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Abstract
Two-dimensional medial axes and three-dimensional curve skeletons have been long used for shape retrieval tasks. In contrast,
and despite their ability to fully capture shape geometry and topology, three-dimensional surface skeletons have seen much less
usage in this context. We present here a framework for shape matching and retrieval based on such surface skeletons. To this
end, we construct a space of cuts generated by the surface skeleton, which has desirable invariance properties with respect to
shape size, rotation, translation, pose, and noise. Next, we extract a histogram-based descriptor from this cut space, and discuss
three different metrics to compare such histograms for shape retrieval. We illustrate our proposal by showing our descriptor’s
effectiveness in shape retrieval using a known shape-database benchmark.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computation Geometry and Ob-
ject Modeling—Curve, surface, solid, and object representations, I.4.7 [Image Processing and Computer Vision]: Feature
Measurement—Size and shapes, I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Shape

1. Introduction

The increase in computational resources and scanning technologies
has made large collections of 3D shapes readily available. With
this increase has come the demand for methods and techniques for
searching for specific shapes in such databases [SHP97,FMKC03].
Within this field, content-based shape retrieval (CBSR) focuses
on efficiently finding the most similar shapes to a given example
shape from a given shape collection. Many classes of CBSR meth-
ods exist, based on various techniques, such as parametric tem-
plates [GF15], descriptor-based methods [TV08], and skeleton-
based methods [SSGD03, XHS08].

Among the above, skeleton-based methods have the impor-
tant advantage as being able to compare shapes at a high level,
and based not only on their geometry, but also, specifically, their
topology. This supports CBSR applications where the search is
driven by global shape properties, such as structure and topology
[SSGD03, CDS∗05], in addition to the more commonly used local
geometry and texture properties. Classical medial axes (in 2D) and
curve skeletons (in 3D) have proven here to be efficient and effec-
tive descriptors [SKK04, SSGD03]. In the 3D case, however, curve
skeletons can capture well shape topology, and partially geometry,
only for locally quasi-tubular shapes [CSM07]. In contrast, sur-
face skeletons capture well both topology and geometry for any 3D
shape [JKT13]. However, to our knowledge, such skeletons have
not yet been used for CBSR.

We present in this paper a shape descriptor that uses surface
skeletons of 3D voxel shapes for CBSR. From these skeletons, we

construct a so-called cut space that describes the local shape thick-
ness properties in a multiscale way, i.e., ignores small details which
are less relevant for CBSR, but captures the actual shape thick-
ness well. We next reduce this cut space to a histogram descriptor
that efficiently and effectively captures thickness properties, and is
also invariant to isometric shape transformations, pose, noise, and
sampling resolution. We next study two existing metrics, and pro-
pose two new metrics, to compare such histograms for CBSR. We
demonstrate our proposal by applying it to a well-known 3D shape
benchmark database. Summarizing, the main contribution of this
paper is showing that surface skeletons have the potential to be effi-
cient and effective instruments for constructing compact thickness-
descriptors that, next, perform well for CBSR applications.

This paper is structured as follows: Section 2 reviews related
work, with a focus on skeleton-based CBSR. Section 3 presents our
method. Section 4 illustrates our method on a variety of 3D shapes.
Section 5 discusses our method. Section 6 concludes the paper.

2. Related Work

Many methods have been proposed for CBSR [TV08]. Most such
methods use a two-step approach: First, a so-called descriptor is
computed from a shape, aiming to compactly capture the relevant
shape properties for the search process, and also to be resistant to
shape changes deemed as irrelevant for the same context, such as
isometric transformations and noise [KFR03]. Next, the best-match
for the given descriptor is searched for in a database of shapes,
which is organized (indexed) so as to speed up the search process.
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Our focus in this work is the first above step – descriptor
computation. To this end, we next review typical descriptors used
in CBSR, and next focus on skeletal descriptors, which are central,
and specific, to our method.

Shape descriptors for CBSR: Osada et al. [OFCD02] describe
a shape by a distribution capturing its geometric properties such
as angle, distance, and volume between random point-pairs on the
shape surface. Kazhdan et al. [KFR03] propose a method to cre-
ate a descriptor which is rotation invariant, based on spherical har-
monics. The descriptor is further refined in [KFR04] to capture a
shape’s reflective and rotational symmetry. However, no exact accu-
racy information is provided, except for a stated 15% improvement
in precision-recall plots as compared to PCA alignment of models
prior to retrieval. The spherical extent function (SEF) measures the
thickness of a shape along rays passing through its origin [SV01].
While simple, this descriptor does not work well for thin and entan-
gled shapes.

Liu et al [LKyS03] propose the directional histogram model
(DHM) that is very similar in spirit with, and also shares the lim-
itations of, the SEF. Recently, Schmidt et al. [SST∗15] extended
the DHM to a two-dimensional descriptor combining shape thick-
ness and depth complexity (number of intersections of a ray with
the shape), thereby capturing both shape geometry and topology.
Both above methods, however, require thousands of 2D views of
the shape to be rendered and analyzed, which becomes expensive
even when using GPU acceleration.

Jain and Zhang [JZ07] propose to represent each shape by the
eigenvectors of a certain affinity matrix constructed such that nor-
malization against rigid-body transformations, uniform scaling and
bending is achieved. They also show that the retrieval performance
of the light-field [CTSO03] and spherical-harmonic [KFR03] de-
scriptors is improved by 5 . . .10% when applied on the proposed
spectral embedding. Other state-of-the-art methods include covari-
ance [TL15] and diffusion [BBK∗10, SOG09, FXD∗15] -based de-
scriptors.

Apart from the above descriptors that use only shape geometry,
other descriptors use additional data such as texture and lighting.
For instance, the DB-VLAT descriptor proposed in [TKA12] com-
bines dense SIFT descriptors taken from several 2D shape views.
While showing very good precision and recall, this descriptor re-
quires careful prior shape alignment, and appears to be very compu-
tationally intensive. More importantly, texture and/or lighting data
is not always available, such as in the case of raw 3D voxel shapes.

Finally, machine learning techniques such as the bag-of-features
and deep neural networks (DNNs) have also been used to learn
shape descriptors, thus improving their retrieval performance, see,
e.g., [LGS10, FXD∗15] and references therein. However, training
DNNs can be challenging, as this requires numerous examples to
learn from.

Medial descriptors: Skeletons, also known as medial axes, were
introduced by Blum for the 2D case [Blu67]. For the 2D case, me-
dial axes jointly capture a shape’s geometry and topology by the
so-called medial axis transform, which is an exact dual represen-
tation of a shape as compared to a standard boundary representa-
tion (see also Sec. 3.1). Siddiqi et al. [SSDZ99] define the shock

graph extracted from the shock grammar [SK96] and match such
graphs to find similar 2D shapes. However, while this method can
effectively capture topology, it is less good in capturing geometry,
and was not extended to 3D shapes. Sebastian et al. [SKK04] also
use shock graphs to recognize shapes, based on a relatively expen-
sive edit-type distance metric (minimum amount of changes needed
to modify a shock graph into another one). However, this method
can only handle 2D shapes. Similarly, Xie et al. compare shapes by
segmenting them using their skeletons’ junctions and performing a
part-by-part matching [XHS08]. As [BL08], this method can only
handle 2D shapes.

In 3D, the by far most used medial descriptors are curve skele-
tons, which essentially capture a shape’s local circular symmetry,
and are relatively easy to compute [CSM07, SJT14]. As such, sev-
eral methods have used curve skeletons for CBSR. Sundar et al.
[SSGD03] use 3D curve skeletons to match shapes by extracting
individual skeletal branches to construct a graph, and next using
graph-matching algorithms to compare such shape graphs. How-
ever, this method is quite complex and computationally expensive.
The method is next refined in [CDS∗05] to use the Earth Mover’s
Distance (EMD) technique to compare 3D curve skeletons to match
shapes [RTG98]. For 2D shapes, Xiang et al. [BL08] propose an
alternative to [SSGD03] by first pruning 2D medial axes to re-
move irrelevant branches (expensive for matching) using the DCE
method [BLL07], and next using paths between skeletal endpoints
to construct a graph. While faster than [SSGD03], the method can-
not effectively handle shapes having few salient skeletal endpoints,
i.e., shapes which are not well described by curve skeletons, and, as
mentioned, can only treat 2D shapes.

Apart from curve skeletons, 3D shapes admit also surface skele-
tons, which fully capture their geometry and topology regardless
of the shape type and are effectively dual representations of shape
boundary descriptions [SJT14]. However, efficiently computing
surface skeletons for complex 3D shapes has been considerably
harder than computing curve skeletons, due to the higher com-
plexity of such descriptors, but also to their well-known sensitiv-
ity to small shape- surface perturbations. Recent algorithms have
changed this, allowing the near-real-time computation of surface
skeletons both from mesh-based models [JKT13] and voxel-based
models [JST15]. Key to their usability, such methods also regularize
the produced surface skeletons by efficiently computing so-called
multiscale importance metrics, which ensure that only large surface
details will generate skeletal branches [DS06, RvWT08a]. Summa-
rizing the above, 3D curve skeletons have proved to be useful and
efficient descriptors for CBSR, but are limited to mainly tubular
shapes. Surface skeletons overcome the descriptive power of curve
skeletons for any 3D shape type, but have only recently shown to
be efficiently and robustly computable for complex 3D shapes. As
such, the main aim of this paper is to show that recent advances in
3D surface skeleton computation make these descriptors more effi-
cient, more effective, and simpler to implement tools for CBSR than
the well-known curve skeletons used for the same task.

3. Method

We next explain our CBSR descriptor proposal. Section 3.1 outlines
relevant skeleton definitions. Section 3.2 outlines the construction of
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the so-called ‘cut space’ which we use next to build our histogram-
based shape descriptors (Sec. 3.3). Finally, Section 3.4 shows how
such histogram descriptors can be efficiently and effectively com-
pared. Figure 1 illustrates the proposed CBSR pipeline.

query shape shape databasesha

descriptor
extraction

descriptor
extraction

descriptor database

shape descriptor

descriptor
comparison

retrieved shapes, ranked by similarity

Figure 1: Proposed CBSR pipeline. Our focus is the descriptor ex-
traction and comparison (marked in bold).

3.1. 3D Skeletonization

Let the Euclidean distance transform DT∂Ω : Ω→ R+ of a binary
voxel shape Ω⊂ Z3 with boundary ∂Ω be denoted by

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (1)

The medial surface, or surface skeleton, of ∂Ω is next defined as

S∂Ω = {x ∈Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2,

‖x− f1‖= ‖x− f2‖= DT∂Ω(x)} (2)

where f1 and f2 are the contact, or feature, points with ∂Ω of the
maximally inscribed ball in Ω centered at x [GK04, RH08]. These
define the feature transform FT∂Ω : Ω→P(∂Ω)

FT∂Ω(x ∈Ω) = argmin
y∈∂Ω

‖x−y‖. (3)

The medial surface implied by Eqn. 2 consists of a complex set of
2D manifolds embedded in 3D. Their direct computation, following
Eqn. 2, is sensitive to small-scale noise on ∂Ω, especially when us-
ing voxel-based discretizations of Ω. To alleviate this, S∂Ω can be
regularized by a computing a metric ρ : S∂Ω→ R+ such as the me-
dial geodesic function (MGF) which sets ρ(x) to the length of the
shortest path on ∂Ω between the two feature points of x [DS06]. As
the MGF monotonically increases from the medial surface bound-
ary to its center, upper thresholding it always yields connected and
noise-free simplified medial surfaces [RvWT08b, JKT13]. A simi-
lar regularization metric, which is faster to compute than the MGF,
is proposed in [JST15] based on a mass advection process from
∂Ω onto S∂Ω. In our work next, we will use the regularized surface
skeletons produced by [JST15].

3.2. Cut space construction

The first step of our method is to construct a so-called cut space
from the surface skeleton S∂Ω, following the process proposed in

[FJT15] (see Fig. 2a-e, for a hand model): For each point x ∈ S∂Ω,
we construct a closed curve C(x) ⊂ ∂Ω as the union γ1 ∪ γ2 ∪ γ3,
where γ1 is the shortest path on ∂Ω between the two feature points
f1 and f2 of x (Fig. 2a); and γ2 and γ3 are the shortest-paths on
∂Ω between o, the opposite point on ∂Ω of the midpoint m of γ1
with respect to x, and f1 and f2, respectively ((Fig. 2b-d). For full
implementation details, we refer to [FJT15].

3.3. Cut thickness histogram

Key to our shape descriptor idea is that the length ‖C(x)‖ of a cut
C(x) is a good local descriptor of the shape’s properties around
point x. We argue this by following the analysis in [FJT15]: The
cut-space CS =

⋃
x∈S∂Ω

C(x) captures, locally, the shape’s symme-
try and thickness in an effective and natural way. That is, CS con-
tains all cuts which are locally smooth, tight-wrapping around ∂Ω,
and oriented orthogonal to Ω’s local symmetry axis. As these cuts
have proven to be good for shape segmentation [FJT15], we argue
that they are also good for describing local shape thickness. Fig. 2e
shows the cut space CS for our hand model, colored to emphasize
the difference between short and long cuts. For all implementation
details of the construction of CS, we refer further to [FJT15].

As mentioned in [FJT15], CS contains a small number of cuts
which are not orthogonal to the local symmetry axis, or curve skele-
ton, of Ω. Upon closer examination, we noticed that these corre-
spond to very short geodesics γ1, i.e., skeleton points x whose two
feature points f1 and f2 are very close on ∂Ω. The presence of such
cuts unnecessarily perturbs the computation of H(Ω). This problem
is well known in 3D skeletonization: Skeleton points having small
feature-vector angles tend to be very unstable [FLM03]. Hence, we
remove from CS all cuts C(x) for which ‖γ1‖/‖C(x)‖ < 0.3, an
empirically determined value which gave good results in all our
tests. The resulting regularized cut-space CSr is next used to ro-
bustly compute our shape descriptor.

We stress that the local shape-thickness estimation ‖C(x)‖ adapts
itself to both the shape orientation (C is orthogonal to Ω’s local
symmetry axis, or curve skeleton, of Ω) and the shape’s local geom-
etry (C is piecewise geodesic by construction, thus smooth). This
is in high contrast to [SST∗15, LKyS03], who estimate the local
shape thickness in arbitrary directions, i.e., regardless of the shape’s
curve-skeleton orientation. The above papers recognize that this can
yield significant thickness-estimation noise. Indeed, formally, just
one single direction (orthogonal to Ω’s curve-skeleton) yields the
‘true’ shape thickness, as this thickness value is unique.

Given our cut space CSr, we next build a histogram H(Ω) of all
cut lengths {‖C(x)‖|∀C ∈ CSr}. Since S∂Ω is rotation and trans-
lation invariant with respect to Ω, so is CSr, and thus so is H(Ω).
To achieve scaling invariance, we normalize the cut lengths by their
median value over CSr. This essentially makes cut lengths relative
to the shape size, and thus makes next H(Ω) invariant to the scale
(size) of Ω. To make H independent on the number of cuts (which
depends in turn on the voxelization resolution of Ω and S∂Ω), we
normalize the bin-values H(Ω)i by the total cut count ‖CSr‖. Using
B = 20 bins H(Ω)i, 1≤ i ≤ B, for constructing H(Ω) proved to be
a very good balance between accuracy and level-of-detail.
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a) construction of γ1 b) finding opposite point

c) construction of γ2 d) construction of γ3

e) cut space CS f) regularized
   cut space CS r 

f1

γ1

o

f2
f1

f2

f2
f1

o

o

m

γ2 γ3

x

Figure 2: Construction of regularized cut space CSr.

3.4. Shape matching distances

Given two shapes Ω1 and Ω2 and their respective histograms
H(Ω1) and H(Ω2), denoted next H1 and H2 for brevity, we
compare these by using a distance function d(H1,H2) ∈ [0,1]. To
this end, we studied four such distances, as follows.

Hellinger distance: We first consider the simple Hellinger distance

dH(H1,H2) = ∑
B
i=1

(√
H i

1−
√

H i
2

)2
. Although dH is not an opti-

mal metric to compare shapes, as we will also show next, it has been
used in previous CBSR applications [SST∗15,TV08], so we include
it here for completeness. Upon close examination, we noticed that
dH causes false negatives, i.e., high distance values between two vi-
sually very similar shapes. Figure 3 shows such an example, where
dH = 0.575 for two quite similar shapes. We found similar problems
when using other simple histogram-distances, such as the L1 norm,
Chi-square, and correlation metrics.

This problem can be understood if we consider the coarse
nature of our cut-space: CSr contains at most as many cuts as
the size ‖S∂Ω‖ of the surface skeleton, which is bounded by the
voxelization-resolution of our input shapes Ω, and next reduced
by regularization of CS to CSr. In practice, for a shape voxelized
at 3003 resolution, CSr contains a few thousand cuts. In con-
trast, the thickness estimation in [SST∗15] uses 500K thickness
samples, which is over three orders of mangitude more. Similar
high sampling resolutions are used in [LKyS03, SV01]. While
super-sampling alleviates the false-negative problem, it is also very
expensive. Hence, one key challenge for our method is how to
increase the robustness of comparing histograms without increasing
the voxelization resolution, and thus cost, of our pipeline. Apart
from reducing computational costs, this will also allow using our
method on coarsely-sampled shapes.

EMD: Another popular way to compare histograms is the Earth
movers distance (EMD) [RTG98]. When comparing two his-
tograms, this metric treats one histogram H1 as mass and the second
one H2 as a container. The least amount of mass required to be

a) compared shapes Ωi

b) compared cut spaces CSi

c) compared cut histograms H(Ωi)

Figure 3: Two similar shapes and their cut-spaces and histograms.

moved from H1 to H2 to make the two histograms identical gives
the distance dEMD(H1,H2). The EMD distance is known to be, in
general, a robust way to compare two histograms [RTG00]. In our
case, dEMD creates fewer false negatives than dH , but still too many
of them. A similar effect has been reported for CBSR by [SST∗15].

Median value separation: Studying the above-mentioned false
negatives, we noted that they are mainly caused by small differences
in the location (cut-length) of the largest peaks (longest bars H i) in
the two compared histograms. These correspond to slightly differ-
ent thickness-distributions of the two compared shapes Ω1 and Ω2.
To alleviate this, we work as follows: For a shape Ω, we compute
its median cut-length value m, and use it to divide its histogram
H into two sub-histograms H l and Hr which contain cuts shorter
or equal than, respectively larger than, m. For H l , we list bars in
decreasing cut-thickness order; for Hr, bars are listed in increasing
thickness order. Both histograms H l and Hr use, together, the same
fixed number of bins B as the original H. When comparing two
shapes Ω1 and Ω2, we pad H l

1 and Hr
1 with zero-size bins to the

right so as to match the corresponding sizes of their counterparts H l
2

and Hr
2 . Note that right-padding is made possible by the reordering

of bars in H l mentioned above. Finally, we use the EMD metric to
compare the corresponding histogram-pairs, yielding the distance
metric dMV (H1,H2) =

1
2 [dEMD(H l

1,H
l
2) + dEMD(Hr

2,H
r
2)]. Figure

7 middle shows this for the shapes, for which we get dMV = 0.281,
which reflects much better their visual similarity than dEMD and dH
studied before.

Multilevel distance: As outlined above, small changes in the lo-
cations of tall bars in cut-space histograms can create large unde-
sired distance differences. The median-value distance dMV partially
fixes this by effectively ‘aligning’ two histograms along their me-
dian values. We next refine this fix to also consider gaps in a his-
togram. These are near-empty bins separating blocks of non-empty
bars (see Fig. 5), and correspond to cut sizes appearing rarely in a
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r
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r

m=82.4

m=82.5

thickness thickness

thickness thickness

thickness thickness

Figure 4: Median value separation histogram-distance dMV .

shape. Since a gap is, by definition, surrounded by two blocks of
non-empty bars, it corresponds to shape zones showing rapid local-
thickness transitions, such as joints between parts. Gaps were used
in [FJT15] to segment shapes along these joints. In contrast, we use
gaps to compare shapes more robustly, as follows. First, we define
gaps gi in a histogram H as bars H i containing less than τ‖CS‖ of
the total number of cuts, where τ = 0.01 has given good results for
all our experiments. Gaps effectively partition H into several bin-
blocks Bi, each being defined by two consecutive gaps (gi

l ,g
i
r) to its

left, respectively right. Given two such histograms H1 and H2, we
compare their block-sets B1 = {Bi

1} and B2 = {Bi
2} using dMV on

block-pairs in B1 and B2 whose center distance |gi
l + gi

r|/2 is less
than β = 3B/20 bars, which corresponds to three bars for our pre-
set B = 20 number of bars in a histogram. Note that the complexity
of this comparison is O(β ·max(|B1|, |B2|)), i.e., basically linear in
the number of blocks, since a block in, say, B1 only gets compared
worst-case with 2β other blocks in B2. Denoting the set of such
matching blocks by BP ⊂ B1×B2, we get our multilevel distance
metric dML(H1,H2) = ∑(Bi,B j)∈BP dMV (Bi,B j). Figure 5 shows this
idea for our two plier shapes (Fig. 3), whose histograms show one
gap each, and thus have been cut into two blocks. Intuitively, we see
that block-detection ‘aligns’ two histograms independently from the
longest-bar alignment provided by dMV . For our plier shapes, we ob-
tain dML = 0.0321, which reflects the (very high) visual similarity
of the two shapes better than all metrics considered so far.

4. Implementation and results

We implemented our shape descriptor using the 3D skeletonization
algorithm in [JST15], which is one of the fastest, most robust, ex-
act, and easy to use methods to extract regularized 3D-multiscale
surface-skeletons in existence. Cut spaces CS were built following

B1
1

B2
1B1

2
B2
2

gap gap

H1 H2

Figure 5: Multilevel histogram-distance dML.

the method in [FJT15]. To test our proposed descriptor, we chose
to use the McGill 3D Shape Benchmark [CIM15], which is well-
known in the shape retrieval and computer vision community. The
database contains 309 shapes, grouped into 13 semantic classes.
Each class contains objects having various scales, poses, and ar-
ticulations (see Fig. 6 for a sample subset). Since both [JST15]
and [FJT15] are voxel-based methods, we voxelized all our test
shapes to resolutions ranging between 2003 and 5003 voxels, using
binvox [NT03]. Our entire pipeline, written in C++, was executed
on 3.5 GHz Linux PC.

Ants Dinosaurs

Dolphins Fishes

Four limbs Hands

Humans Octopusses

Pliers Snakes

Spectacles Spiders

Teddies

Figure 6: Example shapes from the used benchmark [CIM15].

Table 1 shows the performance of our cut-space-based descriptor
using the three distance metrics in Sec. 3.4. To test retrieval
accuracy for the used database, we used two methods:

Fine grained: Given a shape Ω∈D from a database D, we compute
the query’s precision for a query-size Q = 10, i.e., find the most
similar 10 other shapes Ωi ∈ D according to d(H(Ω),H(Ωi)), and
count how many of these are in the same class as D.

Coarse grained: We apply the same procedure as above, but merge

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



C. Feng & A. C. Jalba & A. C. Telea / A descriptor for voxel shapes based on the skeleton cut space

Classes Class dEMD dEMD dMV dMV dML dML
sizes (fine) (coarse) (fine) (coarse) (fine) (coarse)

humans 29 0.807 0.945 0.755 0.831 0.776 0.941
hands 20 0.345 0.7 0.36 0.6 0.435 0.81
four limbs 31 0.494 0.813 0.439 0.771 0.442 0.858
dinosaurs 18 0.439 0.844 0.389 0.828 0.339 0.878
spiders 31 0.787 0.900 0.777 0.974 0.797 0.939
ants 30 0.793 0.837 0.62 0.877 0.737 0.803
octopus 25 0.608 0.852 0.652 0.828 0.66 0.956
fishes 23 0.517 0.709 0.522 0.704 0.674 0.791
dolphins 12 0.4 0.683 0.467 0.642 0.442 0.642
pliers 20 0.92 0.92 1 1 0.87 0.87
teddy 20 0.72 0.72 0.775 0.775 0.885 0.885
spectacles 25 0.292 0.292 0.34 0.34 0.432 0.432
snakes 25 1 1 0.684 0.684 0.624 0.624

Table 1: Shape retrieval results with three for the distance metrics
dMV , dEMD, and dML.

classes having structurally similar objects into three so-called su-
perclasses: limbed objects (humans, hands, dinosaurs, four-limbs,
teddies); highly articulated objects (spiders, ants, octopuses, specta-
cles); and low-articulated objects (fishes, dolphins).

We applied both above tests to all 309 shapes in the database and
then averaged the results per shape-class. Table1 shows the results.
Figure 7 gives more detailed insights, showing the six most-similar
shapes retrieved for a query shape for the distance metrics dML,
dEMV , and dMV . The Hellinger distance dH was left out as it yielded
significantly poorer results. From these data, we see that dML gives
the visually best results, followed by dMV and next by dEMD.

Noise robustness: To test the robustness of our descriptor to noise,
we created a database where noise was added to the shapes in
[CIM15], in the form of Gaussian bumps of two heights (small –
3% of the shape diameter Φ(Ω), and large – 6% of Φ(Ω)); and two
standard deviations (small – 4% of Φ(Ω), and large – 8% of Φ(Ω)).
Noise bumps were Poisson distributed over ∂Ω. We next queried for
a clean shape, and observed that we got both noised versions thereof
and clean versions of shapes in the same class as the top-hits (Fig. 8
top row). We also queried the four types of noised shapes corre-
sponding to the clean shape Ω, and noticed that we got, in three
cases, three of the noised variants of Ω, and in the fourth case all
four variants (Fig. 8, bottom 4 rows). In all cases, the clean shape
appeared in the top-six most similar retrieved shapes. This shows
that our descriptor is both robust to noise (it retrieves the correct
same-class shapes and does not introduce false-positives because of
noise); and also sensitive to shape (it retrieves most of the noised
versions of the input shape).

5. Discussion

We nest discuss several relevant aspects of our proposed descriptor.

Robustness: The proposed descriptor is rotation, translation,
scaling, pose, noise, and voxelization-resolution invariant. This
is guaranteed by the corresponding properties of the underlying
skeleton cut-space and histogram normalization (Sec. 3.3). Note
that, while these properties hold by construction in the continuous
space R3, they are preserved in the voxel space Z3 only as well as
the underlying skeletonization method can manage to do so. The
method we use here achieves very good results in this respect, as
discussed in detail in [JST15]. Note also that, to ensure similar
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Figure 8: Retrieval robustness in presence of noise. Shapes marked
‘N’ contain artificially-added noise.

properties, other CBSR methods require more complex techniques,
such as spherical harmonics [LKyS03, SV01, KFR03, KFR04] or
delicate, and time-consuming, manual model alignment [TKA12].

Comparison: Our evaluation, while limited, is in line with sev-
eral related papers. Osada [OFCD02] uses a database of 133 mod-
els grouped in 25 classes. For evaluating the performance of their
method, they measure the query precision, and the percentage of all
queries where the top match was from the queried shape’s class, and
obtain values of 30%, respectively 70%. In comparison, our corre-
sponding values are of 70% (for the dML metric), respectively 100%
(all metrics) (see Tab. 1). Furthermore, the spectral descriptors of
Jain and Zhang [JZ07] yield 70 . . .75% precision performance and
outperform both the light-field [CTSO03] and spherical-harmonic
[KFR03], whose precision is 68% and 60%, respectively. On the
same dataset, other query-precision results include 49% – shape-
distributions [OFCD02], 45% – covariance [TL15] and 50% – dif-
fusion [FXD∗15], as reported in [FXD∗15,LGS10]. When compar-
ing the above figures with ours, we should stress that the obtained
insights are, of course, limited by the fact that we use different
databases. This is due to the lack of access to the above-mentioned
implementations (so we couldn’t use them on our database) and the
difficulty and cost to convert the databases used in the above papers,
when these were publicly accessible, to our voxel representation (so
we couldn’t easily use our implementation on these databases).

The skeleton-based descriptor in [SKK04] was tested on two
databases (99 shapes, 9 classes; and 144 shapes, 8 classes). Its ac-
curacy, measured by the so-called first tier (precision with the query
size equal to the class size of the queried shape), yielding a value of
97% on average – in our case, the corresponding average value is
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Query shape 01 02 03 04 05 06 01 02 03 04 05 06 01 02 03 04 05 06

Figure 7: Examples of shape retrieval results for the distance metrics dEMD (left), dMV (middle), and dML (right). For each distance metric,
shapes are listed from left to right in increasing distance order. Actual distance values are indicated under the retrieved shapes.

of 80%. However, we note that [SKK04] can only treat 2D shapes,
which are known to be much easier to match than 3D shapes.
Similarly, the skeleton-based path similarity matching method
in [BL08] shows quite good retrieval results, with an average
precision of 95% for a query size of 10 shapes, but is also limited to
2D shapes. Sundar [SSGD03] tested their 3D curve-skeleton-based
descriptor on a database of 100 shapes. However, while a few
retrieval results are shown, no statistics are provided. Cornea et
al. compared their 3D curve-skeleton-based descriptor on a 1000
shape database [CDS∗05]. They report a first-tier value of 17%
and nearest-neighbor value of 71%. While both [CDS∗05] and our
method use the EMD to compare shape descriptors, [CDS∗05] uses
the entire curve-skeleton as descriptor, while we use the cut-space
thickness-histogram. The latter is significantly more invariant to
irrelevant shape changes than the former, which explains, at least
partially, our better results.

Efficiency and ease of use: The proposed descriptor can be
computed fully automatically, with no user parameters needed
to be set or tuned. For a shape Ω, its computation complexity is
O(‖S∂Ω‖D), where D = maxx∈Ω DT∂Ω(x) indicates the maximal
shape thickness and ‖S∂Ω‖ the number of voxels of the shape’s
surface skeleton. In practice, this allows computing our descriptor
in subsecond times on shapes up to a few hundred voxels cubed
on the platform indicated in Sec. 4. Significant speed-ups can be
easily achieved, if desired, by trivially parallelizing the cut space
computation on the CPU or GPU, if desired.

Limitations: As outlined earlier, our descriptor essentially captures

the local shape thickness only. As such, its discriminative power
is lower, in general, than more advanced descriptors, in general.
However, for a fair comparison, one should relate our proposal
chiefly to other thickness-based descriptors in CBSR (or, more
generally, descriptors with the same small size, in our case, B = 20
values). Indeed, comparing descriptors of highly different sizes can
be perceived as unfair, since these have highly different information
content. Separately, our proposal can be directly used to replace
other less accurate thickness descriptors known in the literature,
e.g. [SST∗15, LKyS03]. A second limitation relates to the bench-
mark we used [CIM15], which contains mainly locally-tubular
shapes. For a better insight, more varied shapes should be added
to such a benchmark, a task which we consider for future work.
Finally, besides precision values, CBSR benchmarks also typically
use nearest-neighbor and first-tier values [CDS∗05, SKK04]. We
plan to add these metrics in our future evaluations of our proposed
descriptor.

6. Conclusions

We have presented a new method for characterizing 3D shapes via
a thickness-histogram descriptor. Our descriptor captures the local
thickness of a 3D shape in an accurate and computationally-savvy
way, by using the 3D surface-skeleton of a shape to construct a reg-
ularized space of smooth cuts which are tight around the shape, and
also optimally oriented across the local shape curve-skeleton to cap-
ture the shape’s local thickness. We next studied four histogram-
distance metrics to compare such descriptors, and showed that two
such novel metrics achieve shape matches which reflect the visual
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similarity of 3D shapes in better ways than classical histogram-
comparison metrics used in the literature. Our method is simple to
implement, fully automatic, and robust to shape variations such as
pose, scale, rotation, noise, and voxelization resolution.

Future work directions consider the integration of additional
shape information in our cut histograms, such as the cut shape, ec-
centricity, and orientation, as well as more detailed testing our de-
scriptor on larger shape benchmarks, and its (easy) integration with
other existing shape descriptors in the literature.

References
[BBK∗10] BRONSTEIN A. M., BRONSTEIN M. M., KIMMEL R., MAH-

MOUDI M., SAPIRO G.: A Gromov-Hausdorff framework with diffusion
geometry for topologically-robust non-rigid shape matching. IJCV 89,
2-3 (2010), 266–286. 2

[BL08] BAI X., LATECKI J.: Path similarity skeleton graph matching.
IEEE TPAMI 30, 7 (2008). 2, 7

[BLL07] BAI X., LATECKI J., LIU W.-Y.: Skeleton pruning by contour
partitioning with discrete curve evolution. IEEE TPAMI 29, 3 (2007),
449–462. 2

[Blu67] BLUM H.: A transformation for extracting new descriptors of
shape. Models for the perception of speech and visual form. MIT Press,
1967. 2

[CDS∗05] CORNEA N., DEMIRCI M., SILVER D., SHOKOUFANDEH A.,
DICKINSON S., KANTOR P.: 3D object retrieval using many-to-many
matching of curve skeletons. In Proc. IEEE SMI (2005), pp. 147–152. 1,
2, 7

[CIM15] CIM MCGILL: McGill shape benchmark, 2015. www.cim.
mcgill.ca/~shape/benchMark. 5, 7

[CSM07] CORNEA N. D., SILVER D., MIN P.: Curve-skeleton proper-
ties, applications, and algorithms. IEEE TVCG 13, 3 (2007), 87–95. 1,
2

[CTSO03] CHEN D.-Y., TIAN X.-P., SHEN Y.-T., OUHYOUNG M.: On
visual similarity based 3D model retrieval. CGF 22, 3 (2003), 223–232.
2, 6

[DS06] DEY T., SUN J.: Defining and computing curve-skeletons with
the medial geodesic function. In Proc. SGP (2006), pp. 143–152. 2, 3

[FJT15] FENG C., JALBA A., TELEA A.: Part-based segmentation by
skeleton cut space analysis. In Proc. ISMM (2015), pp. 324–336. 3, 5

[FLM03] FOSKEY M., LIN M., MANOCHA D.: Efficient computation
of a simplified medial axis. Proc. ACM Symp. Solid Modeling (2003),
96–107. 3

[FMKC03] FUNKHOUSER T., MIN O., KAZHDAN M., CHEN J.: A
search engine for 3D models. ACM TOG 2, 1 (2003), 83–105. 1

[FXD∗15] FANG Y., XIE J., DAI G., WANG M., ZHU F., XU T., WONG
E.: 3D deep shape descriptor. In Proc. IEEE CVPR (2015), pp. 2319–
2328. 2, 6

[GF15] GETTO R., FELLNER D.: 3D object retrieval with parametric
templates. In Proc. 3DOR (2015). 1

[GK04] GIBLIN P., KIMIA B.: A formal classification of 3D medial axis
points and their local geometry. IEEE TPAMI 26, 2 (2004), 238–251. 3

[JKT13] JALBA A. C., KUSTRA J., TELEA A.: Surface and curve skele-
tonization of large 3D models on the GPU. IEEE TPAMI 35, 6 (2013),
1495–1508. 1, 2, 3

[JST15] JALBA A., SOBIECKI A., TELEA A.: An unified multiscalse
framework for planar, surface, and curve skeletonization. IEEE TPAMI
38, 1 (2015), 30–45. 2, 3, 5, 6

[JZ07] JAIN V., ZHANG H.: A spectral approach to shape-based retrieval
of articulated 3D models. Comput. Aided Des. 39, 5 (2007), 398–407. 2,
6

[KFR03] KAZHDAN M., FUNKHOUSER T., RUSINKIEWICZ S.: Rotation
invariant spherical harmonic representation of 3D shape descriptors. In
Proc. SGP (2003), Eurographics, pp. 156–164. 1, 2, 6

[KFR04] KAZHDAN M., FUNKHOUSER T., RUSINKIEWICZ S.: Symme-
try descriptors and 3D shape matching. In Proc. SGP (2004), pp. 46–54.
2, 6

[LGS10] LIAN Z., GODIL A., SUN X.: Visual similarity based 3D shape
retrieval using Bag-of-Features. In Proc. SMI (2010), pp. 25–36. 2, 6

[LKyS03] LIU X., KANG S. B., YEUNG SHUM H.: Directional his-
togram model for three-dimensional shape similarity. In Proc. IEEE
CVPR (2003), pp. 813–820. 2, 3, 4, 6, 7

[NT03] NOORUDDIN F., TURK G.: Simplification and repair of polygonal
models using volumetric techniques. IEEE TVCG 9, 2 (2003), 191–205.
5

[OFCD02] OSADA R., FUNKHOUSER T., CHAZELLE B., DOBKIN D.:
Shape distributions. ACM TOG 21, 4 (2002), 807–832. 2, 6

[RH08] ROERDINK J., HESSELINK W.: Euclidean skeletons of digital
image and volume data in linear time by the integer medial axis transform.
IEEE TPAMI 30, 12 (2008), 2204–2217. 3

[RTG98] RUBNER Y., TOMASI C., GUIBAS L. J.: A metric for distribu-
tions with applications to image databases. In Proc. IEEE ICCV (1998),
pp. 59–66. 2, 4

[RTG00] RUBNER Y., TOMASI C., GUIBAS L. J.: The earth mover’s
distance as a metric for image retrieval. IJCV 40, 2 (2000), 99–121. 4

[RvWT08a] RENIERS D., VAN WIJK J. J., TELEA A.: Computing mul-
tiscale skeletons of genus 0 objects using a global importance measure.
IEEE TVCG 14, 2 (2008), 355–368. 2

[RvWT08b] RENIERS D., VAN WIJK J. J., TELEA A.: Computing mul-
tiscale skeletons of genus 0 objects using a global importance measure.
IEEE TVCG 14, 2 (2008), 355–368. 3

[SHP97] S.BERCHTOLD, H.-P.KRIEGEL: S3: Similarity search in CAD
database systems. In In ACM SIGMOD (1997), pp. 564–567. 1

[SJT14] SOBIECKI A., JALBA A., TELEA A.: Comparison of curve and
surface skeletonization methods for voxel shapes. Pattern Recogn Lett 47
(2014), 147–156. 2

[SK96] SIDDIQ K., KIMIA B.: A shock grammar for recognition. In Proc.
IEEE CVPR (1996), pp. 507–513. 2

[SKK04] SEBASTIAN T., KLEIN P., KIMIA B.: Recognition of shapes by
editing shock graphs. IEEE TPAMI 26, 5 (2004), 550–571. 1, 2, 6, 7

[SOG09] SUN J., OVSJANIKOV M., GUIBAS L.: A concise and provably
informative multi-scale signature based on heat diffusion. CGF 29, 5
(2009), 1383–1392. 2

[SSDZ99] SIDDIQI K., SHOKOUFANDEH A., DICKINSON S., ZUCKER
S. W.: Shock graphs and shape matching. IJCV 35, 1 (1999), 13–32. 2

[SSGD03] SUNDAR H., SILVER D., GAGVANI N., DICKINSON S.:
Skeleton based shape matching and retrieval. In Proc. ACM SMI (2003),
pp. 130–137. 1, 2, 7

[SST∗15] SCHMIDT W., SOTOMAYOR J., TELEA A., SILVA C., COMBA
J.: A 3D shape descriptor based on depth complexity and thickness his-
tograms. In Proc. SIBGRAPI (2015), pp. 433–440. 2, 3, 4, 7

[SV01] SAUPE D., VRANIC D.: 3D model retrieval with spherical har-
monics and moments. In Proc. DAGM (2001), Springer, pp. 392–397. 2,
4, 6

[TKA12] TATSUMA A., KOYANAGI H., AONO M.: A large-scale shape
benchmark for 3D object retrieval: Toyohasi shape benchmark. In Proc.
APISPA ASC (2012), pp. 1–10. 2, 6

[TL15] TABIA H., LAGA H.: Covariance-based descriptors for efficient
3D shape matching, retrieval, and classification. IEEE Transactions on
Multimedia 17, 9 (2015), 1591–1603. 2, 6

[TV08] TANGELDER J. W., VELTKAMP R.: A survey of content based
3D shape retrieval methods. Multimed Tools Appl 39, 3 (2008), 441–471.
1, 4

[XHS08] XIE J., HENG P., SHAH M.: Shape matching and modeling
using skeletal context. Patt Recog 41 (2008), 1756–1767. 1, 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

www.cim.mcgill.ca/~shape/benchMark
www.cim.mcgill.ca/~shape/benchMark

