
Multidimensional Data Visualization

prof. dr. Alexandru (Alex) Telea

Department of Information and Computing Science
Utrecht University, the Netherlands

High-dimensional Data

For what
• datasets with many samples N but few (2..10) dimensions n

Summary: Low-dimensional data visualization

Main design idea
• allocate one visual variable for one..a few dimensions

Techniques
• scatterplots, scatterplot matrices
• table lenses
• table-tree duality
• icicle plots, treemaps
• parallel coordinates

Open challenge: What to do with many dimensions?

3

1. Multidimensional
Projections

What is really high-dimensional data?

High-dimensional data ML / DL

Solution: Multidimensional projections

Hundreds of dimensions with often no clear meaning

What is a multidimensional projection?

Short answer: A tool to look into really high-dimensional data

Longer answer
Consider a multivariate dataset, like a table

T = {ri}i=1..m , r = {cj}j=1..n , cj Î Dj , Dj Í Continuous U Discrete U Ordinal U Categorical
• rows: observations (measurements)
• columns: dimensions (attributes)

How to visualize T?

m transactions

n attributes (fields) of a transaction

Example: stock exchange data

Drawing a large table
(> 10 columns/rows)
becomes useless…

directly
correlated

inversely
correlated

Visualizing high-dimensional data

can you see the gray signal here?

Multivariate charts

Table lenses

Parallel coordinates

Scatterplot matrices

Methods discussed so far do not scale well L

Projections

color map values of
a selected column

Table 2D projection

a table row gets
mapped to a point

2D point distance reflects
nD row distance

Why is this useful?
• no matter how large n is, we obtain a 2D scatterplot-like image (so it’s visually scalable)
• point-to-point distance (in 2D) shows similarity of observations (in nD)
• coloring points by one attribute can show additional information on the observations

n attributes

m
ob

se
rv

at
io

ns

Projection example: Finding similar tissues

E. Taskesen, M. Reinder (2016) 2D Representation of Transcriptomes by t-SNE Exposes Relatedness between Human Tissues. PLoS ONE 11(2).

1 point = 1 tissue sample
data = RNA profiles
close points = similar data
similar data = similar tissue

DR creates clusters of similar shapes!

Projection example: Browsing a 3D database

X. Chen et al. (2021) Scalable Visual Exploration of 3D Shape Databases via Feature Synthesis and Selection, CCIS Springer

Projections vs other techniques

Projection Scatterplot matrix
Pro’s
• show similar

observations
• no clutter
• scalable
Con’s
• don’t show

why points
are similar

Pro’s
• show variable

correlations
Con’s
• doesn’t show

similar points
• not scalable to

many columns

Pro’s
• show variable

correlations
• more scalable than SPLOMs
Con’s
• generates clutter
• requires one to order axes

Parallel coordinates

Dimensionality Reduction Methods
Overall considerations

In general, perfect distance-preserving of the data in DR is not possible!

Take the ‘simple’ problem of reducing d=3 to m=2 dimensions in cartography

DR

two points very close in 3D... ...become very far apart in 2D

...become very far apart in 2D

Dimensionality Reduction Methods
How to deal with distance preservation

1. Approximately preserve distance

…since our distances are anyway computed from heuristic features...

2.Preserve k-nearest neighbors, not distances

…since we care about who’s most similar, and not how similar precisely

ddD (x , y) ≈ dmD (x , y)

equivalent
visualizations

DR Methods: Principal Component Analysis
Simplest solution for DR

• compute covariance matrix A of feature vectors f1...fN
• do PCA on A to find

• its eigenvectors e1...ed
• its eigenvalues l1... ld (sorted so that l1 > l2 > ... > ld)

• select m largest eigenvectors e1...em
• project f1...fN onto the subspace spanned by e1...em
• intuition: we preserve this way the most variance in f1...fN that we can

describe with only m dimensions

1MNIST dataset: http://yann.lecun.com/exdb/mnist/

Example: MNIST dataset1
• 1 point = 1 image (28x28 pixels) of handwritten digit (0..9)
• 28x28 = 764 features (luminances of all pixels)
• points colored by class (0..9)

This projection is not very good!
Classes (colors) are mixed, so we cannot use 2D
features to reason well about image similarities

DR Methods: Multidimensional Scaling (MDS)
Addresses some of the PCA problems

• MDS aims to preserve the pairwise distances of points
• do this by minimizing the so-called stress

where dij(d) = distance between samples i, j in d-D (data space)
dij(m) = distance between samples i, j in m-D (projection space)

• minimization: done by linear algebra or force-directed methods1

Intuition

• if the stress is zero, then all pairwise distances in m-D are identical to the
corresponding pairwise distances in d-D

• unlike PCA, we don’t care here about the actual coordinates in d-D or m-D,
but only about the distances between points

dij
(d) −dij

(m)()
2

i =1

N

∑
i =1

N

∑

1https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf

DR Methods: Isomap
Addresses linearity problem of PCA, MDS

• PCA, MDS are linear: create a single (linear) transformation to map the entire
d-D space to the lower-dimensional m-D space

• this is exact only when data in d-D is spread over a hyperplane!

Isomap
• assume the data is spread in d-D over a manifold (curved surface)
• this is more flexible than a hyperplane
• compute d-D distances along this manifold, and not in Rd

Rd distances:
poor modeling of this dataset

Distance along manifold: This
is what we want…

…and this is exactly what
Isomap computes!

DR Methods: Isomap
Isomap: How to compute the high-dimensional manifold?

• manifold obtained by nearest-neighbor graph G of points in d-D
• distances: shortest-path distances in G (computed e.g. by Dijkstra’s algorithm)
• use MDS with these distances

PCA: Poor separation Isomap: A bit better separation

curved sheet dataset Isomap: unfolds the manifold

Works very well!
Data is on a

manifold

Works poorly
Data has a high

intrinsic
dimensionalityMNIST

dataset

DR Methods: t-SNE
Drops Isomap’s manifold assumption

• data in d-D can have higher intrinsic dimensionality than two
• d (data dimensionality) can be very large
• we now consider preserving neighborhoods, and not distances

t-Stochastic Neighbor Embedding (t-SNE)

Let’s show the results first for the MNIST dataset J

PCA: Poor
separation...

Isomap: Bit better
separation...

t-SNE: Excellent
separation!

Good video introducing t-SNE: https://www.youtube.com/watch?v=RJVL80Gg3lA&list=UUtXKDgv1AVoG88PLl8nGXmw

clusters (digit images) are
almost perfectly separated

DR Methods: t-SNE
How t-SNE works

Notations

x1...xN points (feature vectors) in high-dimensional feature space (Rd)
y1…yN points in latent (low-dimensional) feature space (Rm)

1. Compute similarities in high-dim. space

p j |i =
exp − xi − x j

2
2σ i

2⎛
⎝
⎜

⎞
⎠
⎟

exp − xi − xk
2
2σ i

2()
k ≠i
∑

xi

xj

bandwith si

similarity of xj with xi is defined as
probability that xi has xj as close neighbor

normalizes density (considers
similar #neighbors for all points)

DR Methods: t-SNE
2. Symmetrize to obtain a true similarity metric

3. Model similarities in low-dim. space

Note qij has very different formula from pij

• we use a Student t-distribution, not a Gaussian one
• we don’t have a bandwith s

pij =
pi | j + p j |i
2N

qij =
1+ y i − y j

2⎛
⎝
⎜

⎞
⎠
⎟
−1

1+ yk − y l
2()

−1

l ≠k
∑

k
∑

yi

yj

Student t-distribution (not Gaussian!)

Why we model low-dim and high-dim similarities differently?

DR Methods: t-SNE
Why we model low-dim and high-dim similarities differently

We use a Student t-distribution in 2D, and a Gaussian one in high-dim

This allows modeling points that are far apart in high-dim accurately in 2D

Using t-distribution makes points far-apart in
low-dim look closer, so they better match
their high-dim distances

Student t-distribution
Gaussian distribution

3 points in 2D

DR

after DR to 1D

sq
rt(

2) 2

if we want to preserve
local structure, we must
make the red distance
correspond to a higher

similarity

distance

si
m

ila
rit

y

DR Methods: t-SNE
4. Compute low-dim positions

Find yj so that qij ≃ qij

For this, we first need to somehow compare pij and qij

Use Kullback-Leibler divergence to compare the distributions pij , qij

Minimize KL by gradient descent

• initialize yj randomly in 2D space
• while KL > e

compute

move yi = yi - ∇KL

KL(P ||Q) = pij
j ≠i
∑ log

i
∑

pij
qij

says that we want pij=qij

says that we care more about preserving
close neighbors (high pij values)

∇KL = 4 pij −qij() y i − y j() 1+ || y i − y j ||2()
−1

j
∑

DR Methods: t-SNE
Advantages

Can keep local data structure (clusters) better than most..all other DR methods

Works very well even with very high-dimensional spaces

Only needs similarities of points, not actual feature vectors

Does not care how data is distributed (on a plane, manifold, ...)

Disadvantages

Non-deterministic (starts each time with a random initialization)

Slow (seconds for hundreds of points, many minutes for 100K or more)

Tricky to parameterize (how to set s? Not clear – trial and error...)

Let’s see some simple t-SNE demos1,2 and
how to do parameter setting!

1 https://distill.pub/2016/misread-tsne/
t-SNE source code: https://lvdmaaten.github.io/tsne/

2 https://projector.tensorflow.org

Other DR Methods
UMAP

Approximation of t-SNE

Keeps all advantages, but about 10x faster and deterministic

Even better same-item cluster separation

UMAP code and documentation: https://umap-learn.readthedocs.io/en/latest/

MNIST with t-SNE MNIST with UMAP

2. Measuring
DR quality

DR Quality Intuition

A

B

C
P(A)

P(B)

P(C)

P(A)

P(C)

P(B)

DR method 1

DR method 2

dataset

projection 1

projection 2

Which projection (1 or 2) keeps better the structure of D?
Why?

Property 1: Distance preservation

A

B

C
P(A)

P(B) P(C)

DR method 1

DR method 2

dataset

projection 1

projection 2

✘

✔

d(A,B)
d(A,C)

d(P(A),P(B))

d(P(A),P(C))

d(P(A),P(B))
Projection 1
d(A,B)

d(P(A),P(B)) ≈
d(A,C)

d(P(A),P(C))

Projection 2
d(A,B)

d(P(A),P(B)) ≠
d(A,C)

d(P(A),P(C))

P(A)

P(C)

P(B)

d(P(A),P(C))

27

1. Normalized stress

Measuring distance preservation

distance in nD
distance in 2D

2. Shepard diagram

ide
al

good too small
𝑃(𝑥!) − 𝑃(𝑥")

chaotic

Quantify diagram goodness by its Spearman rank correlation r

Ideally r should be close to 1

𝜎 =
∑!" 𝑥! − 𝑥" − 𝑃(𝑥!) − 𝑃(𝑥")

#

∑!" 𝑥! − 𝑥"
#

𝑥! − 𝑥"

𝑃(
𝑥 !
)−

𝑃(
𝑥 "
)

Distance preservation limitations

equivalent
visualizations

Take these two projections

They tell the same story
• we see three well-separated clusters of points

But inter-point distances are different
• so they will have very different s and r metrics

We need to measure something else!

Idea: Measure neighborhood preservation

dataset projection

xi P(xi)

µi (K) =
K nearest
neighbors

of P(xi)

Ui (K) =
points in µi (K)
but not in ni (K)

ni (K) =
K nearest
neighbors

of xi

Ui
(K) are false neighbors of P(xi)

Ideally, Ui
(K) is empty (all neighbors of P(xi) come from neighbors of xi)

We measure this by trustworthiness

T =
r(i, j) = rank of j

in sorted set µi (K)https://mespadoto.github.io/proj-quant-eval/

Measure neighborhood preservation (cont.)

dataset projection

xi
P(xi)

µi (K) =
K nearest
neighbors

of P(xi)

Vi (K) =
points in ni (K)
but not in µi (K)

ni (K) =
K nearest
neighbors

of xi

Vi
(K) are missing neighbors of P(xi)

Ideally, Vi
(K) is empty (all neighbors of xi go into neighbors of P(xi))

We measure this by continuity

r(i, j) = rank of j
in sorted set µi (K)
^

C =

https://mespadoto.github.io/proj-quant-eval/

False neighbors: points that are far
(in nD) but placed close (in 2D)

R. Martins et al (2014) Visual analysis of dimensionality reduction quality for parameterized projections. Computers & Graphics 41, 26-42

Large stress: points whose spacing
(in 2D) does not reflect their spacing in nD

Visualizing projection errors

Missing neighbors: points that are close (in nD) but placed far apart (in 2D)

…for a single point

…for a point group

R. Martins et al (2014) Visual analysis of dimensionality reduction quality for parameterized projections. Computers & Graphics 41, 26-42

Visualizing projection errors

3. DR quality
in practice

Which DR technique to use ?

techniques

surveys

Big and unclear ‘choice space’

• 50+ techniques
• 12 main surveys
• mainly theoretical discussion
• many parameters
• very limited practical comparison

Practitioner questions

• which projection is best for my
context (requirements, data, …)?

• how to set its parameters?
• how to measure its quality?

Let’s measure projection errors big-scale!

M. Espadoto et al (2019) Towards a Quantitative Survey of Dimension Reduction Techniques (IEEE TVCG)

19 datasets

45 techniques

6 metrics

parameter
analysis

insights

Datasets and Metrics

Datasets

Metrics

aggregate into
a single quality

metric µ

Insights (1)
How good are projections, for which data?

for each projection Pi
for each dataset Dj

compute optimal quality µij (param. grid search)

How easy is to get optimal quality?

for each projection Pi
compute variance of params pi yielding optimal
quality over all datasets Dj

What we see

• no projection best for all dataset types
• some are quite poor in general (N-MDS, GDA)
• dataset type strongly influences quality

(imdb: hard; orl: easy)
• hard to tune parameters to get optimal

quality (large variance of pi)

Insights (2)
How good are parameter-preset projections?

for each projection Pi
pi

pre = param values yielding most times optimal
quality over all datasets Dj

for each projection Pi
for each dataset Dj

compute quality µij using pi
pre

What we see

• very similar image to earlier one (optimal
techniques stay good when using presets)

• again, quality strongly depends on dataset type
• t-SNE, UMAP, IDMAP, PBC score best on

average

Insights (3): Which projections perform similarly?

‘Projection of projections’ map

• one point = one technique
• 5 attributes (trustworthiness, continuity, norm. stress, neighborhood hit, Shepard goodness;

averaged over all tested datasets)
• we see a clear quality trend
• helps choosing projections that behave similarly to a user-chosen one

Benchmark

https://mespadoto.github.io/proj-quant-eval

All open source

• projection implementations
• datasets
• metric engines
• visualization engines
• optimization engines
• test harness
• all Python code

Please share, use, and extend!

4. Learning Projections

Insights from our survey

No ideal projection technique L

• UMAP: easy to use, quite fast, but quality not ideal
• t-SNE: quality is (very) high, but very slow, hard to tweak parameters, non-deterministic

• quality depends a lot on type of data

What we want to have

• high-quality projection
• having `style’ of any projection deemed good by user
• working very fast (millions of samples, hundreds of dimensions: seconds)
• easy to use (no complex parameters, ideally none)
• stable (same input data: same output projection)
• out-of-sample (add some more data: project along existing data)

How to achieve this?

Idea: Learn the projection!

any user-chosen
technique

(t-SNE, UMAP,
PCA, …)

• take any dataset DS and any projection technique of choice P
• project DS with P, tweak P’s parameters, obtain good scatterplot P(DS)
• pass DS and P(DS) to network, learn the mapping
• use trained network Pnn to project any other similar dataset DP

M. Espadoto et al (2020) Deep Learning Multidimensional Projections. Information Visualization 9(3), 247-269

Training-set size influence
tr

ai
ni

ng
 s

et
 s

iz
e

Quite good results with a few thousand training samples

Training effort influence
nu

m
be

r
of

 t
ra

in
in

g
ep

oc
hs

Quite good results with about 50 training epochs

Learning different projection styles

• we can imitate basically any style
• but, of course, the output quality will depend on the training material’s quality

(good `professor’ = good quality, and conversely J)

Learning different projection styles (cont’d)

Learning different projection styles (cont’d)

Learning different projection styles (cont’d)

Out of sample capability

Testing

• train on a dataset D0
• add samples to D0 to create D1, D2, ...Dn
• project P(D0),...,P(Dn)
• compare with ground-truth Pg(D0),... Pg(Dn)

Results

• our method is always stable
(out-of-sample capability by construction)

• most other methods are not
• we are close to the quality of parametric

t-SNE (pt-SNE)

Computational scalability

Code freely available: https://github.com/mespadoto/dlmp

Training + inference costs

• 3K faster than t-SNE, 2K faster than LAMP
• UMAP, LSP, MDS failed handling 1M points

Inference-only costs

• 3.5K faster than t-SNE, 2K faster than LAMP
• 10x faster than pt-SNE

ours (seed + train
+ inference)

5. Explaining Projections

• all we can see here is that some clusters and/or outliers exist
• this visualization is useless in most cases

Raw projection visualization

How to Explain Projections?

• color code points on the value of one dimension
• if dimension was used in projection: explains what makes clusters similar
• if dimension not used in projection: shows its correlation with the projected dimensions
• user must hand-pick the dimension to color code
• only works if we have not-too-many, and meaningful, dimensions

Explain by one dimension

How to Explain Projections?

landscape

water/sky

buildings

nature/
greenery

P. Joia et al., “Local Affine Multidimensional Projection,” IEEE TVCG, vol. 17, no. 12, 2011, pp. 2563–2571

How to Explain Projections?
Explain by depicting observations

projected images

• only works if input data is directly depictable (e.g. images)
• scales poorly with number of observations

How to Explain Projections?

Projector Tensorflow (https://projector.tensorflow.org)

Explain by depicting observations

digit images
colored by class

• only works if input data is directly depictable (e.g. images)
• scales poorly with number of observations

6. Connections

tsNET: Drawing Large Graphs with t-SNE

Consider a graph as a multidimensional (Euclidean) dataset!

t-SNE

graph nD distance
matrix

dimensionality
reduction (to 2D)

graph layout

J. Kruiger, A. Telea et al. (2017) Graph layouts by t-SNE; Comp Graph Forum

Examples

More
examples

116

Drawing Large Graphs with tsNET: Quality

Normalized stress
best with NEATO

tsNET performs average

Normalized stress
tsNET is by far the best

all other are similarly poor

117

Drawing Large Graphs: Minimizing the
Impact of Long Edges

standard drawing bundling long standard drawing bundling long

• long edges are cluttering a graph drawing L
• it is however hard to avoid them
• minimize their impact by bundling edges over given length

118

To end: A crazy experiment

• take a 3D mesh
• throw away vertex coordinates, keep edges only
• draw the edge-graph with tsNET
• see how some shape information was recovered J

original mesh tsNET drawing

For what
• datasets with many samples N and many (10..1000) dimensions n

Summary: High-dimensional data visualization

Dimensionality reduction
• synthesize few (2..3) dimensions out of the n ones to encode sample similarity

Techniques
• PCA
• MDS
• Isomap
• t-SNE, UMAP
• NNP

Challenges
• no perfect projection exists
• we must always measure projection errors

Thank you for your interest!

webspace.science.uu.nl/~telea001

• examples, applications
• code
• datasets
• papers
• people and projects

Alex Telea

vig.science.uu.nl

a.c.telea@uu.nl

