
A Line Based Visualization of Code Evolution

S.L. Voinea, A. Telea and J.J. van Wijk

Technische Universiteit Eindhoven

Abstract
The source code of software systems changes many
times during the system lifecycle. We study how
developers can get insight in these changes in order
to understand the project context and the product
artifacts. For this we propose new techniques for
code evolution representation and visualization
interaction from a version-centric perspective.
Central to our approach is a line-based display of the
changing code, where each file version is shown as a
column and the horizontal axis shows time. We
propose a version centric layout of line
representations, and we describe a cushion based
technique to enhance visualization with information
about stable evolution areas. We demonstrate the
usefulness of our approach on real- life data sets.

Categories and Subject Descriptors (according to
ACM CCS): D.2.2 [Software Engineering]: Design
Tools and Techniques; D.2.7 [Software Engineering]:
Maintenance, Enhancement; H.5.2 [User Interfaces]:
Evaluation, Methodology

1 Introduction

In the last decade, software visualization has
become a popular research area with a craving
demand for results from the industry. According to
industry surveys, the maintenance costs associated
with software systems exceeded 90% of the total
system costs in the last decade [Erl00]. Software
visualization tries to address the challenge of
reducing these costs both by preventive and
corrective measures. We focus here on the corrective
perspective. Here, software visualization addresses
later, more expensive development phases, such as
debugging, maintenance, restructuring, and
optimization [ESS92] [FD04].

Industry practice studies show that 50% of the
maintenance time is spent on program understanding
[Sta84]. Many visualization tools have been proposed
to help revealing the structure of a software system
by means of reverse engineering [TMR02]
[TWSM94]. However, most of them focus on a fixed
high-level structural view that does not present the
changes the system has undergone. This information
can be of paramount importance, especially during

debugging. Error propagation detection, for example,
is one of the issues that are poorly supported by only
one snapshot of the system structure. Intensive
runtime analyses are required in order to discover
dependencies. Visualizing the structure evolution,
however, could enable the user to make relevant
correlations between modified and faulty code,
reducing this way the analysis scope. Collberg et al.
[CKN*03] tried to overcome this limitation of high-
level structure visualizations by a graph based
technique showing the temporal dimension of
software structures and mechanisms evolution.
However, their still to be validated approach does not
seem to scale well on real-life data sets. Additionally,
the higher-level focus fails to reveal lower-level
system changes, such as the many, minute source
code edits which are often the source of errors. An
apart class of visualization tools for program
understanding use a line-based approach to represent
code: source files are regarded as sets of code lines;
code lines are visually encoded by pixel lines
[ESS92] [FD04]. Most such tools are useful for
revealing structure and change dependencies between
code fragments. However, they do not reveal changes
in the global context of an entire project life span.
CVSscan, a recent tool addressing this limitation by a
line-based visualization of software evolution was
proposed in [VTvW04].

In this paper, we introduce several visualization
and user interaction mechanisms that support
understanding a file’s evolution in a multi-version
project from the perspective of a given version. Out
goal is to support queries such as “How has the code
changed from a given version on?” and “What is the
impact of a given version to the project’s outcome?”

The structure of this paper is as follows. In Section
2, we briefly review line-based visualization tools for
software evolution. In Section 3, we outline the data
model we use for the source code to be visualized
and describe in detail two novel techniques:
interpolated layout and cushion-based visual
detection of stable code areas. Section 4 summarizes
the interaction technique that support the interpolated
layout. Section 5 presents a number of use-cases that
illustrate our approach for investigating the evolution
of real-life files. Finally, Section 6 summarizes our
contribution and outlines future research.

2 Related work

Line-based software-evolution has been addressed
by several visualization tools. SeeSoft is the first tool
that proposes a direct code line to pixel line visual
mapping [ESS92]. Color is used to show the age of a
code fragment and enables users to correlate
fragments that change in the same time. Augur
[FD04], a recent effort in the area, uses the same
color encoding as SeeSoft, but combines within one
visual frame information about both artifacts and
activities of a software project at a given moment.
UNIX’s gdiff and its Windows version WinDiff
visualize code differences between two versions of a
given file by depicting line insertions, deletions, and
modifications, as computed by the popular diff
utility. However efficient for comparing pairs of files,
these tools cannot deal with file evolutions of
hundreds of versions. CVSscan, an attempt to address
such evolutions, gives an overview of code evolution
for the entire life span of a project [VTvW04].

The above tools are successful in revealing the
line-based structure of software systems, and uncover
change dependencies at given moments in time.
However, none of them, except CVSscan, provides
insight into the code attributes and structure changes
made throughout an entire project duration. While
addressing this issue, CVSscan faces the challenge of
a larger number of user queries during a typical
session. To efficiently handle these, any tool requires
not only a rich set of representations, but also
efficient ways to navigate and explore the data. The
work presented in [VTvW04] addresses the above
only partially. Several important questions must still
be answered:

- What is the value of a given version in the context of
the entire project?

- What is the project evolution from the perspective of a
given version?

- What are the stable code chunks during development?
To efficiently and effectively address the above,

we propose several new visual representations, as
well as custom navigation and interaction techniques
for line-based visualizations. These are described
next.

3 Representation and interaction techniques

Similarly to other line-based software visualization
tools, CVSscan builds on the assumption that
developers are comfortable with visualizations that
show code in the same spatial context in which they
construct it [ESS92]. Since software maintenance is
mainly done at code level, we use a 2D line-based
approach to visualize the software evolution [ES92,
VTvW04]. The main questions we next had to

answer were how to layout the code lines in 2D, and
how to use color for encoding attributes. Finally, we
had to design interaction techniques that enable users
to navigate and explore the data.

3.1 Data model

CVSscan is a tool that visualizes the evolution of
single files. The data come from the CVS version
control management system, as described in detail in
[VTvW04]. Briefly, CVS maintains versions for each
file of a software project. A versionV is a tuple
holding the unique version ID, the author who
committed it to the repository, the time of
commitment, and its source code. CVS uses diff to
compare the source code of consecutive versions

jV and 1+jV to find inserted and deleted lines in

1+jV with respect to jV . Lines not deleted or inserted

in 1+jV are defined as constant (not modified). Lines
reported as deleted and inserted in some version are
defined as modified (edited). Using diff, we can
find which lines in 1+jV match constant (or

modified) lines in jV . For every such line, we call the
complete set of matching occurrences in all versions
(i.e. the transitive closure of the above match
relation) a global line gl. Next, we compute several
attributes characterizing the code evolution, as
follows.

 The global line position G associates to every
global line gl a unique number ()glG . Let us denote
by li the ith line of a version.G has two main
properties. First, if glli ∈ , then ()glGi ≤ .

Second, for il and jl in the same version and

ji < , we have () ()ji glGglG < , where igl and

2gl are global lines and ii gll ∈ and jj gll ∈ . In

other words, G gives a unique label to all code lines
of all versions of a file, keeps the partial line orders
implied by the different file versions, and ensures that
lines in different versions identified by diff as
instances of the same global line have the same label.
In [VTvW04] we detail a graph-based approach to
build the global line position function. Figure 1
depicts the typical outcome of such a mapping. At the
top, we show the code of three versions of a file. At
the bottom, the same file versions are shown, this
time aligned on the vertical axis by using the global
line position. Insertion of the line int h=3 and
deletion of the line int i=1 show up as empty
spaces.

The line status L characterizes the global position
()glG of line il in versionV . L is one of the

following:

constant: jl in 1−iV is identical with il and has the
same global line position.

modified: jl in 1−iV or 1+iV has the same global line

position but differs from jl .

deleted: there is no line that has the global line
position ()glG assigned to it in V , but there is such
a line in one of the previous versions.

inserted: there is no line that has the global line
position ()glG assigned to it in V , but there is such
a line in one of the following versions.

modified by deletion: il is modified and 1+il is
deleted or modified by deletion.

modified by insertion: il is modified and 1+il is
inserted or modified by insertion.

Additionally, we extract structural information,
using a fuzzy parser with a customizable grammar,
by parsing the source code: blocks, comments,
preprocessor macros, and so on. This yields the
construct C attribute which describes, for every line
li in every versionV , the grammar construct that line
belongs to.

int i = 1;
int h = 3;
int j = 2;

int h = 3;
int j = 2;

int i = 1;
int j = 2;

int i = 1;
int h = 3;
int j = 2;

int h = 3;
int j = 2;

int i = 1;

int j = 2;

0

1

2

version V1 version V2 version V3

Global line position
Figure 1: Global line position computation

3.2 Interpolated layout

The driving idea in CVSscan was to enable users to
easily and interactively perform analysis of software
evolution. However, as discovered during the user
studies done with CVSscan [VTvW04], these

encodings address only part of the queries users have
during software analysis. Evolution-related questions
from the point of view of a given version (Sec. 2) are
still hard to answer. To address these issues we
propose a new layout technique that offers global
insight in the code evolution from a version centric
perspective.

 The CVSscan tool described in [VTvW04] offers a
file-based and a line-based layout. Both use as x axis
the version number. Each file is thus shown as a
vertical stripe of horizontal pixel lines depicting
codes lines colored by attribute values. Figure 2a
shows a snapshot of CVSscan using the file-based
layout. This layout uses as y coordinate the local line
position and offers an intuitive ‘classical’ view on
file organization and size evolution, similar to
[ESS92].

The line based layout (Figure 2b) uses as y
coordinate the global line position. It allows easy
identification of code blocks that stay constant in
time, or get inserted or deleted. Both above layouts
use color to encode the construct attribute: dark green
= comment, blue = nested statements, pink = strings.
This is also visible in the lower part of Figure 2a,
which shows the code under the mouse, interactively
updated by a brushing mechanism. However
insightful, these two layouts do not offer both an
intuitive view of a chosen version (called the focus
version) and a global overview of code deletion and
insertion. We achieve this by a new type of layout:
the interpolated layout.

Similarly to the file and line-based layouts, we map
the version ID on the x axis. The main challenge we
must address is how to use the y axis. We want to
have a ‘classical’ view on the focus version with no
empty spaces between lines, similar to the line based
layout. In the same time we want to display all other
versions so that it is easy to see inserted or deleted
code. We need a layout scheme that maps a code
line’s evolution along a smooth curve on the screen,
similar to the line-based layout. To address both
objectives in one image, we propose a configurable
interpolation scheme that combines the two layouts
presented in [VTvW04]. We start from the bounding
versions of the empty space interval with a line-based
layout. Then we gradually decrease the y size of the
empty spaces down to zero for the focus version
(Figure 3). In this way the focus version appears as a
contiguous stripe containing no empty spaces, just as
in the file-based layout.

a)

b)
Figure 2: File-based (a) and line-based (b) layouts

In real-life software, a lot of code gets inserted and
deleted during the project lifetime. The total y size of
the focus version in the interpolated layout is
considerably smaller than the sizes of the interval-
bounding versions. The visual transition between
their representations may thus become quite abrupt
and difficult to follow. To make this transition
smooth, we propose a number of complementary
solutions.

First, we balance the representation by aligning the
y midpoint of all versions with the image’s y
midpoint. The visual transition disruption caused by
the vanishing empty spaces is now halved. Secondly,
we use a configurable profile function to compute the
size decrease of empty spaces, in order to distribute
the visual transition disruption across the image’s x
axis. We use a weighted sum of exponential and
hyperbolic tangent functions to compute the size of
the empty spaces (Figure 4). Weight adjustment
yields different visual disruption distributions.

Lines to be
inserted

 Constant line New line Legend :

Discrete time (versions)

Global Line Position

Local Line Position

Interpolated
 position

Focus
version

Left bound
empty space

 Right bound
 empty space

Empty space size decrease

Figure 3: Line layout: file-based (top) line-based

(middle) and interpolated (bottom)

f3 = (1-tanh(x))/2
0 1

1

f1 = (1–x)3
0 1

1

f2 = 1–x3
0 1

1

f(x) = Af1 +Bf2 + Cf3

Figure 4: Profile function for empty space

The profile function is applied on the x distance
between the version containing the empty space and
the focus version. Its result is normalized such that it
equals zero when the empty spaces are in the focus
version and the height of a pixel line when the empty
spaces are in an interval-bounding version (Figure 5).

Discrete time (versions)

Selected
version

Left bound
empty space

Right bound
 empty space

Empty space size decrease

Interpolated line position

Figure 5: Balanced interpolated layout with
asymptotical decrease of empty space size

Finally, an optional step is to balance the decrease
in empty space size with a line height increase
(Figure 6). This makes all versions have the same y
size. However, the line height will differ from one
version to another. This approach helps distributing
the visual transition disruption on the focus version in
the interpolated layout. However, as discovered in
our user studies, it also affects the smooth visual
navigation along the evolution of a code line.
Therefore, the efficiency of this step must be further
investigated.

Discrete time (versions)

Focus
version

Left bound
empty space

Right bound
 empty space

Interpolated line position

Empty space size decrease

Figure 6: Compensated interpolated layout with sharp

empty space decrease

Figure 7 shows the interpolated layout for the
visualization of the evolution of a 3171 line C code
file along 268 versions. Color shows line status: dark
blue = constant, light blue = inserted, light red =
deleted. We can easily see that most of the ‘trash’
code has been deleted before the focus version.
Moreover, this version requires only few additions to
reach the final form.

 We next present a set of visual improvements for
the interpolated layout that make navigation
smoother. We also introduce a cushion-based
technique to enrich evolution visualization with
information about stable code fragments.

Discrete time (versions)

Interpolated line position Focus version

Trash code
deletions

Figure 7: Interpolated layout, empty space reduction

3.3 Visual improvements

In the interpolated layout, the global line position
(Sec. 3.1) does not map to a strait horizontal line on
screen, as for the line-based layout, but to a curve.
Encoding each code line as a horizontal pixel bar in a
vertical version stripe causes a ‘staircase’ effect that
disturbs the smooth visual navigation (Figure 8a).
We solve this by skewing the individual line
mappings. For this, we tilt the horizontal borders of
each line rectangle such that the vertical border
segments overlap when passing to the next version
(Figure 8b).

Discrete time (versions)

Discrete time (versions)
Global line position

Global line position

a)

 b)

Figure 8: Interpolated layout without (a) and with

skewing (b)

This replaces the ‘staircase’ effect with that of a
poly-line. While still not perfect, this mapping
removes the discontinuity feeling caused by the
‘staircase’ approach. Second, it is efficiently
computed. Finally, the poly-line effect becomes
negligible when version count exceeds 30.

A second interpolated layout improvement
addresses the visualization of the evolution of large
files, when we cannot fit the entire file on one screen,
unless more lines share the same physical screen
pixels. Given our aim to target real-life code, almost
all files will fall into this class. The question is how
to draw code lines that share pixels so that we get a
consistent, comprehensible evolution image. We use
a position based antialiasing algorithm that computes
the color of overlapping lines using a weighted
average. Two lines are overlapping when they share
pixels on at least one of their vertical borders. The
weight of each line is calculated according to the
overlapping degree (0 for no overlap, 1 for complete
overlap).

Figure 9 shows the antialiasing scheme for the
interpolated layout of 100 versions of a 1350 line C
code file. Color shows the line status attribute: dark
blue = constant, light blue = inserted, and pink =
deleted lines (see Sec. 3.1). Light blue and pink show

thus empty spaces in the layout. The rightmost
version is in focus in both cases.

 a) b)

Focus version Focus version

Figure 9: Interpolated layout a) without antialiasing b)

with position-based antialiasing.

Position-based antialiasing preserves code structure
over multiple zooming levels. An alternative would
be to compute line weights using line attribute values.
While this would help emphasizing lines based on
their attributes, it may introduce structure
inconsistencies when using different display
magnification levels, so more research is needed to
find out whether and/or how well this alternative
works.

Finally, we enrich the evolution visualization with
information on stable code fragments, i.e. code
containing no insertions or deletions. The challenge
is to emphasize these code blocks without modifying
their layout and/or their colors that encodes attributes
(line status, constructs, etc). We propose two
methods for stable block detection: version-based and
line-based. Both methods detect contiguous intervals
in the version-line (x-y) space that contains no
deletions and/or insertions and deliver a list of such
intervals, sorted as follows. The line-based method
maximizes first the number of lines (x axis) and is
useful for revealing the long code fragments that are
stable for a certain evolution time. The version-based
method tries to maximize first the number of versions
(y axis) and is useful for revealing the code blocks
that are stable for long periods. To display the code
blocks, we use parabolic cushions [vWvdW99],
additively blended atop of the layout currently in use.
This is our second use of cushions, the first being to
show the versions themselves (see Figure 2, 11, 12).
Size thresholds are used to interactively limit the
search, e.g. to answer queries like “show all stable
blocks longer than 100 lines or that have existed for
more than 10 versions”. Figure 10 shows the two
methods on a code fragment of 50 lines followed
along 65 versions. Color maps the line status
attribute: dark green = constant, yellow = modified,

light gray = inserted or deleted, red = modified by
deletion, light blue = modified by insertion (Sec. 3.1).

Figure 10: Detection of stable code fragments

 a) version-based b) line-based

Figure 10.a shows several wide blocks that have been
stable for almost the entire evolution. Figure 10.b
shows the longest (tallest) stable fragments. Color
encodes line status, as explained above – the small
yellow blocks visible in the lower part of the images
indicate, for example, that only a few lines of code
were edited. However, the large empty spaces in the
layout indicate that many lines were inserted and
deleted.

4 User interaction

Interactive file evolution exploration using the above
techniques often leads to new, more specific
questions about the data. We present a combined
mouse and keyboard interaction scheme that enables
users to easily navigate and explore the interpolated
layout. From Shneiderman’s perspective [Shn96],
CVSscan offers a rich set of interactive exploration
instruments. It gives an intuitive 2D overview on the
evolution of files. It offers zoom and panning
facilities to drill down to detailed representations. It
has filtering mechanisms to remove irrelevant lines
from the visualization and enables the user to extract
specific evolution intervals for analysis. By means of
an orchestrated set of correlated views CVSscan
offers code level details-on-demand. Additionally, it
enables the user to keep a history of his actions and
lets him recover and reuse a specific visualization
setting at a later time. All interaction instruments are
designed to use a point-and-click approach, making
the entire interaction possible only by the use of a
mouse.

5 Use scenarios

We now present the outcome of using the
described visualization and interaction mechanisms
to visualize the evolution of a 450 lines Perl file
along 65 versions, from the perspective of a focus
version (Figure 11). In total, we target thus about
29000 code lines. The file comes from a public
domain CVS repository, so it was not familiar to any
of our visualization’s users. Color encodes line status

(Sec. 3.1): dark blue = constant, yellow = modified,
light blue = inserted, light red = deleted, light green =
modified by insertion, dark red = modified by
deletion. Line-based cushions (Sec. 3.3) show stable
code areas.

This visualization helps us reason about the value
of the focus version in the entire project’s context.
As Figure 11 shows, the focus version seems to
contain a lot of code that gets deleted until the final
version. At a closer examination we can see that most
of this code (Figure 11, label C) is in the first half of
the file. Also, the first half of the file still needs a
large addition (Figure 11, label D) to reach its final
form. This addition is quite fragmented – closer code
inspection showed it involved rewriting already
written code. This hypothesis is supported also by the
relatively high number of changes in the later
evolution. The second half of the file is different.
Much of the trash code (Figure 11, label A) has been
already removed from there before. The second half
still needs quite a large amount of code to reach its
final form. However, the inserted code is contiguous,
so it probably does not interfere with already written
code. This hypothesis is also supported by the small
number of modified lines in the subsequent evolution
of the file’s second half – we confirmed this by
looking at the source code itself. Overall, the focus
version’s second half is of better quality than the first
half and contributes significantly to the final version.

Cushions complete the picture with useful
information. The thick cushion spanning all versions
(Figure 11, label F) shows that the file’s beginning is
stable throughout the whole evolution. The code
block at the end of the file (Figure 11, label E) seems
also to become stable soon after the first version.
Finally, the focus version is close in time to a point
(Figure 11, dotted line) from which much code
becomes stable.

6 Conclusions

This paper presents a set of visualization and
interaction techniques that support a version-centric
examination of a file’s evolution. Our goal is to
extend previous experience obtained with the
CVSscan software visualization tool [VTvW04],
enhance its usability and effectiveness, and correct
several problems found during CVSscan’s validation.

Our audience is the software maintenance
community. Our goal is to provide support for
program and process understanding in the context of
code evolution. The first technique we propose is the
interpolated layout, a new visual mapping of code
lines for answering evolution related questions from
the perspective of a given version. The second
proposed technique uses cushions to emphasize code
fragments that have a stable evolution. This enables
one to easily identify and focus on relevant
development areas. This technique is orthogonal to
attribute color mapping, so it can be used for
analyzing the evolution stability of any color-
encoded attribute. While the interpolated layout helps
answering version-centric questions, it also makes
navigation more difficult. We correct this by a
custom mouse + keyboard interaction scheme that
constrains brushing to a given line or version. This
technique can be used with any layout, e.g. the file-
based and line-based layouts introduced in
[VTvW04].

We validated the proposed techniques by
implementing them as extensions of the CVSscan
tool [VTvW04] and used the resulting tool to
examine large files from real-life CVS repositories of
hundreds of versions, such as Sourceforge as well as
our own repositories. We present several scenarios
using CVSscan to illustrate the efficiency of our
approach on such data. We use CVSscan to navigate
the data and answer version-centric questions on the
file evolution in the context of the entire project. The
complete software tool and several datasets can be
downloaded from:
http://www.win.tue.nl/~lvoinea/soft/CVSscan_setup.exe

We would next like to extend our approach with higher-
level overviews, such as whole-project, multi-file evolution
visualizations, to enable evolution analyses on entire
systems. Our final aim is to integrate CVSscan in code
visualization and analysis toolset in order to make it
effectively and efficiently available to the software
development process.

7 Acknowledgements

This research was part of the ITEA project Space4U
(http://www.win.tue.nl/space4u).

 Discrete time (versions)

Interpolated line position

 A

Focus version

Stabilization point

 F

 E

 B

 C

D

1

2

Figure 11: Version-centric visualization using the interpolated layout and the stable blocks detection

8 References

[CKN*03] COLLBERG C., KOBOUROV S., NAGRA J.,
PITTS J., WAMPLER K.: A System for
Graph-Based Visualization of the
Evolution of Software, Proc. ACM SoftVis
‘03, ACM Press, NY, 2003, 77 – 86.

[ESS92] EICK S.G., STEFFEN J.L., SUMNER E.E.:
SeeSoft - A Tool for Visualizing Line
Oriented Software Statistics. IEEE Trans.
on Software Engineering, 18(11), 1992,
IEEE CS Press, 957 – 968.

[Erl00] ERLIKH L.: Leveraging Legacy System
Dollars for E-business. (IEEE) IT Pro,
May-June 2000, 17 – 23.

[FD04] FROEHLICH J., DOURISH P.: Unifying
Artifacts and Activities in a Visual Tool
for Distributed Software Development
Teams. In Proc. ICSE ‘04, IEEE CS Press,
2004, 387 – 396.

[Shn96] SHNEIDERMANN B.: The Eyes Have It: A
Task by Data Type Taxonomy for
Information Visualization. Proc IEEE
Symp. on Visual Languages (VL ‘96),
IEEE CS Press, 1996, 336 – 343

[Sta84] STANDISH T.A.: An Essay on Software
Reuse. IEEE Trans. on Software
Engineering, 10 (5), Sep. 1984, 494 - 497.

[TMR02] TELEA A., MACCARI A., RIVA C.: An Open
Toolkit for Prototyping Reverse
Engineering Visualization. In Proc. IEEE
VisSym ‘02, The Eurographics Association,
Aire-la-Ville, Switzerland, 2002, 241 –
251.

[TWSM94] TILLEY S.R., WONG K., STOREY M.A.D.,
MULLER H.A.: Rigi: A visual tool for
understanding legacy systems. In Intl.
Journal of Software Engineering and
Knowledge Engineering, Dec. 1994

[VTvW04] VOINEA L., TELEA A., VAN WIJK J.J.:
CVSscan: Visualization of Code
Evolution, submitted to ACM SoftVis
’05, www.win.tue.nl/~lvoinea/cvss.pdf

[vWvdW99] VAN WIJK J.J, VAN DE WETERING H.:
Cushion Treemaps: Visualization of
Hierarchical Information. In Proc.
IEEE InfoVis'99, IEEE CS Press, 73-78

