135-142

Squarified Cushion Treemaps

- rectangle borders are not explicitly drawn \rightarrow gain space
- borders are implicit in the shading discontinuities
- discontinuity strength conveys tree depth levels
- near-square aspect ratio of cells allows easier size (area) comparison

Squarified Cushion Treemaps

Comparison of methods

hard disk, $\sim 30 \mathrm{~K}$ files

Slice and dice layout

- unbalanced cell sizes
(hard to compare)
- tree structure is not very clear

Squarified layout

- balanced cell sizes (easier to compare)
- tree structure is extremely salient

Squarified Cushion Treemaps

Example 1: WinDirStat tool ${ }^{1}$

- visualize a file system (e.g. your hard disk)

${ }^{1}$ http://windirstat.info

Squarified Cushion Treemaps

Example 2: Map of the Market ${ }^{1}$

Visualize stock exchange data online

- hierarchy: nesting of companies within sectors
- rectangle size: market capitalization
- color: gain (green) ... loss (red)

Squarified Cushion Treemaps

Example 3: Another Map of the Market ${ }^{1}$

Visualize stock exchange data online

- hierarchy: nesting of companies within sectors
- rectangle size: market capitalization
- color: gain (green) ... loss (red)

Squarified Cushion Treemaps

Treemaps from tables

- recall the multiple-sorting idea for tables?
- implicitly creates a hierarchy from a table (with just a few clicks to sort columns)
- visualize hierarchy with a treemap

Stock exchange table

- three levels:
- market sector
- companies
- prices / day over 1 month
- colors
- red: daily loss
- green: daily gain
- light blue: unavailable data

Discovered a small emerging company with steady growth!
A. Telea (2006) Combining Extended Table Lens and Treemap Techniques for Visualizing Tabular Data, Proc. EuroVis

4. Parallel coordinates

Parallel coordinates

Take again a table

- rows: car brands
- columns: car parameters (MPG, cylinders, horsepower, weight, acceleration, fabrication year)

Parallel coordinates

- table columns: different y axes
- table cells: points on their corresponding axes
- table rows: polylines connecting their points
- column correlations: 'bundles' of close lines

A. Inselberg (2009) Parallel Coordinates: Visual Multidimensional Geometry and its Applications. Springer

Implementations: Mondrian (theursus.de/mondrian), Prefuse (prefuse.org), Xdat (xdat.org), Xmdv (http://davis.wpi.edu/xmdv)

Tables vs parallel coordinates

Table plot

- row: horizontal line
- column: vertical line
- column-column correlation: not easy to see
- no overdraw/clutter

Parallel coordinates

- row: skewed polyline
- column: vertical line (permuted values)
- column-column correlation: easy to see
- overdraw/clutter present

Parallel coordinates

Selection

- use mouse to select attribute ranges on axes
- highlight all rows (lines) passing through selection
- supports queries such as
- show all cars with a low acceleration
- find what attributes (e.g. MPG, cylinders, weight, ...) low-acceleration cars have

Parallel coordinates

Enhancements

- permute axes (horizontally) and swap their direction (vertically) to minimize line crossings
- add histograms on axes to show \#rows per unit-data value

Smooth parallel coordinates

Enhancements

- use curves (splines) instead of polylines
- reduces visual clutter
- makes visually following a sample (curve) easier
classical parallel coordinates

smooth parallel coordinates

M. Rida et al (2006). Multivariate continuous data - Parallel Coordinates. Graphics of Large Datasets: Visualizing a Million. Springer

Bundled parallel coordinates

Enhancements

- use curves (splines) instead of polylines (as in smooth parallel coordinates)
- bundle the curves (as in graph bundling)
- massively simplifies the visualization, reduces clutter
- following groups of similar samples (close curves) is much easier
classical parallel coordinates

bundled parallel coordinates

[^2]
Hierarchical parallel coordinates

- reduce clutter for very large datasets ($10^{6} . .10^{9}$ rows)
- hierarchically cluster rows r_{i}
(1) create a cluster $C_{i}=\left\{r_{i}\right\}$ for each row. Set $S=\left\{C_{i}\right\}$
(2) find two most similar clusters C_{i}, C_{j} using an Euclidean distance metric $d\left(r_{i}, r_{j}\right)=\Sigma_{k}\left(r_{i k}-r_{j k}\right)^{2}$
(3) build parent cluster $C=\left(C_{i}, C_{j}\right), S=S \backslash\left(C_{i} \cup C_{j}\right) \cup C$
(4) repeat from step 2 until $S=\{$ root cluster \}
- select a 'cut' K in the cluster tree S at desired level-of-detail
- visualize each cluster $\mathrm{C} \in K$ with an opacity band which encodes cluster size and diameter

root cluster

finer-level cut

[^3]
Putting it all together

Low-dimensional data visualization

- easy-to-use tool: SPLOMs, parallel coordinates, and projections (next module)
- Java implementation (runs anywhere), simple text input format

Summary: Low-dimensional data visualization

For what

- datasets with many samples N but few (2..10) dimensions n

Main design idea

- allocate one visual variable for one..a few dimensions

Techniques

- scatterplots, scatterplot matrices
- table lenses
- table-tree duality
- icicle plots, treemaps
- parallel coordinates

Open challenge: What to do with many dimensions?

[^0]: R. Rao, S. Card (1994) The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information, Proc. ACM CHI, 318-322

[^1]: ${ }^{1}$ M. Bruls, K. Huizing, J. J. van Wijk (1999) Squarified Treemaps, Proc. VisSym, 322-330

[^2]: G. Palmas et al (2014). An Edge-Bundling Layout for Interactive Parallel Coordinates. Proc. PacificVis

[^3]: * Y. Fua, M. Ward, E. Rundensteiner, Hierarchical Parallel Coordinates for Exploration of Large Datasets, IEEE InfoVis, 1999

 See also the Xmdv tool, http://davis.wpi.edu/xmdv

