
Step 1: Read and draw a graph

Visual appearance: Make sure you use same scales for both axes. As one of the results of that
your circular nodes will really appear circular. Make sure you set the nodes to have reasonable size –
you can make this procedure automatic based on the graph’s size and the bounding box. “Hide” the
edge ends behind the nodes to which they are incident. Do not label nodes if this is not necessary to
refer to them. Do not show arrow markers on the edges if they are not directed. On the other hand,
choose the arrow size and style so that it is visible, if edges are directed. Consider using blending (1
at start, 0 at end) instead of showing arrows explicitly. Choose a reasonable scaling of your graph
drawing images. Do not make images unnecessarily large – this makes your report not to look neat
and professional. Play with node and edge colors to make them look better, consider using dark
gray instead of black both for nodes outlines and edges – black creates very cluttered pictures. You
can also consider using transparency.

Notation: Introduce and use notation. We usually use G for a graph, u or v for nodes/vertices,
{u, v} for an undirected edge and (u, v) for a directed one, n and m for the number of nodes and
edges, respectively, Greek � is used to refer to a graph drawing, which you can also call layout.
Become acquainted with the use of basic graph-theoretical notions. Some examples are: degree of a
node - number of edges incident to a node, denoted by deg(u); path in a graph - sequence of vertices
and edges incident to each other, denoted by either listing the vertices of the path or the edges or
both, like P = v1e1v2e2 . . . envn; the length of a path length(P ) which is commonly defined as the
number of edges in the path. For more notions we recommend to consult the Graph Theory book
of Diestel1.

Software: In one paragraph describe the software, programming language and libraries you are
using. Consider describing the structure of your software – how you plan to organize the data
structures and algorithm classes. This of course can change as you work on the implementation.

1Reinhard Diestel, Graph Theory (Graduate Texts in Mathematics), Springer, 2005.

4


	Step: Compute a force directed layout
	Step: Compute a layered layout
	Step: additional bonus tasks on existing lectures
	Step: Multilayer/clustered graphs and edge bundling
	Step: Projections for graphs
	Step: Quality measurement of graph projections

