
Extreme Simplification and Rendering of Point Sets using
Algebraic Multigrid

Dennie Reniers Alexandru Telea

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
d.reniers@tue.nl alext@win.tue.nl

Keywords: point set models, algebraic multigrid, extreme model simplification, real-time rendering

Abstract
We present a novel approach for extreme simplifi-

cation of point set models in the context of real-time
rendering. Point sets are often rendered using simple
point primitives, such as oriented discs. However ef-
ficient, simple primitives are less effective in approxi-
mating large surface areas. A large number of primi-
tives is needed to approximate even moderately simple
shapes. However, often one needs to render a simpli-
fied version of the model using only a few primitives,
thus to trade accuracy for simplicity. For this goal, we
propose a more complex primitive, a sort ofsplat, that
is able to approximate a larger and more complex sur-
face area than the well-known oriented disc. To con-
struct our primitive, we first decompose the target sur-
face into quasi-flat regions, using an efficient algebraic
multigrid algorithm. Next, we encode these regions
into splats implemented using planar support polygons
textured with color and transparency information and
render the splats using a special blending algorithm.
Our approach combines the advantages of mesh-less
point-based techniques with traditional polygon-based
techniques. We demonstrate our approach on various
models.

1 Introduction
Interactive rendering of geometric models brings

about the conflicting demands of high frame rates and
good image quality. Changing the representation of
the model to be rendered may help in achieving the
right balance for particular applications. The recent di-
rection of modeling and rendering using point prim-
itives [6] instead of traditional triangle meshes is an
example of this. Point-based rendering is more effi-
cient for very complex models than traditional trian-
gle rendering, because the scan-line coherence of trian-
gles is lost when projected to a small screen space area.
An additional advantage of point-based models is that

the lack of connectivity information allows for efficient
representation and easier editing of the model.

Many applications reduce the number of primitives
that are needed to render a given model, trading off
quality for model size and rendering speed. When the
primitive count is reduced by more than two orders
of magnitude, we speak of extreme model simplifica-
tion [5]. In case of simplification of point set models,
two options are available. First, one can use a lower
amount of the same kind of simple point primitives
as for the original finely sampled models [10], lead-
ing to a considerable decrease in simplification qual-
ity. Second, one can store more information per prim-
itive [7, 9] so that less primitives are needed for the
same simplification quality. Nevertheless, these tech-
niques are still insufficient for extreme simplification
of point sets, when our target primitive count is only a
few hundred. The approximation power of the current
point primitives is still too small for the large surface
areas implied by the low primitive count of our extreme
simplification goal. Indeed, the color and shape varia-
tion of larger surface areas can no longer be accurately
captured by simple parametric models or radial basis
functions.

The approach we present in this paper attempts to
bridge the gap between point-based and polygon-based
rendering. We aim to combine the point-based render-
ing model (many small, blended, mesh-less primitives)
with the polygon-based model (a few large, textured,
flat primitives). We want to make use of commodity
graphics hardware for fast rendering, so we build our
primitive model and rendering algorithm upon textured
planar polygons. The trade-off for massively decreas-
ing the primitive count and still working with a mesh-
less representation is paid by a decrease in image qual-
ity. We control this trade-off by a multiscale approach,
where every scale delivers a different number of primi-
tives approximating the given model. Fine scales carry



many primitives, and are close in rendering quality to
the classic point-based rendering. Coarse scale levels
address the issue of extreme model simplification.

Figure 1: Global overview of our approach. An octahedron
model of 16,000 points is rendered using point primitives (a).
The color-coded surface classifier (b). The surface is decom-
posed into 8 domains, indicated by different colors (c). The
model is rendered using 8 splats, or domain primitives (d).

Concisely put, we can summarize the quest of our
method as “how to render point sets of hundreds of
thousands of points with a few hundred mesh-less
primitives”. Figure 1 illustrates this. An octahedron
point set of 16,000 points is rendered using QSplat
(Fig. 1a). The extreme simplification proposed by our
method reduces it to eight splats, whose rendering is
shown in Figure 1d. The advantage of our approach
is clear; we render 8 hardware-accelerated splats, i.e. 8
textured and alpha-blended polygons, instead of 16,000
points.

Regarding extreme simplification of 3D models, our
approach is related to the recently presented billboard
clouds method [5]. Both methods yield a mesh-less
polygon representation. However, the simplification
heuristics, the implementation, obtained performance
and trade-offs are significantly different for the bill-
board clouds technique and the one presented in this
paper.

Our approach consists of three main stages: sur-
face decomposition, primitive construction and render-
ing (see also Figure 2 for a detailed overview of our
pipeline). Given our efficiency-motivated choice for
textured polygons as rendering primitives, we decom-
pose the point-set surface into quasi-flat regions. We
compute surface flatness using a moment-based local
surface classifier (Sec. 2.1) which is encoded into a fi-
nite element matrix (Sec. 2.2). The surface decomposi-
tion algorithm, based on an algebraic multigrid (AMG)
method, is detailed in Section 2. The AMG method
produces a multiscale representation of the input sur-
face in terms of feature-aligned basis functions and cor-
responding support domains. Next, we construct one

textured splat [12] for each domain and associated ba-
sis function, which we call adomain primitive. The
domain primitives encode geometric and color infor-
mation carried by each region’s point samples in the al-
pha, respectively color planes of a texture (Sec. 3). This
effectively and efficiently replaces the original point
model with a small set of textured primitives. Finally,
we render the simplified model by blending together
the splats (Sec. 4). The results of our method are dis-
cussed in Section 5. Section 6 concludes the paper and
presents future work directions.

2 Surface Decomposition

The most complex hardware-supported primitive we
avail of is a textured planar polygon. Consequently, we
aim at decomposing the surface defined by the point
set into a number of quasi-flat, or nearly flat, compact
regions. These regions will be subsequently approx-
imated by domain primitives, i.e. textured polygons.
This decomposition is presented in the following. The
method for constructing domain primitives from the
quasi-flat regions is detailed further in Section 3. The
complete pipeline is summarized in Figure 2.

Our decomposition method consists of three sub-
steps. First, we use a local surface classifier to detect
the point set regions corresponding to locally smooth,
respectively non-smooth (curved) areas of the model
(Sec. 2.1). Next, we encode this surface classifier in
a finite element matrix (Sec. 2.2). Finally, we use
AMG to produce a multiscale coarsening of this ma-
trix (Sec. 2.3).

2.1 Local Surface Classification

Local surface classification attempts to assign a
smoothnessvalue to every pointx in the point set, in
order to distinguish between smooth, or quasi-flat, sur-
face areas, and highly curved areas, such as the vicini-
ties of edges, cusps, or tips. For this, we take into ac-
count the points in a smallk-neighborhoodN of x. We
use a surface classifier based on thezero and first mo-
mentsof N . We refer to [2] for a detailed description of
this classifier. For this discussion it suffices to mention
that computing the moments is similar to computing
the surface variation [1, 8]. For this, principal compo-
nent analysis on thek-neighborhood is used to obtain
the eigenvectorse0, e1, e2 with associated eigenvalues
λ0 > λ1 > λ2. The eigenvectorse0 ande1 form an
approximate tangent plane atx, while e2 is the normal
of that plane. The surface variation can then be ex-
pressed as the variationλ2 of the points along the nor-
male2 normalized by the total variation along all three
eigenvectors. The sizek of the neighborhood clearly
acts as discrete scale parameter or filter that removes
small-scale surface noise. Figure 1b shows the sur-
face classifier on a point set model. Smooth surface
regions appear red, whereas highly non-smooth ones
(e.g. creases) appear blue.



stiffness
matrix

point set
model

surface
classifier

domain
primitives

simplified
model

coarsened
matrices

basis
functions

domains

moment-based
classification

matrix
assembly AMG

primitive
construction rendering

thresholding

prolongation

user-selected
simplification
level

Figure 2: Overview of our approach

2.2 Matrix Encoding of Surface Classifier

Our goal is to use the local surface classifier intro-
duced in the previous section to decompose the surface
into quasi-flat components. For example, we would
like to decompose the octahedron shown in Figure 1a
into eight regions corresponding to its faces (Fig. 1c).
We shall use for this decomposition an algebraic multi-
grid (AMG) approach (Sec. 2.3). As a prerequisite to
using AMG, we need to ‘convert’ our classifierC into a
mathematical operatorA[C] defined on the surface. We
define this operator as:

A[C] := −divM(C ∇M ) ,

where∇M and divM are the gradient, respectively its
dual divergence operator on a surfaceM embedded in
R3. Essentially,A[C] describes a non-uniform diffu-
sion process on the surfaceM, where the classifierC
plays the role of diffusion coefficient. We are not in-
terested in performing diffusion on the surface itself,
just in a multiscale decomposition of the operatorA[C].
To do this, we first need to discretize the operator, for
which we use a finite element model. In case our sur-
face discretization were a triangular mesh, we could di-
rectly computeA, the discrete matrix form of the oper-
atorA. This is described in full detail in [4].

However, in our case we have a point set, not a
global triangle mesh. Building the matrixA, as well
as the underlying finite element model, is different in
this case. We use the finite element model for point
sets described in [2], which builds alocal tangent fi-
nite element space at every pointxi in the point set.
Basically, this method creates a local 2D triangulation
of the neighborhood ofxi that is projected to the local
tangent plane atxi. The triangle fan aroundxi defines
the neighbor set.

Ãij describes the coupling of pointi with its neigh-
borsj, from the point of view ofi. Indeed,Ãij may
differ from Ãji, since the triangle fan computations of
i andj are purely local. To yield a classical stiffness
matrixAij , we symmetrize the computations by defin-

ing:

Aij =
1
2
(Ãij + Ãji),

for i 6= j and for the diagonal entries

Aii = −
∑

xj∈N (xi)

Aij .

The matrixA has now the same properties as a clas-
sical stiffness matrix defined e.g. on a triangulation
mesh. Intuitively,Aij is high if the neighbor pointsi
andj are situated in a quasi-flat region.Aij reaches its
lowest values for neighbor pointsi andj that are sepa-
rated by a crease.A is a sparse matrix, as the average
size ofNi is under 10 neighbors per point. This matrix
is the input of our surface decomposition, detailed in
Section 2.3.

2.3 Algebraic Multigrid Decomposition
So far, we have encoded the surface’s ‘flatness’, ex-

pressed by our moment-based classifier, into a stiffness
matrix. We now proceed by performing a multiscale
simplification, or coarsening, of this matrix. The aim of
this phase is to deliver a multiscale of correspondingly
simplified surfaces consisting of progressively larger
quasi-flat regions.

For the matrix coarsening, we use an algebraic
multigrid (AMG) algorithm. AMG was originally de-
signed for solving large, sparse linear systemsAu = f
coming from the discretization of scalar elliptic PDEs,
such as diffusion problems. Briefly, given a fine-scale
matrix A0 = A, AMG attempts to compute a matrix
sequence

Al := RlAl−1P l = (P l)T Al−1P l ,

via a so-called Galerkin projection, or ‘natural coars-
ening’. Here, the restrictionRl is the transpose of the
prolongation,Rl := (P l)T .

The key element here is defining the prolongation
matricesP l that describe how coarse-scale (l) basis



functions are computed from fine-scale (l − 1) basis
functions. AMG constructs prolongations such that
the coarse-scale matricesAl preserve the ‘strong cou-
plings’ present in the fine-scale matricesAl−1. For our
application, it is important to mention that the construc-
tion of the prolongations{P l}l=0,···,L is equivalent to
constructing a set of progressively coarser, problem-
dependent bases{Ψl,i}l=0,···,L. On every level, these
bases are aligned with the strong matrix couplings
present on that level.

The number of basis functions between successive
scales is reduced by a factor of approximately 2-3. This
is inherent to our AMG implementation. For typical
point set models, we thus obtain between 10 and 15
decomposition levelsL. Moreover, the coarsest levels
L · · ·L − 5 usually contain up to a few hundred bases
Ψl,i. Since our aim is to render every such base with
a single graphic primitive (Sec. 3), instead of the ini-
tial tens up to hundreds of thousands of points, we can
speak of an extreme simplification. The above bases
Ψl,i have relatively large supports. We define thedo-
mainDl,i of a basis function as the set of points where
the basis function value exceeds a user-defined thresh-
old τ :

Dl,i = {x|Ψl,i(x) > τ}. (1)

In practice, we setτ to approximately 0.05. This yields
a multiscale surface decomposition into overlapping
domainsDl,i. Since the coarsened matrix encodes sur-
face flatness, the domainsDl,i define regions of the
input surface which are as quasi-flat as the surface’s
shape permits. For inherently curved surfaces, such as
a ball, these domains will evidently become progres-
sively less flat once one considers coarser levels. How-
ever, if permitted by the surface’s shape, the decompo-
sition correctly identifies flat surface components even
at the coarsest level. In Figure 3b, we show a basis
function located on a large flat surface region (the side
face of the rocker-arm model). We can see that this
basis function abruptly stops at the crease separating
the model’s side face from the upper face, as expected.
In the flat area of the side face, the basis function de-
creases smoothly, since there is no curvature variation
information. The overlapping of domains is clearly vis-
ible in Figure 3d, where each domain of the rocker-
arm decomposition is colored with a distinct color (red,
green, yellow, blue, or purple) different from its neigh-
bor domains. Color mixing signals overlapping do-
mains. In contrast, there is practically no such domain
overlap for the octahedron (Fig. 3c). Here, every face
corresponds to one single domain.

After decomposition, one level is chosen from the
multiscale by the user. Finer levels deliver more do-
mains of smaller size, which are thus implicitly closer
to the quasi-flat requirement. Coarser levels may, es-
pecially for inherently curved objects, deliver domains
which are far from the quasi-flat desiderate. Since

Figure 3: Basis function for the octahedron and rocker-arm
model, using a blue-to-red colormap of the interval [0..1]
(a,b). The domains are shown with distinct colors (c,d). Col-
ors are mixed for overlapping domains.

we shall further use these domains to approximate our
point set by a simplified rendering (Sec. 3), the level
choice acts as a trade-off between performance and vi-
sual quality. Given our extreme simplification goal, we
chose a level aroundL − 5 in practice, whereL is the
coarsest decomposition level.

Summarizing, AMG can be considered to define a
fuzzy clustering of the point set into quasi-flat domains:
The basesΨl,i(x) define, on every levell, the degree of
membership of every pointx to every domainDl,i. At
points situated in clearly flat areas, such as the faces of
the octahedron in Figure 3a, one basis functionΨl,i will
be close to unity, whereas all othersΨl,j , j 6= i, will be
close to zero, as the sum of all bases at a point is al-
ways one (partition of unity). By thresholding (Eq. 1),
we further decrease the number of bases acting upon
a point to only those having non-negligible values. In
this way, we further strengthen the partition of points
into disjoint domainsDl,i. In areas of intermediate sur-
face curvature (i.e. far from clear edges or flat zones),
points will inherently be under the influence of sev-
eral bases, i.e. the domainsDl,i will overlap (Fig. 3d).
Next, we map regions to graphical primitives (Sec. 3)
and region overlap into a blending-based rendering al-
gorithm (Sec. 4), in order to produce an image of our
extremely simplified model.

3 Primitive Construction

The surface decomposition discussed in Section 2.3
delivers, on a given scalel, a set of basis functionsΨl,i

and associated quasi-flat domainsDl,i. We now con-
struct a domain primitive for each domainD and basis
function Ψ at the chosen scale. Since primitive con-
struction is identical for every levell and domain and
basisi, we now drop the indicesl andi. When rendered
together, domain primitives should convey an image
close to the original point-based rendering. To maxi-



mize speed, we encode the information inD andΨ in
an efficient rendering combination: a support polygon
P with a textureT . The complete process is illustrated
in Figure 4. We first describe how the support polygon
is constructed (Sec. 3.1). Next, the texture construction
is detailed (Sec. 3.2).

basis function Φ

support polygon

tangent plane

texture
resamplingprojected points xi

P

Figure 4: Primitive construction pipeline

3.1 Support Polygon
The support polygonP serves as planar approxima-

tion for the points{xi} contained in a (quasi-flat) do-
mainD. The process of constructingP is depicted in
Figure 5. To limit the geometric information loss pro-
duced by projecting the points ofD onto a plane, we
choose this plane to minimize the sum of squared dis-
tances to the points inD, using principal component
analysis (PCA). This is similar to computing the lo-
cal tangent planes (Sec. 2.1). However, here we use
all points in a domainD, whereas local tangent planes
used just small local neighborhoods. After projecting
the points{xi} to {xP

i } on the tangent plane, a bound-
ing polygonP is constructed. We computeP as a
bounding rectangle, using the eigenvectorse0 ande1

of the PCA onD’s points as the rectangle’s main axes.
While this does not deliver an optimal bounding rec-
tangle, the result is only slightly sub-optimal in prac-
tice. We could construct a tighter fitting, more complex
n-sided bounding polygon instead, e.g. using a con-
vex hull algorithm. However, using rectangles forP
is simple and efficient to implement, especially when
performing texture mapping (Sec. 3.2).

3.2 Texture Construction
The support polygonP described in the previous

section serves to carry a texture mapT . This texture en-
codes two types of information extracted from the orig-
inal point set: (unshaded) point colors, in the texture’s
color channels, and geometric (shape) information, in
the texture’s alpha channel, respectively. Point color
information is simply transferred from the original 3D
points{xi} to their 2D projections{xP

i }. Next, the 2D
projections get assigned transparency values equal to
the basis function valuesΨ(xi) at the original 3D lo-
cationsxi. Finally, from the set of 2D scattered points
{xP

i }, with color and transparency information, located

inside the bounding rectangleP , we compute a texture
T . This amounts to a resampling of the set{xP

i } on a
regular grid of texels of user-specified resolution. For
this, we have used two sets of basis functions: radial
and linear, as follows.

Radial basis functions are 1 at the point sample and
fall down to 0 radially. Different profiles are possi-
ble, such as constant, linear, or Gaussian. We set the
fall-off radius proportional to the radius value avail-
able in every point{xi} of the point set [10]. By
tuning this factor, as well as the profile, different de-
grees of color and transparency data smoothing can be
achieved. Large fall-off radii generate smoother inter-
polations, but also overbright areas resulting from a
violation of the partition of unity. In contrast, linear
affine basis functions inherently enforce the partition
of unity. We define such functions using a Delaunay
triangulation [11] of the projected 2D point set{xP

i }.
For all texels inside the triangulation, we interpolate the
color and transparency information using the linear ba-
sis functions. For texels outside the triangulation, but
within a point’s radius, i.e. texels close to the triangu-
lation’s boundary, we use radial basis functions. All
other texels receive a default value of zero.

At this point, we have transferred the whole (simpli-
fied) point set information into a set of domain primi-
tives consisting of textured polygons. Geometry is en-
coded both in the polygons’ orientations as well as in
the textures’ alpha values – the latter encodes the object
shape as captured by the basis functions. Color is nat-
urally encoded in the texture color channels. Finally,
if normal maps are supported by the graphics hardware
at hand, point normal information can be stored in a
similar texture, or normal map.

4 Primitive Rendering

In this section we will discuss how to render the do-
main primitives, thereby constructing a simplified view
of the surface defined by the point set. The main idea
here is to use the basis function information (Sec. 2.3),
encoded as transparency (Sec. 3.2), to blend together
the domain primitives into a smooth-looking surface.
For shading we use either the domain primitive normals
or normal maps when available. Blending the domain
primitives requires special care. First, the interaction
between blending and depth buffering must be taken
care of. Second, the partition of unity property, i.e. the
fact that basis functions sum to one at every point, holds
only on the original 3D surface, but not on the projected
2D support polygons. These issues are explained next.

Depth buffering normally ensures that only the
front-most fragment for each pixel is visible on the
screen. However, blending requires that multiple over-
lapping surface fragments are combined per pixel.
Simply disabling the depth test is erroneous in our case,
as visible-surface determination is no longer performed
then. Depending on the viewpoint, arbitrary basis func-



Figure 5: Domain points{xi} (a). PCA is performed to find the principal axes (b). Projected points{xP
i } on plane (e0,e1) (c).

The range of projections of{xP
i } one0 ande1 determines the bounding rectangle’s size (d).

tion values from completely different parts of the sur-
face may be projected to the same 2D screen area.
Blending will sum up these values, whereas they would
not be summed on the original 3D surface. The result is
that surface parts that should normally be occluded are
now blended with the occluding surface parts. We must
thus solve the visibility problem differently. We make
the observation that for each pixel only thefront-most
fragments should blend and be visible. By front-most
fragments for a given pixel, we mean the fragments
that overlap on the surface at its front-most intersec-
tion with a view ray cast from the viewpoint through
the pixel. We call the correct set of fragments for a
pixel the prefix, as it can be thought of as the prefix
of a depth-sorted fragment list along the view ray (see
Fig. 6).

Figure 6: Simplified 2D view of a scene. The surface is indi-
cated by the stippled curve, the domain primitives by straight
lines. The fragment list for pixelx is indicated at the bottom.
Its prefix consists of fragmentsF1 andF2 representing the
surface’s front-most intersection with the view ray through
pixel x.

We stress that we want a simple rendering algo-
rithm, without using programmable elements such as
pixel shaders, so that simple graphics hardware suf-
fices. Given this constraint, we must maintain our in-
termediate prefixes in the framebuffer during primitive
rendering. Each incoming fragment must either addi-
tively blend with the current prefix or be discarded. Af-
ter all domain primitives have been rendered, the pre-
fix for each pixel must be complete, so that the frame-
buffer can be displayed. Hence, fragments must en-
ter the graphics pipeline in a front-to-back order, as
an arbitrary order would require sorting the fragments

that make up the prefix. Since we cannot sort frag-
ments explicitly, we sort the domain primitives by dis-
tance from the viewer to the primitive’s center, so that
their fragments enter the pipeline in a sorted manner.
This holds, however, only when sorting is unambigu-
ous, i.e. when domain primitives do not overlap in their
Z extents. Ambiguous sorting causes an incorrect pre-
fix, and thereby artifacts. Fortunately, in our case, this
problem is diminished since anexactfragment order-
ing within the prefix is not important, as long as the
prefix is correctly separated from the other fragments.
In Figure 6 for example, the exact ordering of domain
primitivesP1 andP2 is not important, because the ex-
act ordering of the fragmentsF1 andF2 does not mat-
ter.

We further note that basis functions are only allowed
to be summed, and their domain primitives are only al-
lowed to blend, when the domains overlap. When they
do not overlap, summing them is not useful and may
only lead to artifacts when they coincidentally project
to the same screen area.

Combining all the above, we obtain the following al-
gorithm (complete pseudocode is given in Figure 7). In
each iteration we render the front-most domain prim-
itive d that is not rendered yet, plus all the domain
primitives whose domains overlap withd (called do-
main neighbors). We have now created a prefix for each
pixel of d, because a) we render the primitives front-to-
back and b)d was blended with all primitives it was
allowed to, i.e. its neighbors. We now lock the pixels
of d so that these prefixes cannot later be overwritten
by other primitives. The prefixes of the neighbors’ pix-
els (exceptd) are not locked, as they will be completed
in later iterations. To lock the pixels, we use the depth
buffer. Rendering a primitived into the depth buffer
effectively locks its pixels, as primitives of later itera-
tions lie behindd, assuming an unambiguous primitive
sort.

5 Results

We demonstrate the results of our approach for sev-
eral models. We describe the cost of our domain primi-
tive representation by the number of primitives needed
and the number of texels in all their textures. The prim-
itive count can be controlled indirectly by choosing the
AMG level, as described in Section 2.3. The texel



P ← list of sorted domain primitives
R ← list of booleans initially false, of size ofP
for i from 1 tolength(P ) do

if Pi is facing the camerathen
if notRi then

renderPi to color buffer with blending on
Ri ← true

end if

for each neighborPj of Pi do
if notRj then

renderPj to color buffer with blending on
Rj ← true

end if
end for
renderPi to depth buffer

end if
end for

Figure 7: The rendering algorithm

count can be controlled by choosing the texture reso-
lution in the resampling step (Sec. 3.2).

Figure 8 shows images of three point-set models
and their corresponding simplified rendering using do-
main primitives. Considering our extreme simplifica-
tion goal, which often implies that these models are not
meant for close-ups, we observe that important model
features and its general structure are well captured even
when the primitive count is considerably smaller than
the original point count. Moreover, these models are
not rendered with the extra surface detail normal maps
provide, since our hardware did not support these.

The preprocessing timings for these models are
shown in Table 1. All timings are measured on an In-
tel Pentium IV 2.4 GHz with 512 MB memory and a
GeForce4 MX440. Preprocessing is divided into two
steps.sd denotes the time needed to perform the sur-
face decomposition (Sec. 2). This step has a computa-
tional complexity ofO(n), n being the number of point
samples.dpc is the time needed to construct domain
primitives (Sec. 3). This step takesO(n log n) for n do-
main points, given the Delaunay triangulation involved.
Note, however, that the texture computation, involving
resampling, is now entirely done in software. A simple
and quick speed-up for the preprocessing can be eas-
ily gained if this step is directly performed in graphics
hardware, for example by rendering the texture as a set
of splats for the radial bases, or as a triangle mesh for
the linear affine bases (Sec. 3).

Table 2 shows the rendering timings for the rocker-
arm model, for seven different AMG levels and three
screen sizes. Note that the amount of polygons is more
or less doubled with each coarser scale (Sec. 2.3).

6 Conclusions

We have presented a new approach for creating ex-
tremely simplified representations of models, intended

Model rocker-arm dinosaur balljoint
#points 40k 56k 137k
AMG level L− 5 L− 6 L− 5
#polys 445 563 311
#texels 73k 74k 141k
sd time (s) 16 21 46
dpc time (s) 20 7 88

Table 1: Pre-processing times.L is the coarsest AMG scale
for the particular model.

level L-1 L-2 L-3 L-4 L-5 L-6
#polys 17 37 84 193 445 1012
128x128 2700 2010 1750 1300 590 220
256x256 940 730 670 600 420 220
512x512 270 218 204 190 155 130

Table 2: Framerates for the rocker-arm model.L is the coars-
est AMG scale.

for rendering distant geometry. Our current implemen-
tation uses the more difficult case of a point set as an
input. Point set surfaces pose extra challenges, as they
do not allow a natural and direct definition of a finite
element space upon them. Our method can further
easily cope with triangular meshes, if this is desired
(Sec. 2.3). Instead of using traditional point primitives,
we introduce the domain primitive, a textured splat,
which is better suited for representing the surface when
using only a few primitives. By using color and trans-
parency information stored as textures, domain primi-
tives have more surface approximation power and are
better able to capture shape and color variation than
the same amount of other known primitives in point-
based rendering. Domain primitives become most ef-
ficient and effective in terms of rendering performance
and quality respectively when applied with the goal of
displaying extremely simplified models.

Overall, the only user parameters of the complete
pipeline are the classifier neighborhood size (Sec. 2.1),
AMG scale (Sec. 2.3), and texel size (Sec. 3.2). We
render our simplified model by a custom algorithm,
as per-primitive blending requires a different visible-
surface determination technique than standard depth
buffering. The proposed algorithm uses only stan-
dard OpenGL 1.1 graphics hardware. Summarizing,
we can consider the proposed domain primitive as a
multiscale generalizationof point primitives. Indeed,
on the finest AMG scale, every point has exactly one
domain primitive, which makes the two notions identi-
cal. On coarser scales, primitives adapt their shape to
the surface shape. Moreover, primitives are rendered
and blended using exactly the same mechanisms as in
standard point-based rendering.

Some artifacts may be visible in the simplified ren-
derings. The projection error is an inherent prob-
lem that is caused by approximation of the surface by



Figure 8: Screenshots of the rocker-arm, dinosaur, and balljoint models. For each model, the point-set rendering is shown right
above the extreme simplification rendering.

blending flat primitives. Dark spots occur when the
projection error is at its largest. Cracks may be visi-
ble at strong discontinuities, where flat domain prim-
itives do not overlap. Interestingly, similar cracks are
also visible in the extreme simplification method for tri-
angular meshes proposed by Décoret et al. [5], as this
method also approximates curved surfaces with flat tex-
tured primitives. A main difference between the above
method and ours is that we blend primitives together
using a continuous transparency signal determined by
our basis function decomposition, whereas the above
method uses transparency as a stencil mask, i.e. to turn
on and off texture pixels. This often causes our cracks
to be less visible.

Several directions of future research are envisaged.
First, programmable graphics hardware can be used to
enhance the flexibility, thus remove several artifacts, of
the rendering algorithm used to combine the domain
primitives. Second, one could try to combine several
levels of the multiscale generated by the AMG to ren-
der primitives of different sizes and levels of detail to-
gether. Third, a challenging point, as with many visual-
izations, is to define a meaningful and computable error
metric for measuring the visual quality of our simplifi-
cations. Finally, combining points and domain primi-
tives in a hybrid rendering can open new ways to low
primitive count, high quality rendering of 3D models.

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman,
D. Levin, C.T. Silva, Point set surfaces,Proc. of IEEE
Visualization2001, pp 21-28

[2] U. Clarenz, M. Rumpf, A. Telea, Surface processing
methods for point sets using finite elements,Computers

& Graphics28(6):851-868, 2004
[3] U. Clarenz, M. Rumpf, A. Telea, Robust feature detec-

tion and local classification for surfaces based on mo-
ment analysis,IEEE TVCG, 10(5):516-524, 2004

[4] U. Clarenz, M. Griebel, M. Rumpf, M.A. Schweitzer,
A. Telea, Feature sensitive multiscale editing on sur-
faces,The Visual Computer, 20(5):329-343, Springer,
2004

[5] X. Décoret, F. Durand, F. Sillion, J. Dorsey, Billboard
clouds for extreme model simplification,Proc. of the
ACM SIGGRAPH2003, pp 689-696

[6] M. Levoy, T. Whitted, The use of points as display
primitives. Technical Report TR 85-022, Univ. of North
Carolina at Chapel Hill, 1985

[7] A. Kalaiah, A. Varshney, Modeling and rendering
points with local geometry,IEEE TVCG, 9(1):30-42,
2003

[8] M. Pauly, M. Gross, L. Kobbelt, Efficient simplification
of point-sampled surfaces,Proc. of IEEE Visualization
2002, pp 163-170

[9] H. Pfister, M. Zwicker, J. van Baar, M. Gross, Surfels:
surface elements as rendering primitives,Proc. of ACM
SIGGRAPH2000, pp 335-342

[10] S. Rusinkiewicz, M. Levoy, QSplat: a multiresolution
point rendering system for large meshes,Proc. of ACM
SIGGRAPH2000, pp 343-352

[11] J.R. Shewchuk, Triangle: engineering a 2d quality
mesh generator and delaunay triangulator,1st Work-
shop of Applied Computational Geometry, pp 124-133,
ACM Press, 1996

[12] L. Westover, Footprint evaluation for volume render-
ing, SIGGRAPH Computer Graphics, 24(4):367-376,
1990


