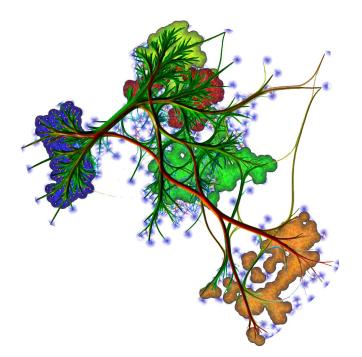
Multidimensional Data Visualization

High-dimensional Data



prof. dr. Alexandru (Alex) Telea

Department of Information and Computing Science Utrecht University, the Netherlands

Summary: Low-dimensional data visualization

For what

• datasets with many samples *N* but few (2..10) dimensions *n*

Main design idea

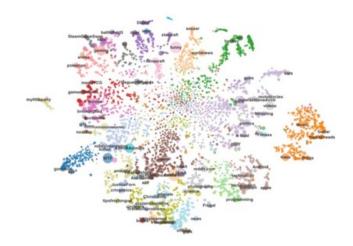
• allocate one visual variable for one..a few dimensions

Techniques

- scatterplots, scatterplot matrices
- table lenses
- table-tree duality
- icicle plots, treemaps
- parallel coordinates

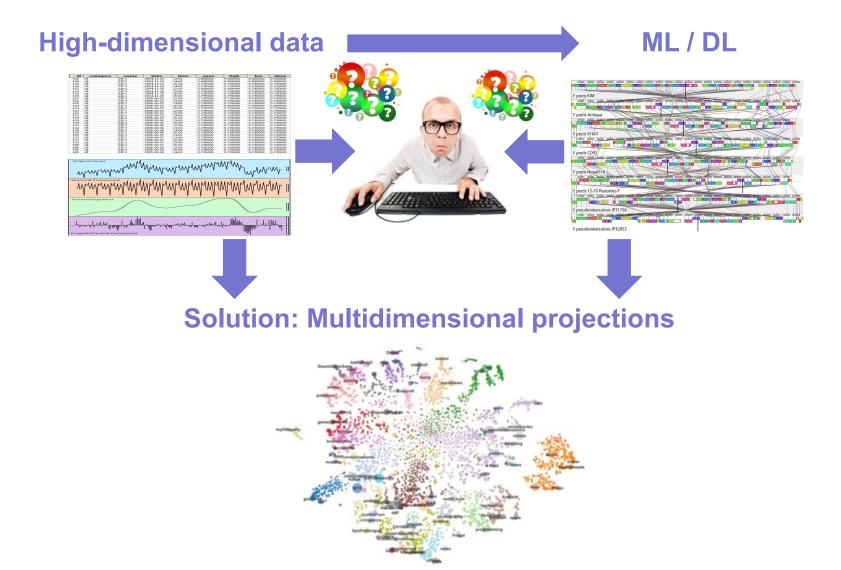
Open challenge: What to do with many dimensions?

1. Multidimensional Projections



What is really high-dimensional data?

Hundreds of dimensions with often no clear meaning



What is a multidimensional projection?

Short answer: A tool to look into really high-dimensional data

Longer answer

Consider a multivariate dataset, like a table

 $T = \{r_i\}_{i=1.m}$, $r = \{c_j\}_{j=1..n}$, $c_j \in D_j$, $D_j \subseteq Continuous \cup Discrete \cup Ordinal \cup Categorical$

- rows: observations (measurements)
- columns: dimensions (attributes)

How to visualize T?

id	category	name	date	time	open	high	low	close
636	sif	SIF1	2004-11-29	13:00	0.800000	0.800000	0.800000	0.800000
635	sif	SIF1	2004-11-29	14:00	0.800000	0.800000	0.800000	0.800000
633	sif	SIF1	2004-11-29	16:00	0.795000	0.795000	0.795000	0.795000
630	sif	SIF1	2004-11-30	14:00	0.795000	0.795000	0.795000	0.795000
632	sif	SIF1	2004-11-30	12:00	0.800000	0.800000	0.795000	0.795000
631	sif	SIF1	2004-11-30	13:00	0.795000	0.795000	0.795000	0.795000
628	sif	SIF1	2004-11-30	16:00	0.795000	0.795000	0.795000	0.795000
629	sif	SIF1	2004-11-30	15:00	0.795000	0.795000	0.795000	0.795000
627	sif	SIF1	2005-00-02	12:00	0.785000	0.790000	0.785000	0.790000
626	siF	SIF1	2005-00-02	13:00	0.790000	0.795000	0.790000	0.795000
625	sif	SIF1	2005-00-02	14:00	0.795000	0.795000	0.795000	0.795000
624	sif	SIF1	2005-00-02	15:00	0.800000	0.800000	0.800000	0.800000
620	sif	SIF1	2005-00-03	15:00	0.795000	0.795000	0.795000	0.795000
623	sif	SIF1	2005-00-03	12:00	0.795000	0.795000	0.795000	0.795000
622	sif	SIF1	2005-00-03	13:00	0.795000	0.795000	0,795000	0.795000
621	sif	SIF1	2005-00-03	14:00	0.795000	0.795000	0.795000	0.795000
619	sif	SIF1	2005-00-03	16:00	0.795000	0.795000	0.795000	0.795000
618	siF	SIF1	2005-00-06	11:00	0.790000	0.790000	0.790000	0.790000
614	sif	SIF1	2005-00-06	15:00	0.795000	0.795000	0.795000	0.795000
617	sif	SIF1	2005-00-06	12:00	0.795000	0.795000	0.795000	0.795000
616	sif	SIF1	2005-00-06	13:00	0.795000	0.795000	0,795000	0.795000
615	sif	SIF1	2005-00-06	14:00	0.795000	0.795000	0,795000	0.795000
613	sif	SIF1	2005-00-06	16:00	0.795000	0.795000	0.795000	0.795000
609	sif	SIF1	2005-00-07	14:00	0.790000	0.795000	0.790000	0.795000
612	sif	SIF1	2005-00-07	11:00	0.795000	0.795000	0.795000	0.795000
611	sif	SIF1	2005-00-07	12:00	0.795000	0.795000	0.795000	0.795000
610	sif	SIF1	2005-00-07	13:00	0.790000	0.790000	0.790000	0.790000
608	sif	SIF1	2005-00-07	15:00	0.790000	0.790000	0.790000	0.790000
606	sif	SIF1	2005-00-08	13:00	0.795000	0.795000	0.795000	0.795000
607	sif	SIF1	2005-00-08	12:00	0.790000	0.790000	0.790000	0.790000
605	sif	SIF1	2005-00-08	14:00	0.795000	0.795000	0.795000	0.795000

Example: stock exchange data

Drawing a **large** table (> 10 columns/rows) becomes **useless**...

m transactions

n attributes (fields) of a transaction

Visualizing high-dimensional data

Methods discussed so far do not scale well 😕

Multivariate charts

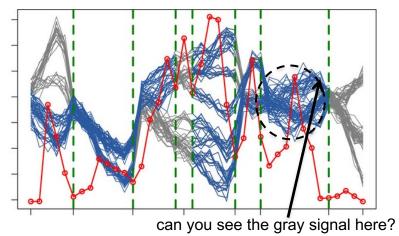
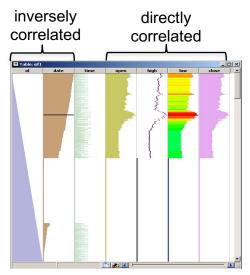
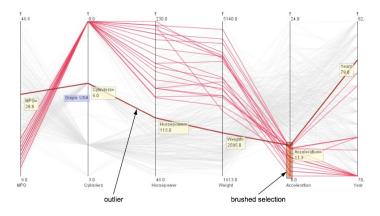


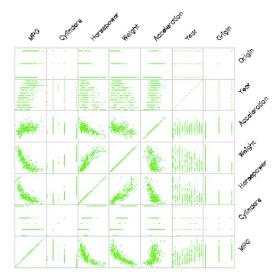
Table lenses



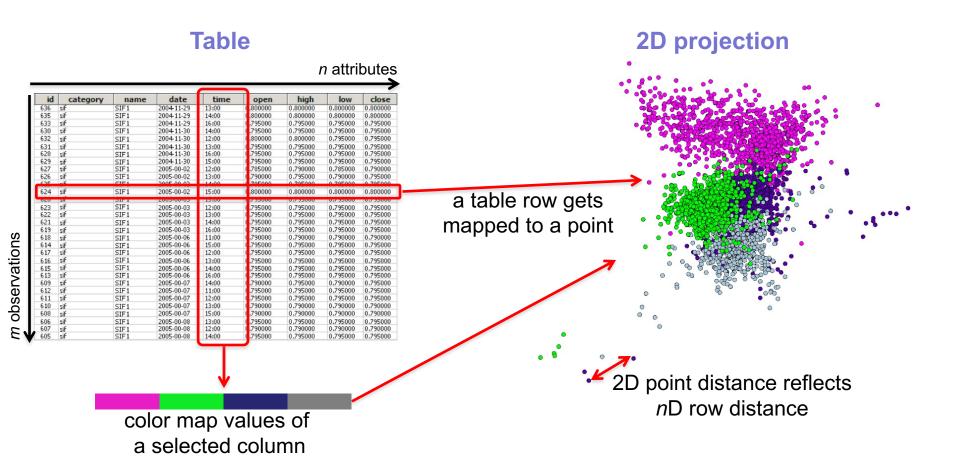
Parallel coordinates



Scatterplot matrices



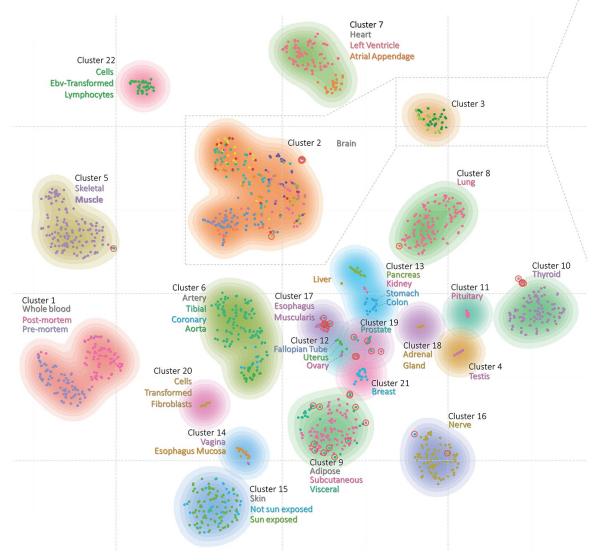
Projections



Why is this useful?

- no matter how large *n* is, we obtain a 2D scatterplot-like image (so it's visually scalable)
- point-to-point distance (in 2D) shows similarity of observations (in nD)
- coloring points by one attribute can show additional information on the observations

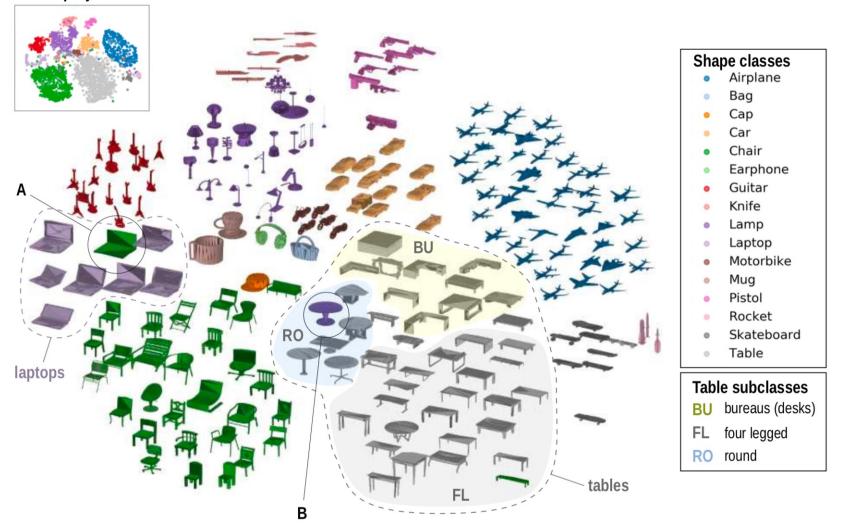
Projection example: Finding similar tissues



1 point = 1 tissue sample data = RNA profiles close points = similar data similar data = similar tissue

Projection example: Browsing a 3D database

Full projection



DR creates clusters of similar shapes!

X. Chen et al. (2021) Scalable Visual Exploration of 3D Shape Databases via Feature Synthesis and Selection, CCIS Springer

Projections *vs* other techniques

Projection

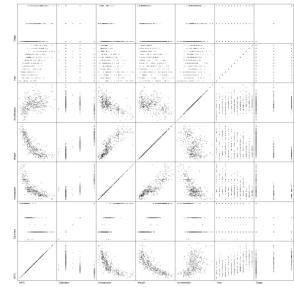
Pro's

- show similar observations
- no clutter
- scalable

Con's

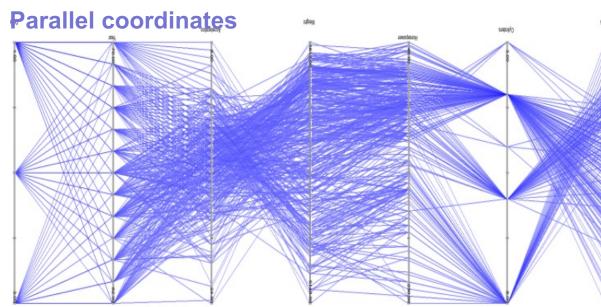
 don't show why points are similar

Scatterplot matrix



Pro's

- show variable correlations
 Con's
- doesn't show similar points
- not scalable to many columns



Pro's

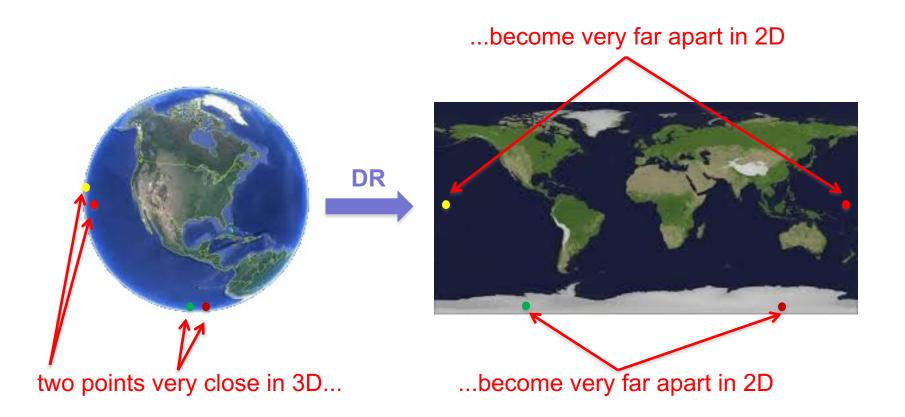
- show variable correlations
- more scalable than SPLOMs Con's
- generates clutter
- · requires one to order axes

Dimensionality Reduction Methods

Overall considerations

In general, perfect distance-preserving of the data in DR is **not possible**!

Take the 'simple' problem of reducing d=3 to m=2 dimensions in cartography



Dimensionality Reduction Methods

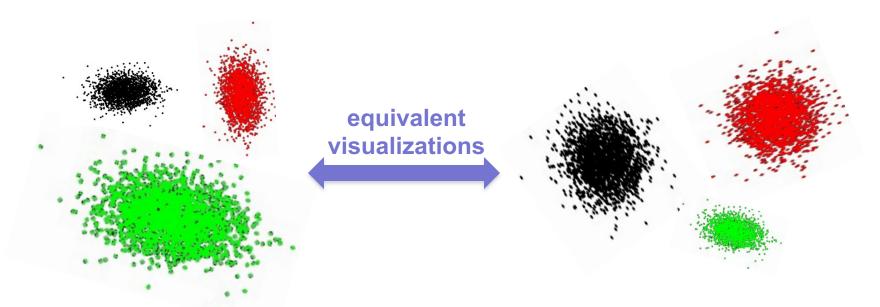
How to deal with distance preservation

1. Approximately preserve distance

 $d_{dD}(x, y) \approx d_{mD}(x, y)$

...since our distances are anyway computed from heuristic features...

2.Preserve k-nearest neighbors, not distances



...since we care about who's most similar, and not how similar precisely

DR Methods: Principal Component Analysis

Simplest solution for DR

- compute covariance matrix A of feature vectors f₁...f_N
- do PCA on A to find
 - its eigenvectors e₁...e_d
 - its eigenvalues $\lambda_1 \dots \lambda_d$ (sorted so that $\lambda_1 > \lambda_2 > \dots > \lambda_d$)
- select m largest eigenvectors e₁...e_m
- project $f_1...f_N$ onto the subspace spanned by $e_1...e_m$
- intuition: we preserve this way the most variance in f₁...f_N that we can describe with only m dimensions

Example: MNIST dataset¹

- 1 point = 1 image (28x28 pixels) of handwritten digit (0..9)
- 28x28 = 764 features (luminances of all pixels)
- points colored by class (0..9)

This projection is not very good!

Classes (colors) are mixed, so we cannot use 2D features to reason well about image similarities

DR Methods: Multidimensional Scaling (MDS)

Addresses some of the PCA problems

- MDS aims to preserve the pairwise distances of points
- do this by minimizing the so-called stress

$$\sum_{i=1}^{N} \sum_{i=1}^{N} \left(d_{ij}^{(d)} - d_{ij}^{(m)} \right)^2$$

where $d_{ij}^{(d)}$ = distance between samples *i*, *j* in d-D (data space) $d_{ij}^{(m)}$ = distance between samples *i*, *j* in m-D (projection space)

• minimization: done by linear algebra or force-directed methods¹

Intuition

- if the stress is zero, then all pairwise distances in m-D are identical to the corresponding pairwise distances in d-D
- unlike PCA, we don't care here about the actual coordinates in d-D or m-D, but only about the distances between points

¹https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf

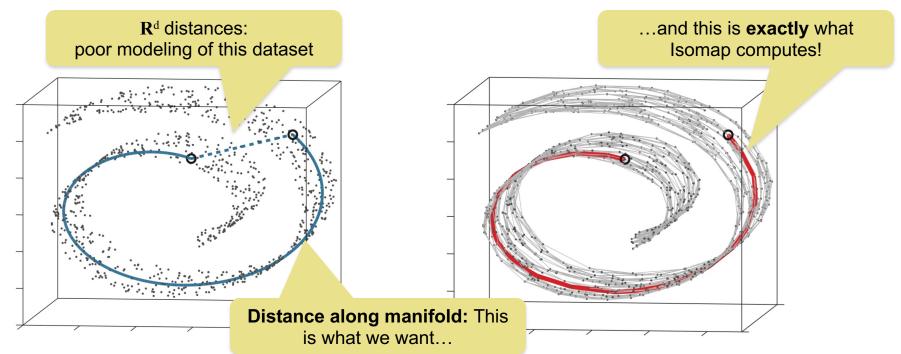
DR Methods: Isomap

Addresses linearity problem of PCA, MDS

- PCA, MDS are linear: create a single (linear) transformation to map the entire d-D space to the lower-dimensional m-D space
- this is exact only when data in d-D is spread over a hyperplane!

Isomap

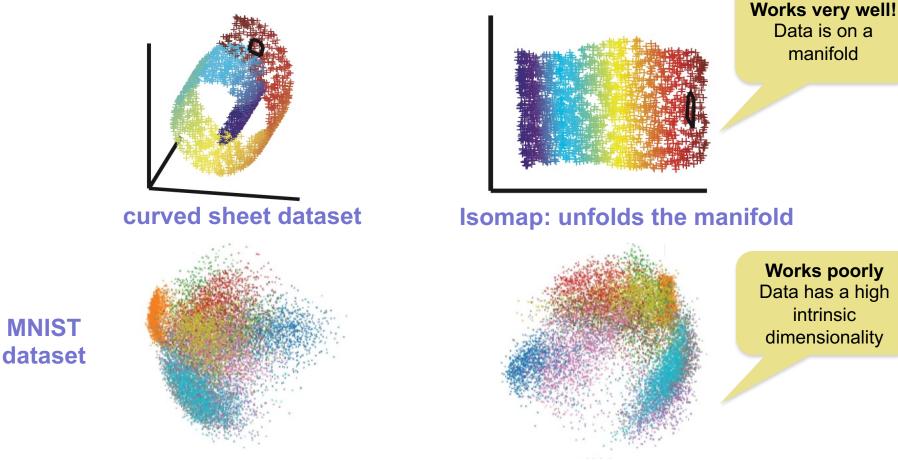
- assume the data is spread in d-D over a manifold (curved surface)
- this is more flexible than a hyperplane
- compute d-D distances along this manifold, and not in R^d



DR Methods: Isomap

Isomap: How to compute the high-dimensional manifold?

- manifold obtained by nearest-neighbor graph G of points in d-D
- distances: shortest-path distances in G (computed e.g. by Dijkstra's algorithm)
- use MDS with these distances



PCA: Poor separation

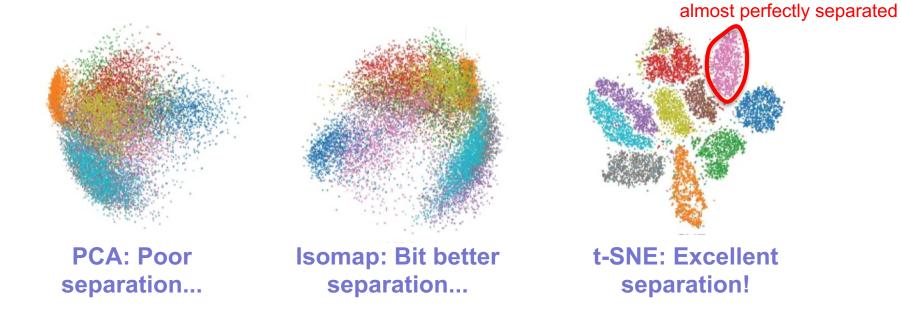
Isomap: A bit better separation

Drops Isomap's manifold assumption

- · data in d-D can have higher intrinsic dimensionality than two
- d (data dimensionality) can be very large
- we now consider preserving neighborhoods, and not distances

t-Stochastic Neighbor Embedding (t-SNE)

Let's show the results first for the MNIST dataset $\textcircled{\sc 0}$



clusters (digit images) are

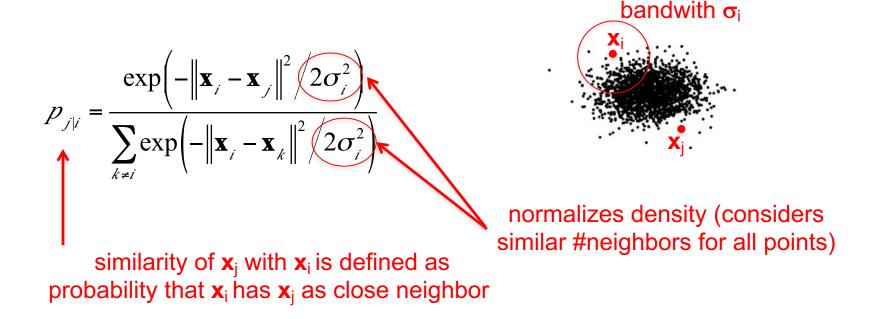
Good video introducing t-SNE: https://www.youtube.com/watch?v=RJVL80Gg3IA&list=UUtXKDgv1AVoG88PLI8nGXmw

How t-SNE works

Notations

 $x_1...x_N$ points (feature vectors) in high-dimensional feature space (\mathbf{R}^d) $y_1...y_N$ points in latent (low-dimensional) feature space (\mathbf{R}^m)

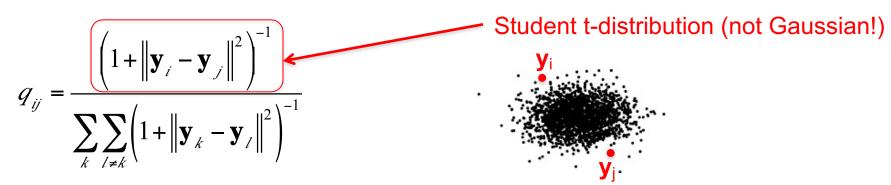
1. Compute similarities in high-dim. space



2. Symmetrize to obtain a true similarity metric

$$p_{ij} = \frac{p_{i|j} + p_{j|i}}{2N}$$

3. Model similarities in low-dim. space



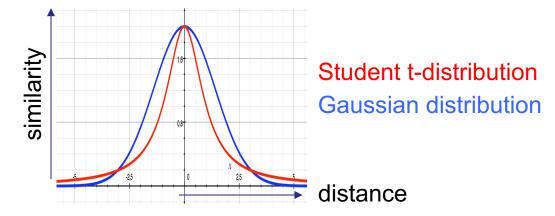
Note q_{ii} has **very different formula** from p_{ii}

- we use a Student t-distribution, not a Gaussian one
- we don't have a bandwith $\boldsymbol{\sigma}$

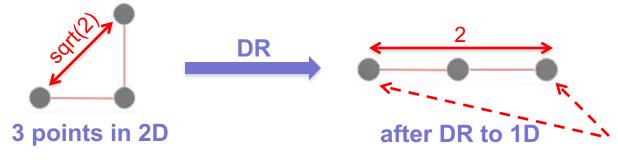
Why we model low-dim and high-dim similarities *differently*?

Why we model low-dim and high-dim similarities differently

We use a Student t-distribution in 2D, and a Gaussian one in high-dim



This allows modeling points that are far apart in high-dim accurately in 2D



if we want to preserve local structure, we *must* make the red distance correspond to a *higher* similarity

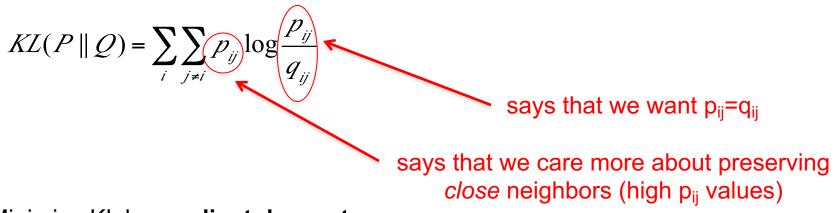
Using t-distribution makes points **far-apart** in low-dim look **closer**, so they better match their high-dim distances

4. Compute low-dim positions

Find \mathbf{y}_j so that $q_{ij} \simeq q_{ij}$

For this, we first need to somehow **compare** p_{ij} and q_{ij}

Use Kullback-Leibler divergence to compare the distributions p_{ij} , q_{ij}



Minimize KL by gradient descent

- initialize \mathbf{y}_j randomly in 2D space
- while KL > ϵ

compute
$$\nabla KZ = 4 \sum_{j} \left(p_{ij} - q_{ij} \right) \left(\mathbf{y}_{i} - \mathbf{y}_{j} \right) \left(1 + \| \mathbf{y}_{i} - \mathbf{y}_{j} \|^{2} \right)^{-1}$$

move $\mathbf{y}_{i} = \mathbf{y}_{i} - \nabla KL$

Advantages

Can **keep local data structure** (clusters) better than most..all other DR methods Works very well even with **very high-dimensional** spaces

Only needs similarities of points, not actual feature vectors

Does not care how data is distributed (on a plane, manifold, ...)

Disadvantages

Non-deterministic (starts each time with a random initialization)

Slow (seconds for hundreds of points, many minutes for 100K or more)

Tricky to parameterize (how to set σ ? Not clear – trial and error...)

Let's see some simple t-SNE demos^{1,2} and how to do parameter setting!

t-SNE source code: https://lvdmaaten.github.io/tsne/ ¹ https://distill.pub/2016/misread-tsne/ ² https://projector.tensorflow.org

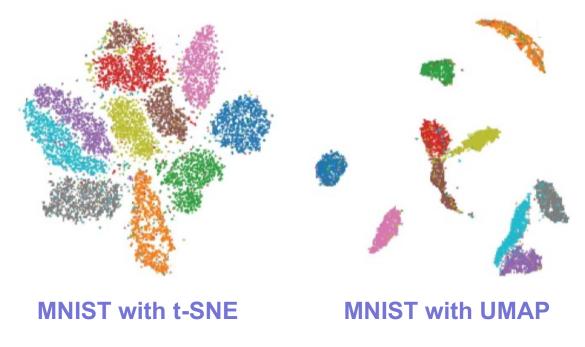
Other DR Methods

UMAP

Approximation of t-SNE

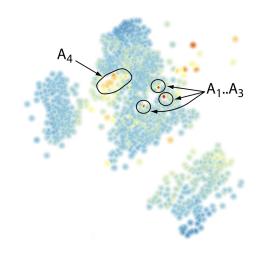
Keeps all advantages, but about 10x faster and deterministic

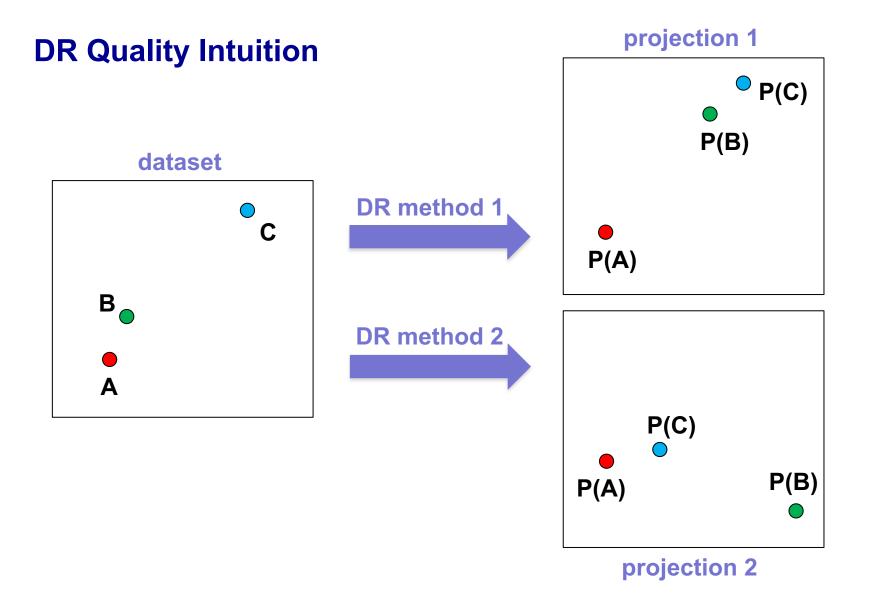
Even better same-item cluster separation



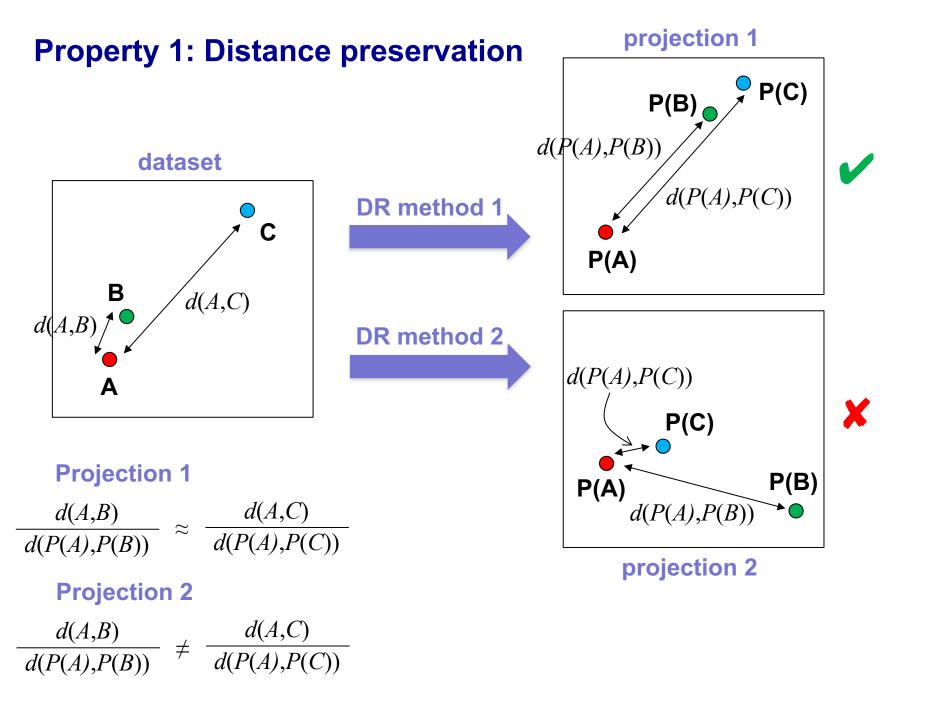
UMAP code and documentation: https://umap-learn.readthedocs.io/en/latest/

2. Measuring DR quality

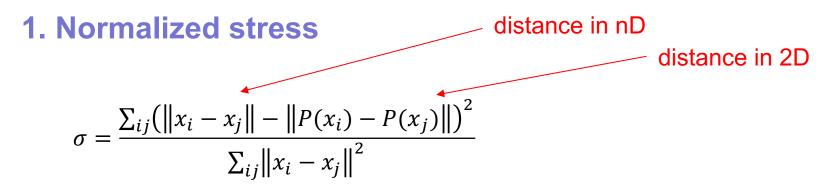




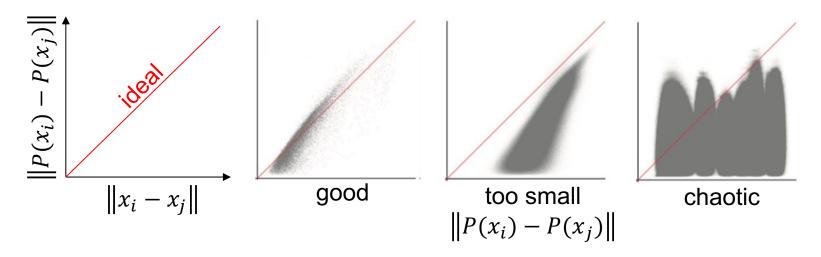
Which projection (1 or 2) keeps better the structure of D? Why?



Measuring distance preservation



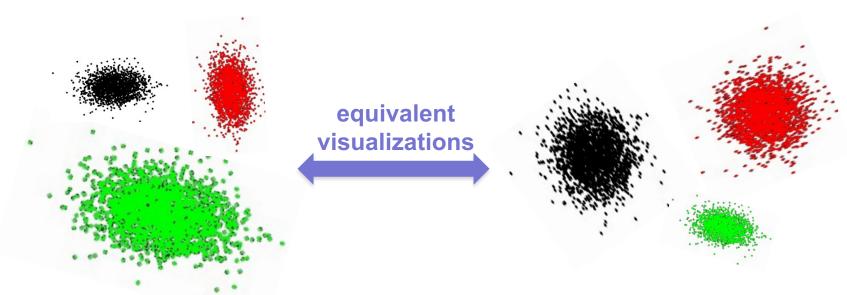
2. Shepard diagram



Quantify diagram goodness by its Spearman rank correlation p

Ideally ρ should be close to 1

Distance preservation limitations



Take these two projections

They tell the same story

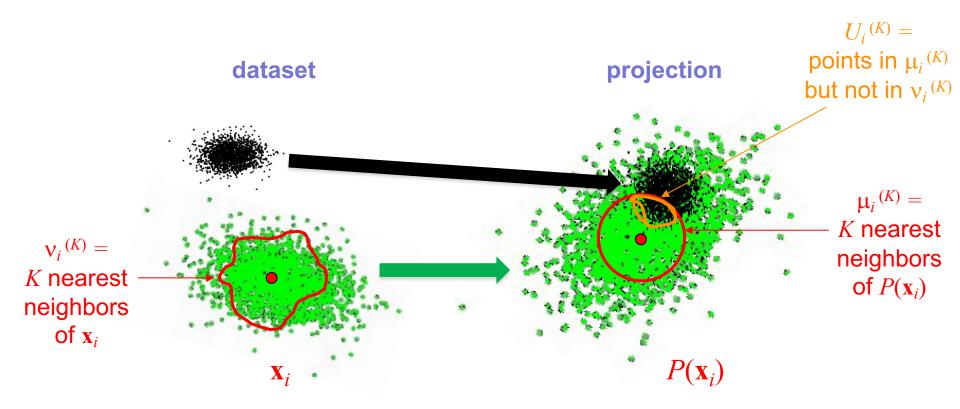
• we see three well-separated clusters of points

But inter-point distances are different

- so they will have very different σ and ρ metrics

We need to measure something else!

Idea: Measure neighborhood preservation



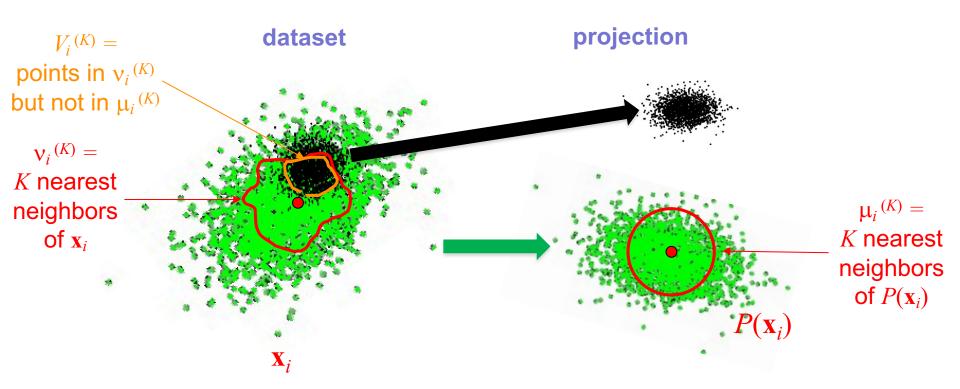
 $U_i^{(K)}$ are **false neighbors** of $P(\mathbf{x}_i)$ Ideally, $U_i^{(K)}$ is **empty** (all neighbors of $P(\mathbf{x}_i)$ come from neighbors of \mathbf{x}_i) We measure this by **trustworthiness**

$$T = 1 - \frac{2}{NK(2n-3K-1)} \sum_{i=1}^{N} \sum_{j \in U_i^{(K)}} (r(i,j) - K)$$

in sorted set $\mu_i^{(K)}$

https://mespadoto.github.io/proj-quant-eval/

Measure neighborhood preservation (cont.)



 $V_i^{(K)}$ are missing neighbors of $P(\mathbf{x}_i)$ Ideally, $V_i^{(K)}$ is **empty** (all neighbors of \mathbf{x}_i go into neighbors of $P(\mathbf{x}_i)$) We measure this by continuity

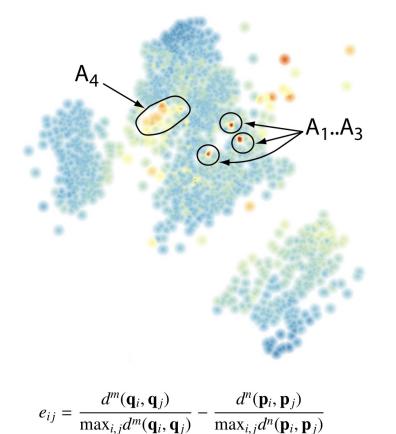
$$C = 1 - \frac{2}{NK(2n-3K-1)} \sum_{i=1}^{N} \sum_{j \in V_i} (\hat{r}(i,j) - K)$$

$$\hat{r}(i,j) = \text{rank of } j$$
in sorted set $\mu_i^{(K)}$

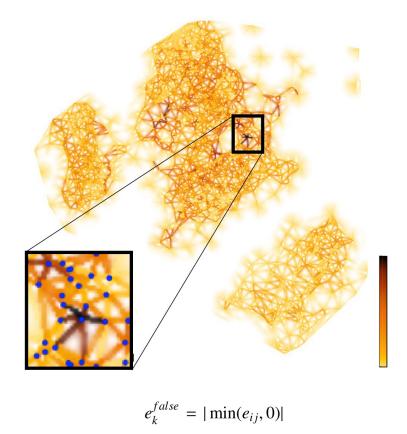
https://mespadoto.github.io/proj-quant-eval/

Visualizing projection errors

Large stress: points whose spacing (in 2D) does not reflect their spacing in *n*D



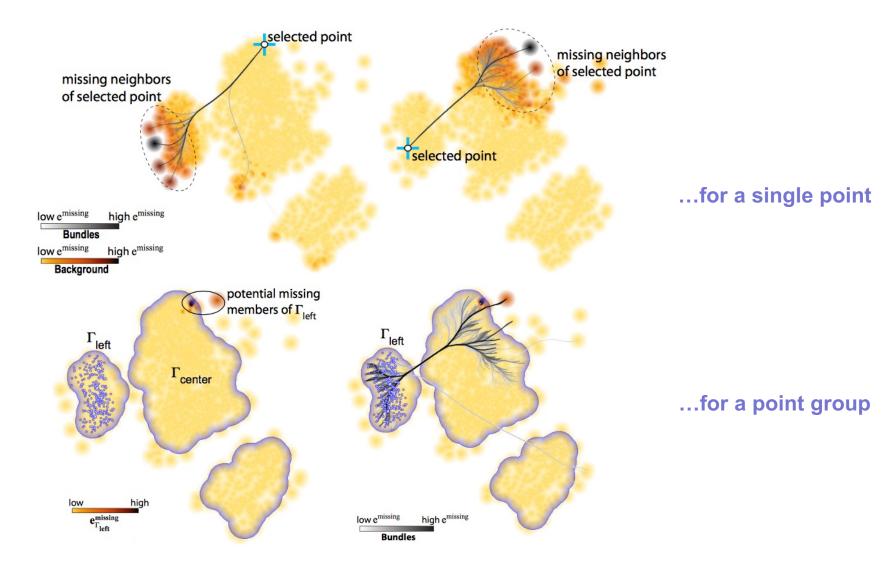
False neighbors: points that are far (in *n*D) but placed close (in 2D)



R. Martins et al (2014) Visual analysis of dimensionality reduction quality for parameterized projections. Computers & Graphics 41, 26-42

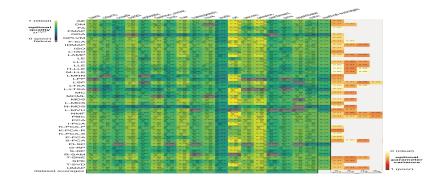
Visualizing projection errors

Missing neighbors: points that are close (in *n*D) but placed far apart (in 2D)



R. Martins et al (2014) Visual analysis of dimensionality reduction quality for parameterized projections. Computers & Graphics 41, 26-42

3. DR quality in practice

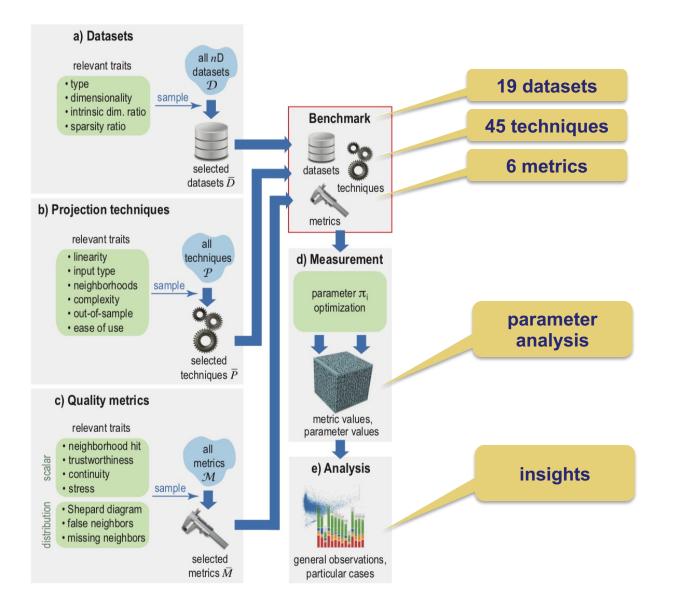


Which DR technique to *use*?

Projection Acronym	Projection Full Name	Fodor et al. [18]	Hoffman et al. [1]	Yin et al. [19]	Maaten et al. [13]	Bunte et al. [15]	Engel et al. [27]	Sorzano et al. [12]	Cunningham et al. [23]	Gisbrecht et al. [21]	Liu et al. [2]	Xie et al. [24]	Nonato et al. [10]	Ours	
AE	Autoencoder CCA (Canonical Correlations Analysis)				•				•					•	
CHL	Chalmers ClassiMap												•		
CuCA	CCA (Curvilinear Component Analysis) Diffusion Maps												•		techniques
DML	Distance Metric Learning				-				•						teeningues
FA	Elastic Maps Factor Analysis	•						•	•					•	
	Force-Directed FastMap												•	•	
	Feature Selection Generalized Discriminant Analysis											•			
GPLVM	Gaussian Process Latent Variable Model Generative Topographic Mapping							-						•	
ICA	Independent Component Analysis FastICA	•						•	•						Big and unclear 'choice space'
NL-ICA	Nonlinear ICA IDMAP	•													Dig and unclear choice space
ISO	Isomap		•	•	•	•	•			•			•	•	
L-ISO KECA	Landmark Isomap Kernel Entropy Component Analysis							•						•	
KLP LAMP	Kelp LAMP												•		 50+ techniques
LDA LE	Linear Discriminant Analysis Laplacian Eigenmaps								•		•	•		-	
LLC	Locally Linear Coordination			L .			-						-	•	 12 main surveys
H-LLE	Hessian LLE Modified LLE		-	-		-	-			-	-		-	•	-
LMNN	Large-Margin Nearest Neighbor Metric													•	 mainly theoretical discussion
LPP	Local Convex Hull Locality Preserving Projection								•				•	•	-
	Linear Regression Least Square Projection								•				•	•	 many parameters
	Local Tangent Space Alignment Linear Local Tangent Space Alignment				•								•	$\mathbf{\cdot}$	· ·
MAF	Maximum Autocorrelation Factors Manifold Charting								•						very limited practical comparison
MCA	Multiple Correspondence Analysis Maximally Collapsing Metric Learning												•		
MDS	Metric Multidimensional Scaling	•	•	•	•	•	•	•	•		•		•	i	
MG-MDS	Landmark MDS Multi-Grid MDS						•							•	
ML	Nonmetric MDS (Kruskal) Manifold Learning		•				•						•	•	Practitioner questions
FMVU	Maximum Variance Unfolding Fast MVU				•	•				•			•		
	Landmark MVU Neighborhood Retrieval Visualizer					•								•	
	t-NeRV Nonnegative Matrix Factorization					•		•	•					-	
	Nonlinear Mapping Neural Networks	· •						-	-				•		 which projection is best for my
PBC	Projection By Clustering Principal Curves							-						•	
PCA	Principal Component Analysis	•	•		•		•	•	•	•	•	•	•	•	context (requirements, data,)?
K-PCA-P	Incremental PCA Kernel PCA (Polynomial)							•						•	
K-PCA-S	Kernel PCA (RBF) Kernel PCA (Sigmoid)		•		•		•	•		•				•	 how to set its parameters?
L-PCA NL-PCA	Localized PCA Nonlinear PCA	•		•				•						\square	how to magging its quality?
P-PCA	Probabilistic PCA Robust PCA							•	•					•	 how to measure its quality?
S-PCA	Sparse PCA Part-Linear Multidimensional Projection							•						•	
	Piecewise Laplacian-based Projection Piecewise Least Square Projection						•					-	•		
PM PP	Principal Manifolds	<u> </u>		•		<u> </u>					<u> </u>		<u> </u>		
RBF-MP	Projection Pursuit RBF Multidimensional Projection	•											•		
G-RP	Random Projections Gaussian Random Projection	•										•		•	
SAM	Sparse Random Projection Sammon Mapping				•									•	
R-SAM	Rapid Sammon (Pekalska) Sufficient Dimensionality Reduction								•				•	•	
SFA SMA	Slow Feature Analysis Smacof								•				-		
SNE	Stochastic Neighborhood Embedding t-Dist. Stochastic Neighborhood Embedding					•				-	-		÷		
SOM	Self-Organizing Maps	•		•		•		•		•	•		•	I	
ViSOM SPE	ViSOM (Visualization-induced SOM) Stochastic Proximity Embedding			•										•	
G-SVD T-SVD	Generalized SVD Truncated SVD							•							I HE I HERE DE
TF UMAP	Tensor Factorization Uniform Manifold Approximation and Proj.							•						-	
VQ Total	Vector Quantization	•	6	7	14	0	0	•	14	0	6		20		
Iotai		1 12	1 0	1 /	14	1 9	1 9	19	14	0	0	4	28	1 44	I contract of the second se

surveys

Let's measure projection errors big-scale!



M. Espadoto *et al* (2019) Towards a Quantitative Survey of Dimension Reduction Techniques (IEEE TVCG)

Datasets and Metrics

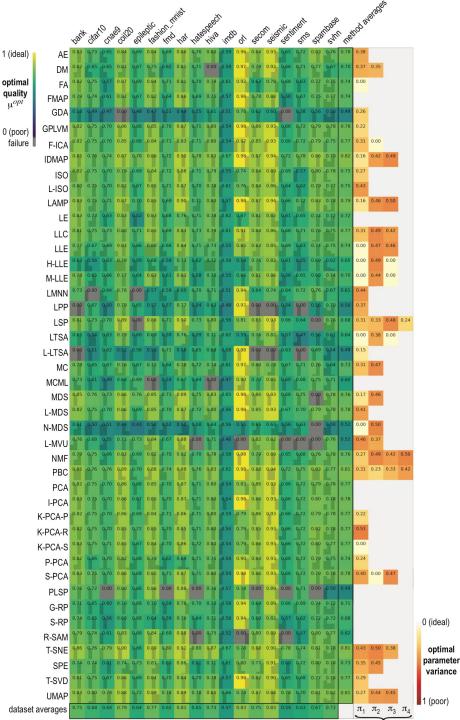
Datasets

Dataset	Туре	Size	Size	Dimensionality	Dimensionality	Intrinsic	Intrinsic	Sparsity	Sparsity
	(au_D)	(N)	class	(n)	class	dim. (ρ_n)	dim. class	(γ_n)	class
bank	tables	2059	medium	63	low	0.0317	low	0.6963	medium
cifar10	images	3250	large	1024	high	0.0706	low	0.0024	dense
cnae9	text	1080	medium	856	high	0.3201	medium	0.9922	sparse
coil20	images	1440	medium	400	medium	0.0105	low	0.3858	medium
epileptic	tables	5750	large	178	medium	0.2191	medium	0.0067	dense
fashion_mnist	images	3000	medium	784	high	0.2385	medium	0.5021	medium
fmd	images	997	small	1536	high	0.3073	medium	0.0095	dense
har	tables	735	small	561	high	0.1194	medium	0.0001	dense
hatespeech	text	3222	large	100	medium	0.6130	high	0.9993	sparse
hiva	tables	3076	large	1617	high	0.2498	medium	0.9091	sparse
imdb	text	3250	large	700	high	0.5790	high	0.9945	sparse
orl	images	400	small	396	medium	0.0006	low	0.9000	sparse
secom	tables	1567	medium	590	high	0.0102	low	0.2617	medium
seismic	tables	646	small	24	low	0.0417	low	0.5883	medium
sentiment	text	2748	medium	200	medium	0.8080	high	0.9936	sparse
sms	text	836	small	500	medium	0.7240	high	0.9947	sparse
spambase	text	4601	large	57	low	0.0351	low	0.7741	medium
svhn	images	733	small	1024	high	0.8734	high	0.0001	dense

Metrics

Metric	Definition	Туре	Range
Trustworthiness (M_t)	$1 - \frac{2}{NK(2n-3K-1)} \sum_{i=1}^{N} \sum_{j \in U_i^{(K)}} (r(i,j) - K)$	scalar	[0, 1]
Continuity (M_c)	$\frac{1 - \frac{2}{NK(2n - 3K - 1)} \sum_{i=1}^{N} \sum_{j \in V_i^{(K)}}^{i} (\hat{r}(i, j) - K)}{\sum_{ij} (\Delta^n(\mathbf{x}_i, \mathbf{x}_j) - \Delta^q(P(\mathbf{x}_i), P(\mathbf{x}_j)))^2}}$	scalar	[0, 1]
Normalized stress (M_{σ})	$\sum_{i,i} \Delta^n (\mathbf{x}_i, \mathbf{x}_i)^2$	scalar	[0 ,1]
Neighborhood hit (M_{NH})	Scatterplot $(\mathbf{x}_i - \mathbf{x}_j , P(\mathbf{x}_i) - P(\mathbf{x}_j)), 1 \le i \le N, i \ne j$ Spearman rank correlation of Shepard diagram	scalar	[0, 1]
Shepard diagram (S)	Scatterplot $(\mathbf{x}_i - \mathbf{x}_j , P(\mathbf{x}_i) - P(\mathbf{x}_j)), 1 \le i \le N, i \ne j$	point-pair	-
Shepard goodness (M_S)	Spearman rank correlation of Shepard diagram	scalar	[0, 1]
Average local error $(M_a(i))$		local (per-point)	[0, 1]

aggregate into a single quality metric μ



Insights (1)

How good are projections, for which data?

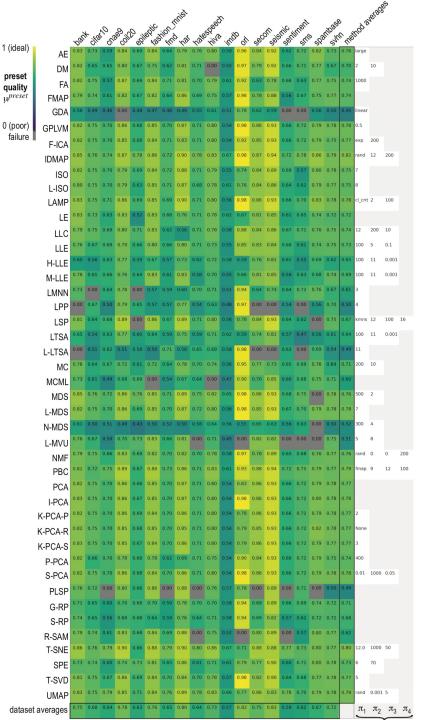
for each projection P_i for each dataset D_j compute *optimal* quality μ_{ij} (param. grid search)

How easy is to get optimal quality?

for each projection P_i compute *variance* of params π_i yielding optimal quality over all datasets D_j

What we see

- no projection best for all dataset types
- some are quite **poor** in general (N-MDS, GDA)
- dataset type strongly influences quality (*imdb*: hard; *orl*: easy)
- hard to **tune** parameters to get optimal quality (large variance of π_i)



Insights (2)

How good are parameter-preset projections?

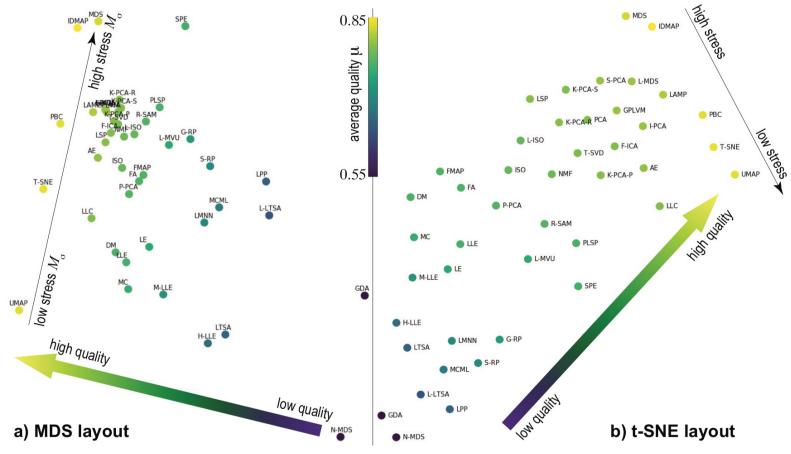
for each projection P_i π_i^{pre} = param values yielding most times optimal quality over all datasets D_j

for each projection P_i for each dataset D_j compute quality μ_{ij} using $\pi_i{}^{pre}$

What we see

- very similar image to earlier one (optimal techniques stay good when using presets)
- again, quality strongly depends on dataset type
- t-SNE, UMAP, IDMAP, PBC score best on average

Insights (3): Which projections perform similarly?



'Projection of projections' map

- one point = one technique
- 5 attributes (trustworthiness, continuity, norm. stress, neighborhood hit, Shepard goodness; averaged over all tested datasets)
- we see a clear quality trend
- helps choosing projections that behave similarly to a user-chosen one

Benchmark

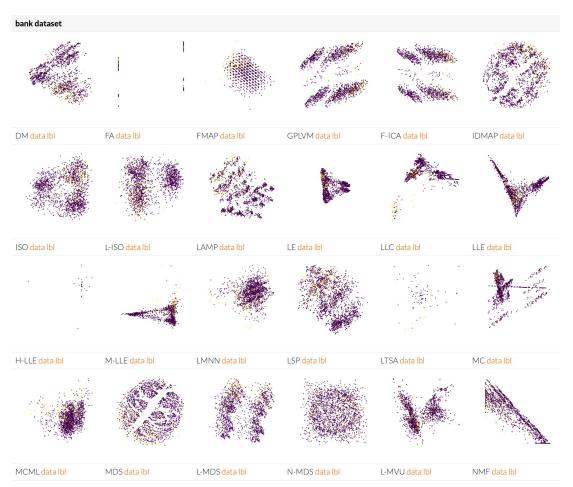
Towards A Quantitative Survey of Dimension Reduction Techniques

MATEUS ESPADOTO, RAFAEL M. MARTINS, ANDREAS KERREN, NINA S. T. HIRATA AND ALEXANDRU C. TELEA

DATASETS EXPERIMENT MEASUREMENTS PROJECTIONS

Projections for all datasets (best parameter set for each projection)

All projections, in csv format



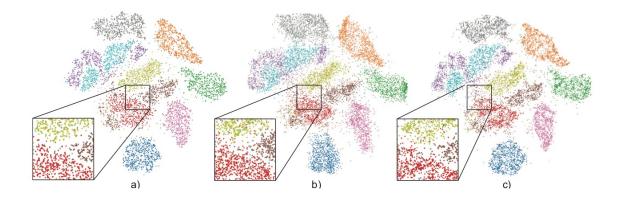
All open source

- projection implementations
- datasets
- metric engines
- visualization engines
- optimization engines
- test harness
- all Python code

Please share, use, and extend!

https://mespadoto.github.io/proj-quant-eval

4. Learning Projections



Insights from our survey

No ideal projection technique 🛞

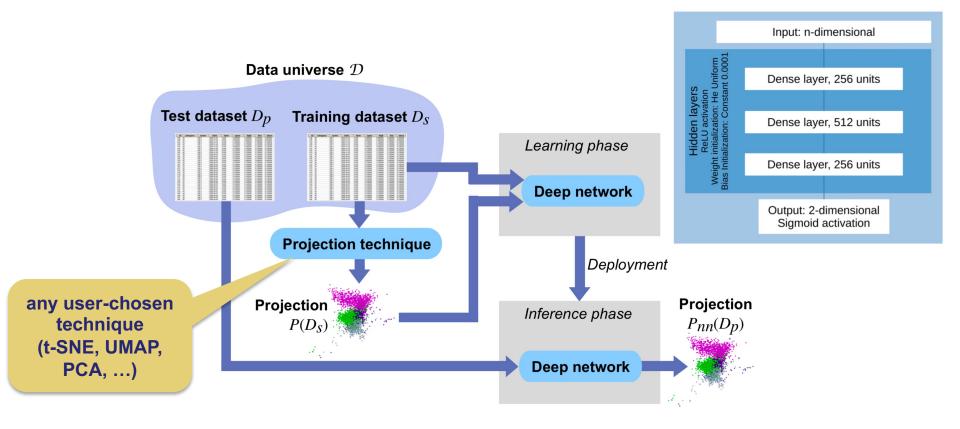
- UMAP: easy to use, quite fast, but quality not ideal
- t-SNE: quality is (very) high, but very slow, hard to tweak parameters, non-deterministic
- quality depends a lot on type of data

What we want to have

- high-quality projection
- having `style' of any projection deemed good by user
- working very fast (millions of samples, hundreds of dimensions: seconds)
- **easy** to use (no complex parameters, ideally none)
- **stable** (same input data: same output projection)
- **out-of-sample** (add some more data: project along existing data)

How to achieve this?

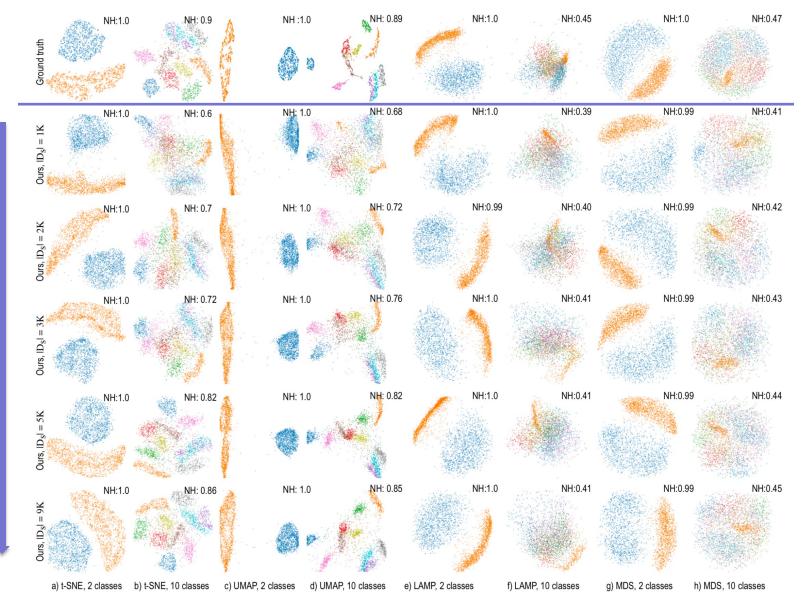
Idea: Learn the projection!



- take any dataset D_S and any projection technique of choice P
- project D_S with P, tweak P's parameters, obtain good scatterplot P(D_S)
- pass D_S and P(D_S) to network, learn the mapping
- use trained network P_{nn} to project any other similar dataset D_P

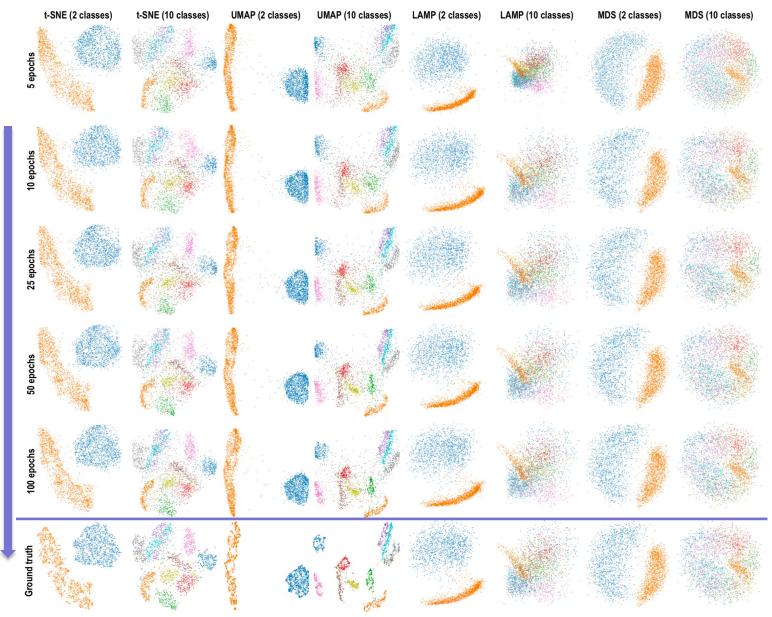
M. Espadoto et al (2020) Deep Learning Multidimensional Projections. Information Visualization 9(3), 247-269

Training-set size influence



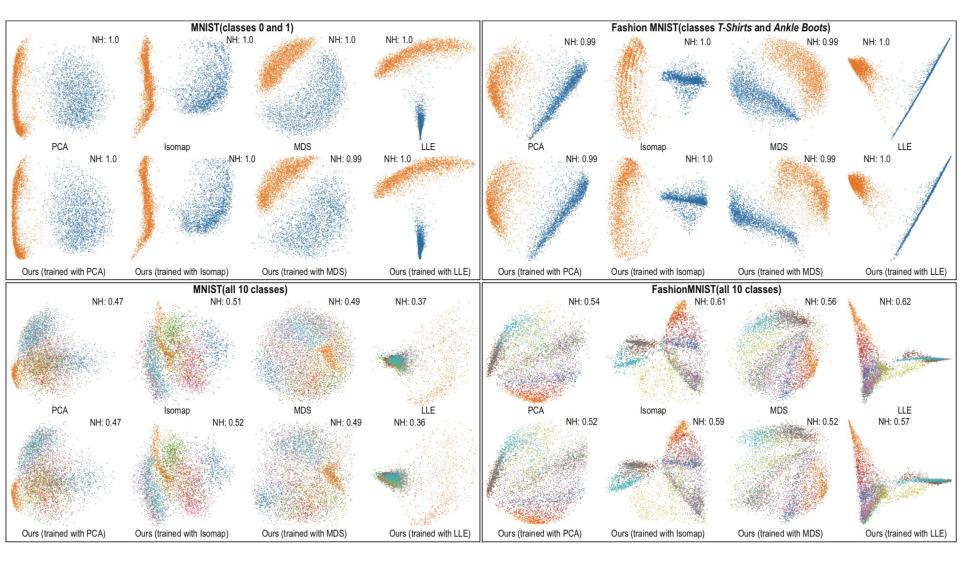
Quite good results with a few thousand training samples

Training effort influence



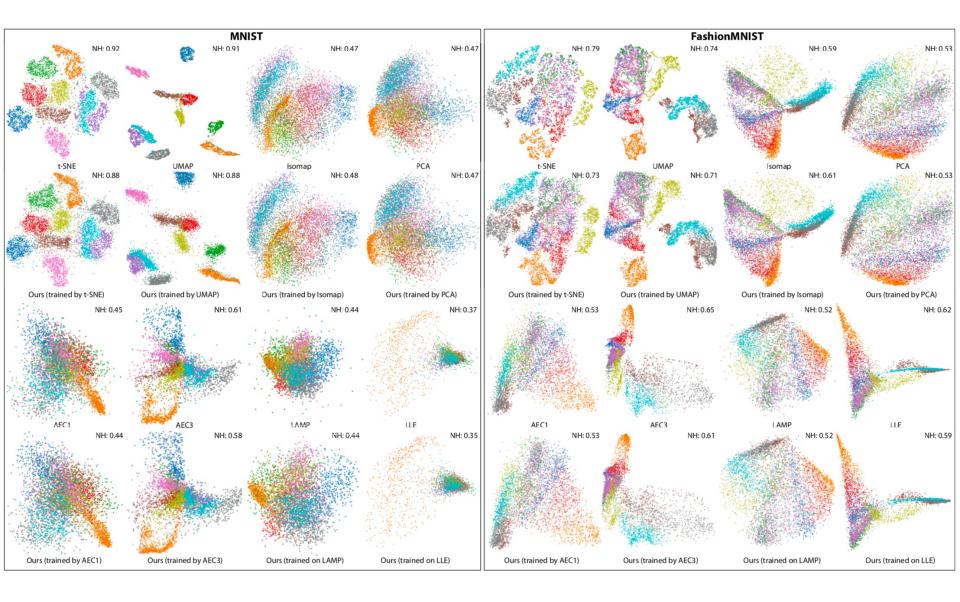
Quite good results with about 50 training epochs

Learning different projection styles

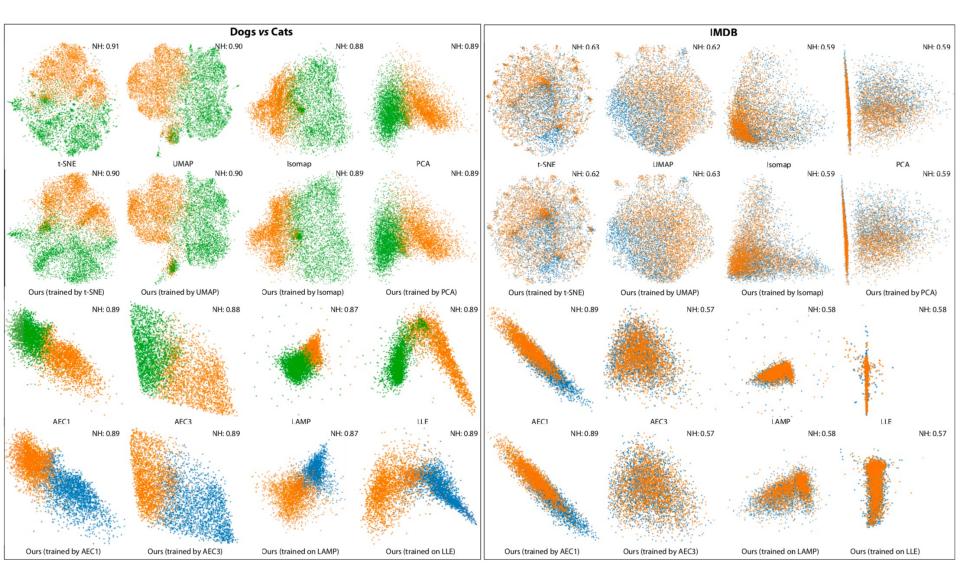


- we can imitate basically any style
- but, of course, the output quality will depend on the training material's quality (good `professor' = good quality, and conversely ⁽ⁱⁱⁱ⁾)

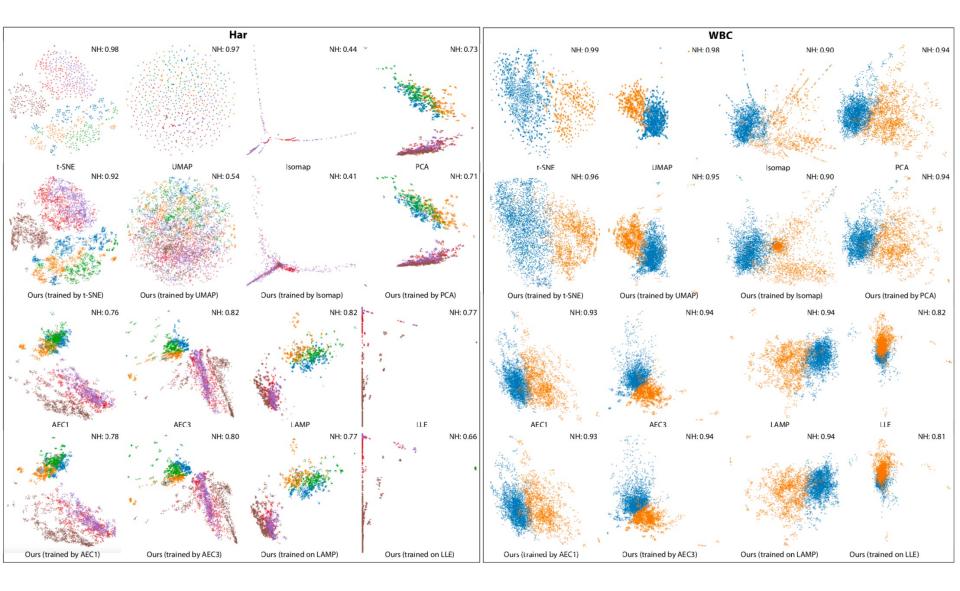
Learning different projection styles (cont'd)

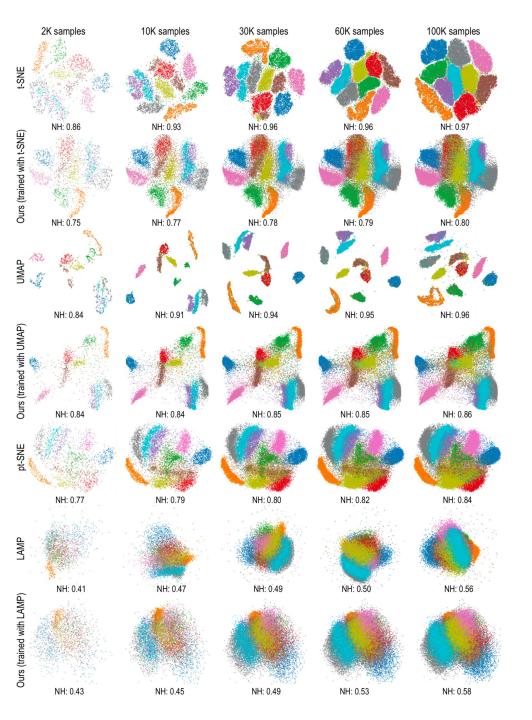


Learning different projection styles (cont'd)



Learning different projection styles (cont'd)





Out of sample capability

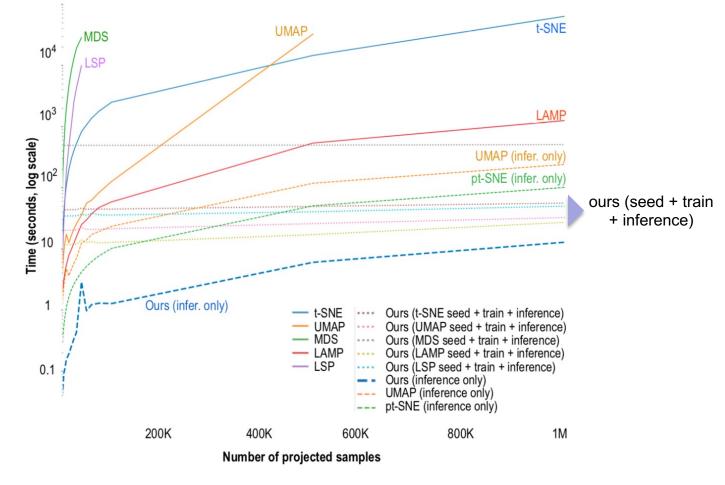
Testing

- train on a dataset D₀
- add samples to D₀ to create D₁, D₂, ...D_n
- project $P(D_0), \dots, P(D_n)$
- compare with ground-truth P^g(D₀),... P^g(D_n)

Results

- our method is always stable (out-of-sample capability by construction)
- most other methods are **not**
- we are close to the quality of parametric t-SNE (pt-SNE)

Computational scalability



Training + inference costs

• **3K faster** than t-SNE, 2K faster than LAMP

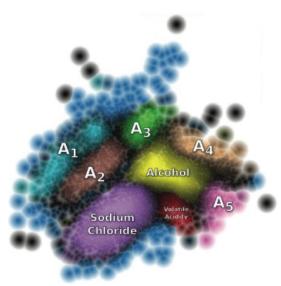
UMAP, LSP, MDS failed handling 1M points

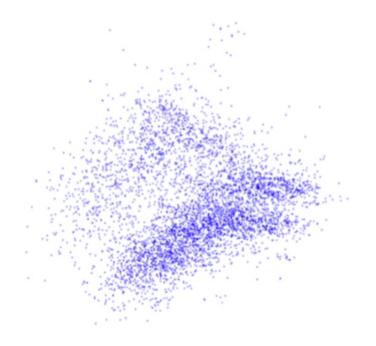
Inference-only costs

- 3.5K faster than t-SNE, 2K faster than LAMP
- 10x faster than pt-SNE

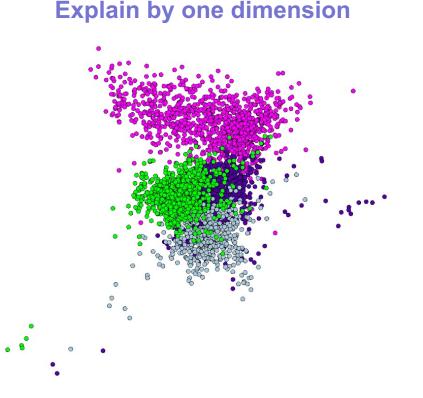
Code freely available: https://github.com/mespadoto/dlmp

5. Explaining Projections



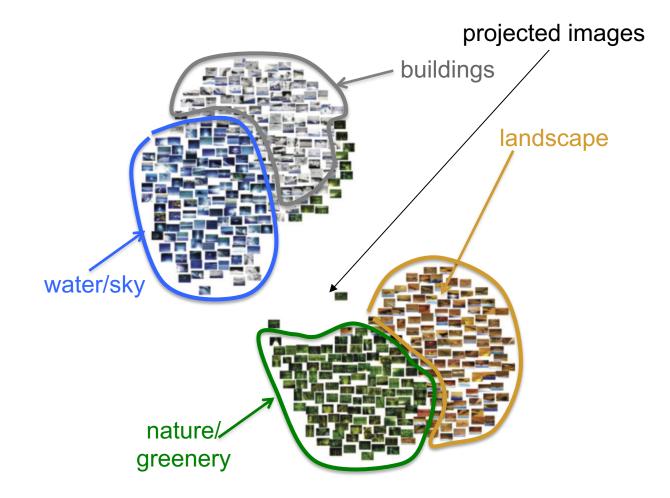


- all we can see here is that some clusters and/or outliers exist
- this visualization is useless in most cases



- color code points on the value of one dimension
- if dimension was used in projection: explains what makes clusters similar
- if dimension not used in projection: shows its correlation with the projected dimensions
- user must hand-pick the dimension to color code
- only works if we have not-too-many, and meaningful, dimensions

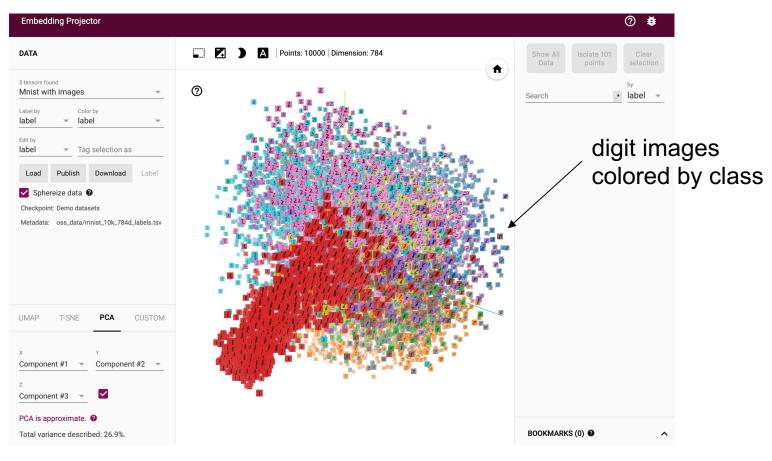
Explain by depicting observations



- only works if input data is **directly depictable** (e.g. images)
- scales poorly with number of observations

P. Joia et al., "Local Affine Multidimensional Projection," IEEE TVCG, vol. 17, no. 12, 2011, pp. 2563–2571

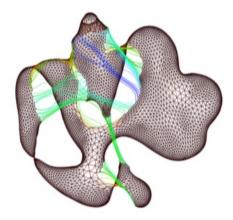
Explain by depicting observations



- only works if input data is **directly depictable** (e.g. images)
- scales poorly with number of observations

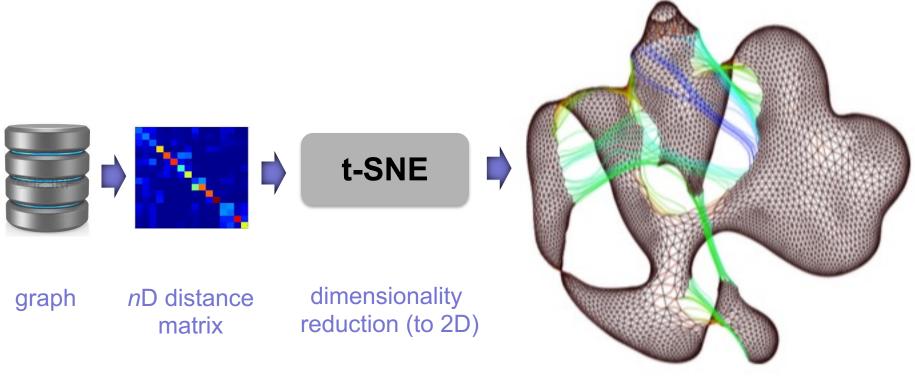
Projector Tensorflow (https://projector.tensorflow.org)

6. Connections



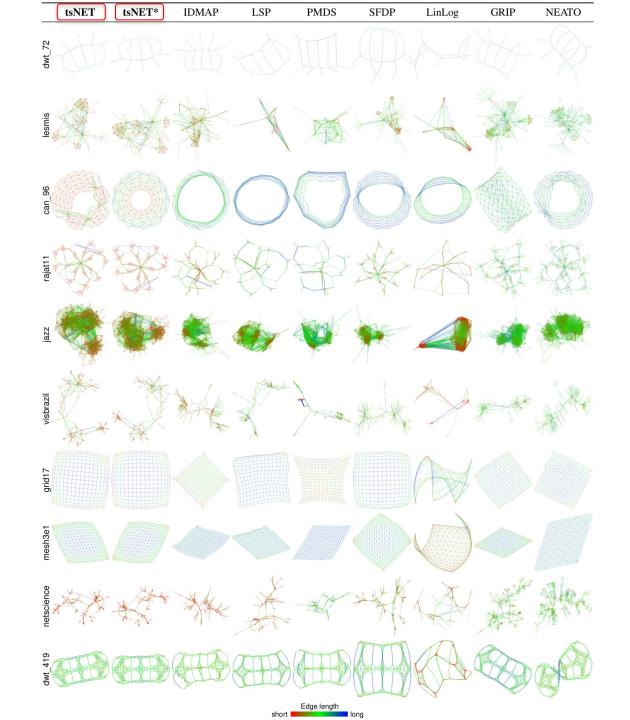
tsNET: Drawing Large Graphs with t-SNE

Consider a graph as a multidimensional (Euclidean) dataset!

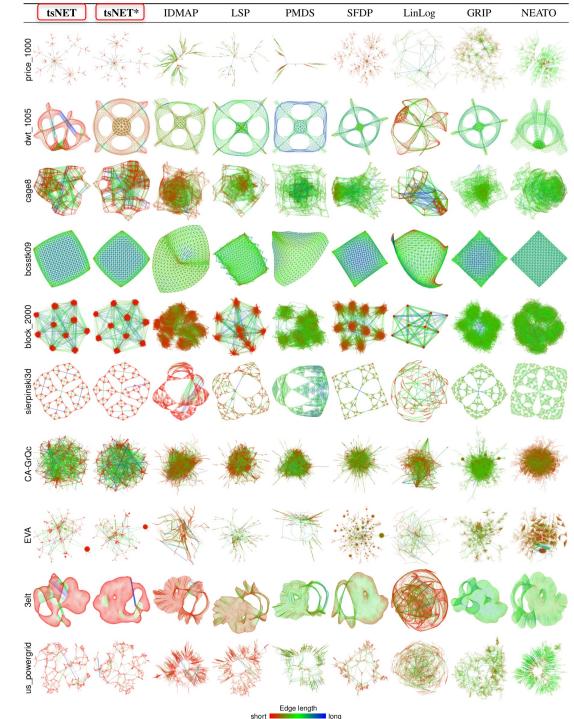


graph layout

J. Kruiger, A. Telea et al. (2017) Graph layouts by t-SNE; Comp Graph Forum



Examples



More examples

Drawing Large Graphs with tsNET: Quality

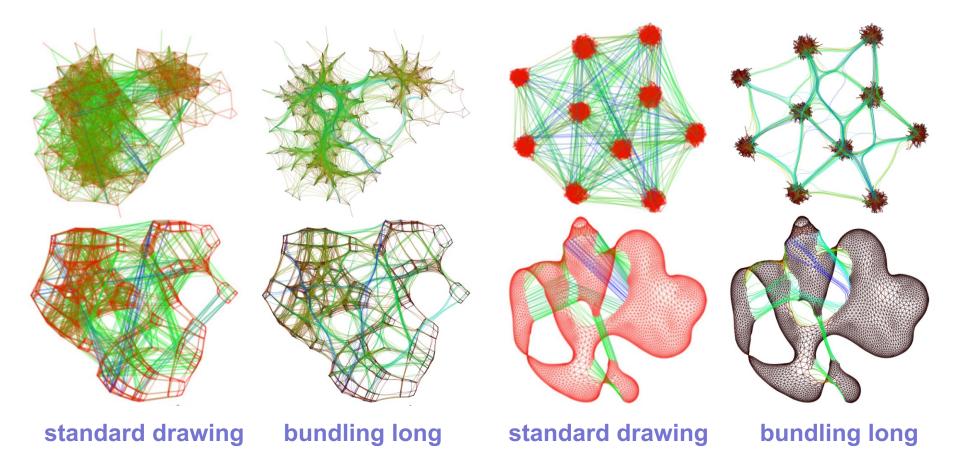
	tsNET	tsNET*	IDMAP	LSP	PMDS	SFDP	LinLog	GRIP	NEATO		tsNET	tsNET*	IDMAP	LSP	PMDS	SFDP	LinLog	GRIP	NEATO
dwt_72	0.048	0.048	0.039	0.118	0.072	0.061	0.201	0.038	0.043	dwt_72	0.855	0.855	0.770	0.676	0.732	0.714	0.692	0.914	0.828
lesmis	0.109	0.111	0.111	0.226	0.162	0.112	0.219	0.099	0.084	lesmis	0.715	0.712	0.748	0.642	0.674	0.729	0.649	0.666	0.695
can_96	0.112	0.084	0.085	0.088	0.092	0.075	0.091	0.104	0.072	can_96	0.658	0.671	0.535	0.530	0.515	0.547	0.540	0.533	0.565
rajat11	0.096	0.097	0.097	0.098	0.107	0.096	0.194	0.074	0.064	rajat11	0.716	0.717	0.675	0.638	0.624	0.661	0.637	0.634	0.655
jazz	0.127	0.128	0.126	0.155	0.158	0.137	0.387	0.114	0.110	jazz	0.805	0.804	0.842	0.791	0.827	0.840	0.777	0.824	0.817
visbrazil	0.098	0.098	0.083	0.113	0.157	0.081	0.474	0.089	0.068	visbrazil	0.589	0.584	0.476	0.449	0.414	0.471	0.542	0.452	0.425
grid17	0.021	0.021	0.016	0.026	0.025	0.023	0.210	0.018	0.014	grid17	0.785	0.785	0.812	0.750	0.727	0.751	0.369	0.804	1.000
mesh3e1	0.014	0.014	0.004	0.006	0.003	0.036	0.076	0.009	0.005	mesh3e1	0.904	0.904	0.993	0.957	0.994	0.809	0.587	0.896	0.999
netscience	0.101	0.100	0.075	0.096	0.103	0.105	0.182	0.070	0.063	netscience	0.711	0.707	0.539	0.583	0.473	0.622	0.614	0.559	0.510
dwt_419	0.024	0.024	0.023	0.022	0.026	0.052	0.112	0.022	0.054	dwt_419	0.739	0.741	0.723	0.741	0.695	0.654	0.542	0.751	0.658
price_1000	0.165	0.160	0.117	0.159	0.242	0.133	0.190	0.126	0.093	price_1000	0.639	0.639	0.483	0.469	0.422	0.528	0.594	0.216	0.284
dwt_1005	0.152	0.035	0.030	0.030	0.029	0.029	0.219	0.026	0.096	dwt_1005	0.609	0.619	0.512	0.503	0.485	0.523	0.390	0.516	0.455
cage8	0.185	0.203	0.151	0.142	0.140	0.147	0.207	0.150	0.122	cage8	0.435	0.437	0.207	0.278	0.221	0.235	0.349	0.193	0.200
bcsstk09	0.022	0.022	0.037	0.027	0.066	0.024	0.096	0.021	0.015	bcsstk09	0.867	0.867	0.767	0.795	0.602	0.835	0.565	0.856	0.973
block_2000	0.193	0.189	0.164	0.205	0.181	0.162	0.302	0.155	0.144	block_2000	0.374	0.372	0.205	0.279	0.166	0.287	0.339	0.155	0.160
sierpinski3d	0.077	0.093	0.152	0.092	0.091	0.079	0.310	0.068	0.063	sierpinski3d	0.579	0.580	0.387	0.492	0.326	0.534	0.438	0.549	0.561
CA-GrQc	0.182	0.189	0.150	0.175	0.182	0.148	0.220	0.172	0.129	CA-GrQc	0.480	0.483	0.170	0.207	0.179	0.183	0.349	0.081	0.119
EVA	0.171	0.161	0.148	0.141	0.233	0.124	0.325	0.149	0.098	EVA	0.801	0.802	0.707	0.706	0.717	0.696	0.780	0.406	0.459
3elt	0.110	0.090	0.052	0.045	0.057	0.060	0.317	0.049	0.046	3elt	0.663	0.715	0.415	0.485	0.384	0.595	0.248	0.576	0.506
us_powergrid	0.150	0.101	0.074	0.080	0.090	0.094	0.271	0.091	0.058	us_powergrid	0.454	0.457	0.234	0.353	0.253	0.429	0.409	0.233	0.215
average	0.103	0.094	0.083	0.097	0.106	0.085	0.219	0.078	0.069	average	0.842	0.852	0.469	0.426	0.296	0.541	0.333	0.386	0.399
Normalized stress (rel.)										Neighborhood preservation (rel.)									
	low (good)									least preserving (bad)					most preserving (good)				
		, ,	n	nean						mean									

Normalized stress best with NEATO tsNET performs average

Normalized stress

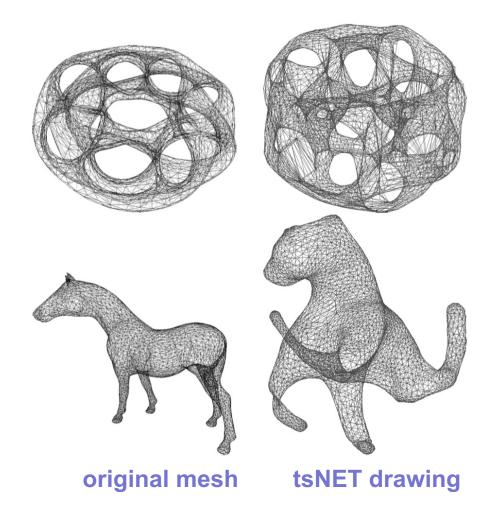
tsNET is by far the best all other are similarly poor

Drawing Large Graphs: Minimizing the Impact of Long Edges



- long edges are cluttering a graph drawing ☺
- it is however hard to avoid them
- minimize their **impact** by **bundling** edges over given length

To end: A crazy experiment



- take a 3D mesh
- throw away vertex coordinates, keep edges only
- draw the edge-graph with tsNET
- see how some shape information was recovered ☺

Summary: High-dimensional data visualization

For what

• datasets with many samples *N* and many (10..1000) dimensions *n*

Dimensionality reduction

• synthesize few (2..3) dimensions out of the *n* ones to encode sample similarity

Techniques

- PCA
- MDS
- Isomap
- t-SNE, UMAP
- NNP

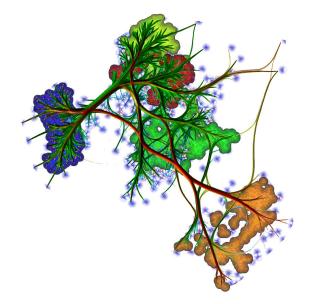
Challenges

- no perfect projection exists
- we must always measure projection errors

Thank you for your interest!

Alex Telea

a.c.telea@uu.nl



webspace.science.uu.nl/~telea001

- examples, applications
- code
- datasets
- papers
- people and projects

vig.science.uu.nl

