
Evaluating Visual Realism in Drawing Areas of Interest on UML Diagrams

Heorhiy Byelas and Alexandru Telea
Department of Mathematics and Computer Science

University of Groningen, Nijenborgh 9, 9747 AG Groningen, the Netherlands
h.v.byelas@rug.nl, a.c.telea@rug.nl

Abstract

Areas of interest (AOIs) are defined as an addition to UML
diagrams: groups of elements of system architecture dia-
grams that share some common property. Some methods
have been proposed to automatically draw AOIs on UML
diagrams. However, it is not clear how users perceive the
results of such methods as compared to human-drawn ar-
eas of interest. We present here a process of studying and
improving the perceived quality of computer-drawn AOIs.
We qualitatively evaluated how users perceive the quality
of computer- and human-drawn AOIs, and used these re-
sults to improve an existing algorithm for drawing AOIs.
Finally, we designed a quantitative comparison for AOI
drawings and used it to show that our improved render-
ings are closer to human drawings than the original ren-
dering algorithm results. The combined user evaluation, al-
gorithmic improvements, and quantitative comparison sup-
port our claim of improving the perceived quality of AOIs
rendered on UML diagrams.

1. Introduction

UML diagrams are used by system architects to describe
and understand software architectures and designs, e.g. the
structural and functional relations between the various in-
terfaces, components, or roles [13]. Software elements that
share a common property are of particular interest in system
analysis, e.g. ”all high-reliability components” or ”all com-
ponents introduced in the system version 2.3”. We call such
a set of elements an area of interest (AOI). AOIs can be de-
fined using software metrics [8, 11] computed by existing
analysis tools [30].

Recently, a method for visually combining AOIs and ar-
chitecture (UML) diagrams [6] has been proposed. This
method shows AOIs in-place on the diagrams, enabling
users to correlate concerns (AOIs) with system structure (di-
agrams), without altering the diagram layout. The AOIs are

rendered as soft, fuzzy shapes surrounding the diagram el-
ements, by a combination of geometric and texture-based
techniques (see e.g. Figure 9 b). Roughly, the rendering
tries to imitate the way humans draw AOIs in practice using
pen and paper. The rendering method results were found
quite appealing by potential users 1.

However, for this method to be effective in practice, some
questions still remain to be answered: Do actual users like
computer-drawn AOIs comparably to hand-drawn AOIs? If
not, why, and how can we improve the computer-drawn
AOIs? We present here our quest to measure and improve
the perceived quality of computer-drawn AOIs. We de-
signed and executed a detailed empirical evaluation for the
AOI drawings quality, and distilled salient strengths and
weaknesses of the original AOI rendering [6] and of hand-
drawn areas. Hand-drawn areas were found easier to un-
derstand than computer-drawn ones. Also, we found two
main drawbacks of computer-drawn areas: incorrect exclu-
sion of overlapping elements and unnatural flow-of-hand.
We extended the original AOI algorithm to address these
limitations. Finally, we designed a metric to compare AOI
renderings, and showed that the results of our improved al-
gorithm are closer to human drawings than the results of the
original rendering algorithm.

This paper is structured as follows. Section 2 reviews re-
lated work in visualizing AOIs on diagrams and evaluating
quality aspects of diagram drawings. Section 3 overviews
the original AOI algorithm [6]. Section 4 details the al-
gorithmic limitations of the original method. Section 5
presents the empirical evaluation used to compare the qual-
ity of computer and human drawings. Section 6 presents
our new technique that improves the rendering of AOIs on
diagrams. Section 7 presents a quantitative comparison of
the human and computer drawings. Section 8 presents the
results of our evaluation and proposed algorithmic improve-
ments. Finally, Section 9 concludes the paper.

1The proposed method has obtained the ”best paper award” at ACM
SoftVis’07 [6]



2 Related Work

Visualizing areas of interest can be described with the 5-
dimensional model of Marcus et al. [16]: task, audience,
target, medium, representation. Our task is to understand
how various system aspects (the AOIs) map on a system
description (the UML diagram). Our audience is composed
of software architects. Our visualization target is a set of
diagrams, together with AOIs specified as sets of diagram
elements. The visualization medium is a modified UML
diagram viewer [28] that combines rendering diagrams and
AOIs. The representation enriches classical UML diagrams
with AOIs drawn as smooth soft-textured shapes.

Modeling tools, e.g. Rational Rose [13] or Together [5], are
standard ways to visualize UML diagrams, but have little
support for areas of interest beyond boxes. Drawing AOIs
as boxes without changing the base diagram layout yields
unacceptably high visual clutter. Tools such as Rigi [29],
Prefuse [17], or MetricView [28] show an AOI by marking
its elements with icons scaled, colored, and shaped to show
metric values. Yet, inferring AOIs from such markers is
hard for complex diagrams. One can also move all elements
in an AOI close to each other and next draw a surrounding
frame [9]. However, diagrams are often laid out manually
with great care. Changing the layout upon changing of the
AOIs destroys the user’s ’mental map’. Also, layout adap-
tion does not work when one needs to show several AOIs at
the same time.

Methods such as metaballs [22], H-BLOB [25] and 2D im-
plicit surfaces [2] compute AOIs as isosurfaces of some po-
tential function, or distance field, based on the elements’ lo-
cations. However, it is hard to control both the smoothness
and tightness of such isosurfaces. Worse, the isosurface
connectivity highly depends on a correct isovalue which
cannot be easily chosen automatically [25]. Finally, dis-
tance fields and isosurfaces are computationally expensive.

A recent technique was proposed to draw AOIs by shrinking
and smoothing the convex hull of the enclosed elements [6].
The features targeted by this technique are:

1. AOIs do not change a given diagram layout
2. AOIs drawing is real-time, even for large diagrams
3. AOIs correctly surround the enclosed elements
4. AOIs do not clutter the diagram or each other
5. Computer- and human-drawn AOIs should resemble

The first two requirements were satisfied by the proposed
technique by construction. The technique did not correctly
handle requirement 3, as we shall see in Sec. 4.1. Also, it
was not measured how precisely requirements 4 and 5 are
satisfied.

A separate body of related work concerns evaluating the
quality of a visual depiction of system (UML) architec-

tures. Since there are no specific studies to evaluate the
quality of AOI renderings, we consider the wider range of
evaluating the quality of UML diagram renderings. Pur-
chase et al. have assessed the comprehensibility, aesthetics,
and user preferences of UML (and similar) diagram render-
ings [19, 18, 20, 21]. Although valuable, such results cannot
be applied directly to our problem, since AOIs are an exten-
sion of the standard UML notation. Several authors propose
frameworks and methodologies to evaluate the comprehen-
sibility and overall quality of UML models [14, 4, 1, 23].
Still, the question ”what are good quality criteria for visual
modeling languages” is not exhaustively answered.

An emerging conclusion is that ’bare’ UML is often hard
to comprehend and can perform better if extended by task-
specific annotations. Our AOIs are precisely such an an-
notation, useful to show cross-cutting concerns atop of a
given system structure. We want to construct a computer
algorithm that renders AOIs similarly to good hand-drawn
AOIs. The above-mentioned requirements of the technique
in [6] attempt to capture the in abstracto quality criteria of
a good AOI drawing. Yet, to assess the perceived quality of
an AOI drawing, we need a specific study. In this paper, we
present such a study and an improved AOI-rendering algo-
rithm based on the study.

3 AOI construction

We briefly overview the two-stage construction of the AOIs
from [6]. First, a contour is built around the elements
(Fig. 1 b-d). Given the 2D bounding boxes (b1i,b2i,b3i,b4i)
of the elements ei in the AOI (Fig. 1 a), we first compute
the convex hull C = {qi} of the corners {bi j} (Figure 1 b).
The hull is next subsampled (Fig. 1 c) so that the dis-
tance δ = |qi −qi+1| between consecutive points is a given
small fraction of the hull perimeter |C| = ∑i |qi −qi+1|, e.g.
δ = 0.01|C|. Next, the subsampled contour {qi} is de-

Figure 1. Area of interest algorithm

formed to fit tightly the elements inside and to become
smoother. (Fig. 1 d). For this, every point qi is moved to q′i
along the normal~n to the segment (qi−1qi+1), i.e. q′i = qi +



εn~n+εs
qi−1+qi+1

2 . Here, εn and εs are parameters that control
the shrinking and smoothing strengths respectively. Good
values are εn = 0.005|C| = 0.5δ and εs = |qi−1 − qi+1|/4.
If {qi} are in counterclockwise order, qi moves inwards in
C. This shrinks the contour, but also moves qi towards the
middle of the segment (qi−1qi+1), which is the well-known
geometric Laplacian smoothing [26]. To prevent contour
self-intersection, a point qi is moved only if

d = min
(

min
| j−i|>1

|qi −q j|,min
j
|qi − p j|

)
> 2δ (1)

i.e. if the contour point qi is farther from all corners p j
and other contour points q j (except its immediate neighbors
q j−1, q j+1) than 2δ . To prevent the contour to become over-
or undersampled, we check the distances min| j−i|>1 |qi−q j|
between the moved point qi and its neighbors, and insert
or remove points if these fall outside the range [0.5δ ,2δ ].
Points are moved for Nmax iterations.

In the second stage, we draw AOIs in two steps using the
computed contours. To get filled areas, we triangulate the
contour and draw it in the area’s color, else skip this step.
Next, we draw a soft border along the contour using a half-
transparent texture brush (see [6] for details).

4 Technical Limitations

The original AOI rendering algorithm (Sec. 3) has several
limitations. We discuss these next.

4.1 Ineffective exclusion

The contour constructed as described in Sec. 3 may erro-
neously overlap, or include, elements which are logically
not in the AOI. In the original method such elements are
marked with an eraser, i.e. a thin white border. Consider
Figure 2 where elements A, B, C, and D are in the area
and E, F are outside. The eraser works reasonably well if
we draw filled areas and the overlapping elements are com-
pletely inside the area, e.g. E in Fig. 2 a. However, the
eraser cue may not be salient enough to easily see that E is
not in the area. For elements partially overlapping the area
from which they must be excluded, e.g. F in Fig. 2 a, the cue
is even weaker. For contour-drawn areas, the eraser works
very weakly (F in Fig. 2 b) or not at all (E in Fig. 2 b). This
is a serious limitation, since we saw that contour drawing is
preferred to filled drawing [6]. Also, the eraser technique
turned out to be very unnatural for the most users who were
shown it during our evaluation (Sec. 5).

4.2 Unnatural flow-of-hand

Figure 2 shows also a second problem of the original AOI
rendering technique. Close to the elements, contours are

Figure 2. Element E is incorrectly shown as
being inside on (b).

too tight. In the middle, they are too loose. Also, the con-
tour smoothness is not optimal. The contour looks like a
sharp-angled polyline. This image is clearly different from
user-drawn contours, which are much smoother (see e.g.
Fig. 9). The non-uniform tightness and angled contours cre-
ate a computer-made, unnatural look, quite different from
the flow-of-hand typical to human drawings.

5 Evaluation of the AOI rendering method

At this point, several questions were raised. How bad would
real users find the limitations of the AOI drawing technique
(Sec. 4) in practice? Do other limitations exist? And above
all, what are the qualities of an AOI drawing that users like
the most, and how to simulate these in a computer render-
ing? We must answer these questions to estimate and im-
prove the acceptance and usability of the AOI technique.

For this, we designed and executed an empirical evaluation.
Thirty users of master, PhD, and senior software designer
level were selected. All had worked before for at least a few
months (up to a few years) with UML diagrams in software
design activities. Our evaluation had three stages: drawing
production, drawing comparison and results evaluation.

5.1 Drawing Production

First, the participants were given a complex class diagram
with 110 classes marked by numbers, printed in black-and-
white on an A4 paper and seven AOIs, each given as a list
of class numbers, printed on a separate paper. The subjects
were next asked to draw the areas as contours on this dia-
gram, with a provided red marker pen. The subjects were
told that the drawing should accurately convey which class
is in which area(s) and which area contains which classes.
An example drawing, done on a much smaller UML di-
agram with 10 classes and one AOI, was provided for il-
lustration purposes. The experiment instructions were pro-
vided on a separate A4 sheet. No verbal indications or su-
pervision were given during the actual work, which lasted
approximately 15 minutes. The subjects worked fully inde-
pendently. Figure 9 a shows a scan of the drawing done by
one of the subjects.



Without the subjects’ knowledge, we produced a computer
drawing on the same UML diagram, using the rendering
method in Sec. 3. The result is shown in Fig. 9 b.

5.2 Drawing Comparison

In the second phase, we gave to each subject two draw-
ings: a randomly picked drawing of another subject and
our computer-rendered drawing. Without giving any hint
that one drawing was computer-made, we asked the sub-
jects to complete a questionnaire (see [27]). The questions
included:

1. rank the ease of understanding of the areas in each
drawing on a scale of 1 (hardest) to 5 (easiest), accord-
ingly to a Likert scale [15]

2. which is the most complex area to understand
3. list what you liked least/most in the given drawings

The questionnaire mentioned that the main quality of an
AOI drawing is its understandability: the drawings should
clearly show which area contains which classes.

5.3 Results Evaluation

In the third phase, we analyzed the questionnaire data. Af-
ter collecting the questionnaires, we had some short discus-
sions (10-15 minutes) with the subjects, where they freely
presented their impressions, and we recorded the observa-
tions in writing. The results of this phase are summarized
in Fig. 3.

Figure 3. Results of drawing comparison

Several points are apparent now. The machine-generated
drawing (M) was of comparable, but still lower, understand-

ability, than the human-made ones (H) (Fig. 3, column A).
The perceived quality difference was quite similar for all
users, i.e. 1 or 2 points out of 5 (Fig. 3, column B). The
hardest-to-grasp areas were quite consistent, i.e. areas 2 and
3 (Fig. 3, column C). This matches also our opinion, and in-
dicates that the drawings done by different users are of com-
parable understandability. Two drawbacks of the machine-
drawn areas were most frequently named. Firstly, the eraser,
used to mark elements overlapping an AOI contour but not
logically part of that AOI, is not working well, as we indeed
suspected beforehand (Sec. 4). We call this the wrong ex-
clusion problem. For example, class 56 in not part of the
drawn area, as wrongly suggested by the computer draw-
ing in Fig. 4 a, which shows a zoomed-in detail from Fig. 9.
Figure 4 b, done by a human, is however correct. This prob-
lem was found by most subjects, as shown in column E of
the table.

Figure 4. The initial computer rendering
shows element 56 incorrectly inside the area
(a), as opposed to the human drawing (b) and
improved algorithm(c)

The second drawback of the computer-drawn areas con-
cerns the contours’ tightness and smoothness. These were
perceived as being unpleasantly non-uniform (column F),
and the flow of hand, i.e. similarity to the way humans
draw, was lacking (column G). All users mentioned these
as hindering the drawings’ understandability. Finally, many
subjects found the computer-drawn area overlaps confusing
(column D). Contours which are near-tangent close to their
crossing points were named hard to understand (Sec. 5.2).

6 Algorithm improvements

In Section 5.3 we identified three main problems of
computer-drawn AOIs: wrong exclusion, non-uniform
tightness/smoothness and confusing overlaps. We present
next algorithmic improvements to address the first two.

6.1 Improved Exclusion

In previous work [6], the route of geometrically eliminat-
ing overlapping elements by modifying the contour is not
followed, as it is deemed too complex to do for general di-
agrams. However, we found a working solution in this di-
rection. Our idea is to edit the contour, before deforming it,



in order to exclude the wrongly overlapping elements. This
works as follows (see also Fig. 5).

Figure 5. Geometric-based exclusion steps

First, we find the overlapping elements O = {oi} by test-
ing if any of the four element corners falls within the al-
ready computed AOI convex hull C (Section 3), using a
simple and robust point-in-convex-polygon test. Next, each
element oi in O is excluded in turn, as follows. A finely-
sampled rectangular contour Co is constructed around the
bounding box of oi (Fig. 5 b). Next, a short cut line connect-
ing Co with the original contour C is computed such that it
does not intersect any of the elements ei in C, as follows.
We find first the closest two points po ∈ O and p ∈C. Next,
we move both po and pC along the inner and outer contours
O and C respectively, until the line does not intersect any
element. We start by moving po around O to the left (coun-
terclockwise sweep) until a non-intersecting line is found or
a too high distance dmax from the starting position, as com-
puted along O, is reached. If no line can be drawn, we try
now moving po to the right (clockwise sweep). If this fails
too, then we move the other point p one step along the outer
contour C, and repeat the inner contour sweep again. When
a cut line was found (dotted line in Fig. 5b), we connect
the inner and outer contours by two sampled line-segments,
close and parallel to the cut line (Fig. 5c).

Figure 6. Exclusion of all overlapping ele-
ments (E, then F) and cutting sharp corners.
After that, smoothing and shrinking

6.2 Natural flow-of-hand

Our subjects found contours sharp corners to be unnatural.
We reduce these as follows. For each contour point pi, we
compute the angle α = ̂pi−1 pi pi+1 made by that point with
its two neighbors. If α is under a minimal value αmin and
the line pi−1 pi+1 does not intersect any element ei, then we
remove pi from the contour by connecting pi−1 and pi+1.
Good values for αmin are in the range [40,70] degrees. We
repeat this removal iteratively until no longer possible. The
final result is shown in Fig. 5 d. When excluding several
overlapping elements oi, sharp corners are removed after
excluding each element oi. This gives better quality, as
unnecessary sharp corners are eliminated as soon as pos-
sible. Finally, the shrinking is more stable if sharp corners
are eliminated, a well-known fact from level set theory [24].

Figure 6 shows the same diagram as in Fig. 2. We see how
the elements F and E are iteratively removed (Fig. 6 b,c).
The red line shows the contour after exclusion and sharp
corner removal. The dotted black line shows the contour af-
ter exclusion but before sharp corner removal. Figures 6 d-f
show the result after a few smoothing steps. Clearly, these
results are better than the original ones (Fig. 2 b). We see
now very clearly what is inside, and what outside, an area.
The unnatural eraser effect is now gone, and the contour
resembles much more to what a human would draw. The
sharp corner-cutting has the extra positive effect of smooth-
ing the contour, yielding a more natural ’flow of hand’. We
see that the improved method (Fig. 4 c) is more similar to a
hand-drawing(Fig. 4 b) than the original method (Fig. 4 a).

7 Quantitative Analysis

We presented in Sec. 6 several algorithmic improvements
by which we hoped to address the shortcomings of our com-
puter rendering method. However, how to measure how
well we improved as compared to the original algorithm?
Repeating the user study (Sec. 5) with the same audience
could be biased, since the users by now knew our aims,
datasets, and already had some experience. Doing the same
study with different subjects and/or different datasets could
be done, but how to quantitatively compare subjective qual-
itative opinions of two different groups and/or datasets?
Also, a user experiment does not precisely quantify how
much closer or further our new algorithm improves the ren-
dering. We designed a quantitative analysis for this, as fol-
lows (see also Fig. 7).

First, we extracted the area contours from all drawings, i.e.
human and computed-generated with both the original and
improved algorithm, using a simple filter-by-color thresh-
olding technique, which was reliable as contours and dia-
grams were drawn with two distinct colors, i.e. red, respec-



Figure 7. Quantitative analysis process

tively black. Next, we measured the difference between any
two contours Ci and C j, i.e. human and/or computer-drawn,
as follows. For a contour C, we denote by D the distance
transform, or distance map of C:

D(p) = min
q∈C

|p−q|, ∀p ∈ R2 (2)

D(p) gives the distance from any point p to the closest point
q on C. We compute D by solving the so-called Eikonal
equation |∇D| = 1 with boundary condition D = 0 on all
points of C, using the Fast Marching Method [24], on the
pixel grid on which the scanned contour C is stored. Given
a contour Ci and its distance map Di, we define the distance
di j of Ci to another contour C j as:

di j =
1
2

(
∑p∈C j Di(p)

|C j|Dimax

+
∑p∈Ci D j(p)
|Ci|D jmax

)
(3)

Here, D j denotes the distance map of C j, while Dimax and
D jmax are the maximum values of Di and D j respectively
over the considered images. |Ci| and |C j| denote the con-
tour lengths in pixels. The definition of di j ensures d is a
symmetric function di j = d ji, normalized between 0 and 1.
Intuitively, Eqn. 3 states that the distance between the two
contours C and C′ is proportional with the area between
the two contours, which is a perceptually good measure.
Alignment and image registration problems are not an issue,
since all drawings are done on the precisely the same class
diagrams, rendered on identical canvases, scanned at the
same resolutions. Let us stress that other more sophisticated
measures, e.g. perceptual-based metrics [3], template-based
matching [10], or contour matching using the earth mover’s
distance [12], can be used as well. However, using more
complex distance metrics involves having a clearer idea of
which features (e.g. angles, protrusions, concavities, flat re-
gions) are perceptually more important for the match, an
information which we do not have at the present moment.

We build now a matrix di j containing all distances between
any two contours of the 31 hand-drawn ones, plus the two
computer-drawn ones with the original, respectively im-
proved, methods. As the user evaluation showed (Fig. 3),
not all hand drawings were found to be of the same quality.
We are actually interested to see how our computer-drawn
contours compare to good human drawings. For this, we

first split the 31 human drawings into three groups: good,
average, poor, based the ”human quality” scores of 5,4 and
3 respectively (Fig. 3). Next, we graph the distances be-
tween all 31 human drawings and the two (initial and im-
proved) computer drawings (Fig. 8). Several observations
can be made here. First, there is quite some distance vari-
ation within the same quality class. This is expected, since
each quality value was assigned subjectively by just one
person. Second, we see that the improved method brings the
computer-generated drawings closer to the human drawings
in all quality classes as compared to the original method.

Figure 8. The distances between all 31 human
drawings and two (initial and improved) com-
puter drawings

8 Discussion

Let us consider three AOI drawings on the diagram used
in our evaluation (Fig. 9): The top image is an actual scan
of one of the best, most understandable, human drawings.
The middle image shows the result of the original com-
puter drawing method [6], as shown to the subjects. We
here recognize all problems named so far: elements incor-
rectly included in surrounding areas whereas they should
be outside (A,B,C), as shown in the top drawing; and con-
tours which are tight and sharp close to the elements but
loose and smooth in the middle. The bottom drawing shows



our improved algorithm. The elements A,B,C are now cor-
rectly excluded. The contours have a more uniform smooth-
ness. Although the improved method yields better appreci-
ated drawings, which are measurably closer to human draw-
ings than the original method, it still has some limitations.
First, our users have found near-tangently intersecting con-
tours to be hard to understand (Sec. 5.3). To address this, we
should consider a global contour rendering rather than the
per-contour rendering. Second, the distance metric used to
compare contours is well-known in shape analysis applica-
tions (see e.g. [7]), is robust to small-scale geometric noise,
and rotation and scale invariant. However, it does not take
into account specific quality attributes for the tasks related
to AOIs. For example, we can argue that a small geomet-
ric difference between two contours is perceptually more
important if located at some point where several contours
overlap or intersect, than at the periphery of the drawing.
Integrating perceptually driven distance metrics [3, 10] in
our evaluation should lead to further insights. Finally, we
are aware that we have not conducted a formal user exper-
iment, i.e. a quantitative measurement of the (in)validation
of a hypothesis. Our main goal was to harvest informa-
tion about the differences perceived between computer- and
human-drawn AOIs, and to adapt our computer drawings
accordingly. If our hypothesis that human-drawn AOIs are
easy to understand holds, we argue that our improved algo-
rithm produces better drawings, since these are measurably
closer to human drawings than the original computer draw-
ings.

9 Conclusions

We have presented an attempt to render areas of inter-
est (AOIs) on UML diagrams so they resemble easy-to-
understand human drawings. First, we compared an exist-
ing AOI rendering method [6] with human-drawn results by.
We found some aesthetic and correctness limitations of the
existing method, as well as what users consider to be a good
drawing. The method in [6] scored averagely in aesthetics
and overall quality. Next, we designed several rendering
improvements. The geometric exclusion technique creates
contours which correctly and visibly exclude all elements.
The corner-cutting technique, which eliminates sharp cor-
ners, creates a smooth, evenly-fitting, natural flow-of-hand
drawing style. Finally, we quantitatively measure how close
computer-generated renderings are to human drawings, and
saw that our proposed improvements effectively brought the
computer-made drawings closer to typical (good) human
drawings.

Our work is one of the first attempts to measure empirically
and quantitatively the quality of UML diagram annotations,
such as areas of interest, and to use these measurements

to improve computer-generated annotations. We found that
user studies, although highly time-consuming and labori-
ous, are indispensable instruments to get deeper understand-
ing of what makes a visualization good. There was strong
consensus among diverse users, who did not communicate
with each other, about what is nice and less nice in the AOI
drawings. Designing the proposed rendering improvements
followed naturally, once we understood what the users liked
to see. Hence, we believe that we succeeded to address
here requirements 3 (correctness) and 5 (measured similar-
ity with human drawn areas) from the desirable AOI draw-
ing requirements et (Sec. 2). Requirements 1 and 2 were
already addressed by the original rendering method.

We next consider to design a rendering method that mim-
ics even closer (good) human drawings, by performing a
machine-learning process that optimizes the proposed dis-
tance metric by varying the computer method’s rendering
parameters. We also want to address requirement 4 (lim-
ited cluttering) on complex diagrams, by a combination of
geometric, shading, and texture techniques.

References

[1] J. Aranda, N. Ernst, J. Horkoff, and S. Easterbrook. A frame-
work for empirical evaluation of model comprehensibility.
In Proc. Intl. Workshop on Modeling in Software Engineer-
ing (MiSE), pages 7–15, 2007.

[2] M. Balzer and O. Deussen. Exploring relations within soft-
ware systems using treemap enhanced hierarchical graphs.
In Proc. VISSOFT, pages 89–94. IEEE Press, 2005.

[3] S. Berretti, A. D. Bimbo, and P. Pala. Retrieval by shape
similarity with perceptual distance and effective indexing.
IEEE Transactions of Multimedia, 2(4):225–239, 2000.

[4] A. Bobrowska. A framework for empirical evaluation of
model comprehensibility. In Proc. SOFSEM, pages 72–81,
2005.

[5] Borland. Together. 2005. www.borland.com/
together.

[6] H. Byelas and A. Telea. Visualization of areas of interest on
software architecture diagrams. In Proc. ACM SoftVis, pages
105–114, 2006.

[7] L. F. Costa and R. M. Cesar. Shape Analysis and Classifica-
tion: Theory and Practice. CRC Press, 2001.

[8] N. Fenton and S. Pfleeger. Software Metrics: A Rigorous
and Pracical Approach. Chapman & Hall, 1998.

[9] E. Gansner and S. North. An open graph visualization sys-
tem and its applications to software engineering. Software:
Practice & Experience, 30(11):1203–1233, 2000.

[10] D. M. Gavrila. Multi-feature hierarchical template matching
using distance transforms. In Proc. ICPR, pages 439–444,
1998.



[11] N. Gill and P. Grover. Component-based measurement: A
few useful guidelines. ACM SIGSOFT Software Engineer-
ing Notes, 28, 2003.

[12] K. Gtauman and T. Darrell. Fast contour matching using
approximate earth mover’s distance. In Proc. CVPR, pages
220–227, 2004.

[13] IBM. Rational Rose. 2005. www.306.ibm.com/
software/rational.

[14] J. Krogstie. Evaluating uml using a generic quality frame-
work. In UML and the unified process, pages 1–22. Idea
Group Inc., 2003.

[15] R. A. Likert. A technique for the measurement of attitudes.
Archives of Psychology, 140, 1932.

[16] A. Marcus, L. Fend, and J. I. Maletic. 3d representations for
software visualization. In Proc. ACM SoftVis, pages 27–36,
2003.

[17] Prefuse. The prefuse information visualization system.
2007. http://prefuse.org.

[18] H. C. Purchase, D. A. Carrington, and J.-A. Allder. Empir-
ical evaluation of aesthetics-based graph layout. Empirical
Software Engineering, 7(3):233–255.

[19] H. C. Purchase, D. A. Carrington, and J.-A. Allder. Graph
layout aesthetics in uml diagrams: User preferences. Jour-
nal of Graph Algorithms and Applications, 6(3):255–279.

[20] H. C. Purchase, L. Colpoys, and D. A. Carrington. Uml
collaboration diagram syntax: an empirical study of com-
prehension. In Proc. VISSOFT, pages 13–22, 2002.

[21] H. C. Purchase, R. Welland, M. McGill, and L. Colpoys.
Comprehension of diagram syntax: an empirical study of
entity relationship diagram notations. International Journal
of Human-Computer Studies, 61.

[22] J. Rilling and S. P. Mudur. On the use of metaballs to visu-
ally map code structures and analysis results onto 3d space.
In Proc. WCRE, pages 299–306. IEEE Press, 2002.

[23] J. Rumbaugh. Notation notes: Principles for choosing nota-
tion. Journal of Object-Oriented Programming, 12(4), 1999.

[24] J. Sethian. Level set methods and fast marching methods.
Cambridge Univ. Press, 1999.

[25] T. Sprenger, R. Brunella, and M. Gross. H-blob: A hierar-
chical clustering method using implicit surfaces. In Proc.
Visualization, pages 61–68. IEEE Press, 2000.

[26] G. Taubin. Geometric signal processing on polygonal
meshes. In EUROGRAPHICS STAR Reports, 2000.

[27] A. Telea. AOI user study. 2007. www.win.tue.nl/

˜alext/ARCHIVIEW/experiment.html.
[28] M. Termeer, C. Lange, A. Telea, and M. Chaudron. Visual

exploration of combined architectural and metric informa-
tion. In Proc. VISSOFT, pages 21–26. IEEE Press, 2005.

[29] S. Tilley, K. Wong, M. Storey, and H. Müller. Programmable
reverse engineering. Intl. J. Software Engineering and
Knowledge Engineering, 4(4):501–520, 1994.

[30] J. Wust. SDMetrics: The software design metrics tool for
UML. 2005. www.sdmetrics.com.

Figure 9. Comparison of AOI renderings. The
improved rendering method (c) yields results
closer to the human-drawn AOIs (a) than the
original method (b)


