Texture-Based Metrics Visualization on Software Architecture Diagrams

Heorhiy Byelas*

Alexandru Telea’

Institute of Mathematics and Computer Science
University of Groningen, the Netherlands

Abstract

In this paper, we address the problem of visualizing several types
of metrics computed on software architecture diagrams. Our spe-
cific aim is to present metrics computed on groups of diagram ele-
ments, such as classes or components in UML diagrams, together
with metrics computed on diagram element members, such as class
methods. For member metrics, we use an adapted version of the
known table lens technique. For group metrics, we design a new so-
lution that uses blended textures computed via spatial interpolation
to show metric variations. Our method helps the task of visually
correlating the distribution and outlier values of a multivariate met-
ric dataset with the diagram structure. We present applications on
architecture diagrams extracted from real-world software systems.

1 Introduction

Architecture diagrams and software metrics are essential compo-
nents in software engineering activities such as forward and reverse
engineering. Diagrams capture structural and functional relations
between different system elements, such as interfaces and imple-
mentations. Software metrics capture several types of aspects of the
modeled system, from design-phase attributes (e.g. design and code
quality) to maintenance attributes (e.g. testability, maintainability
and evolvability) and run-time data (e.g. performance execution).
In UML class diagrams [OMG 2008], metrics can be associated
with classes, relations between classes, groups of classes, or class
members, e.g. methods. In all such activities, a recurrent question is
how to easily correlate several metrics computed on a system with
the system structure, captured by its architecture diagram.

We address here this question by presenting a new way to visualize
several software metrics, modeled as a multivariate dataset, atop of
a software architecture diagram, in a single picture. We focus here
on two types of metrics: member metrics, defined on diagram el-
ement members (e.g. class methods) and area-of-interest metrics,
defined on groups of diagram elements, which are also called ar-
eas of interest (AOIs) [Byelas and Telea 2006]. Our key idea is as
follows. We use blending, texturing, and smooth scattered point in-
terpolation to render several AOI metrics, defined as a multivariate
dataset with potentially missing values, atop of areas of interest in
diagrams, so that users can spot metric-metric and metric-area cor-
relations. This frees the space within the diagram elements, which
can be employed to show member metrics, using a table lens tech-
nique [Rao and Card 1994].

This paper is structured as follows. Section 2 reviews related work
in visualizing the combination of system structure and software
metrics. Section 3 presents our new technique for rendering sev-
eral metrics atop of AOIs. Section 4 presents two examples of us-
ing our new rendering technique on three UML diagrams, and also
demonstrates the use of the table lens technique for method metrics.
Section 5 discusses our results. Section 6 concludes the paper.

2 Related work

In practice, software system structure is visualized using various
types of node-link diagrams. Within this large class, UML dia-

*e-mail: h.v.byelas@rug.nl
Te-mail: a.c.telea@rug.nl

grams are arguably the most accepted metaphor for object-oriented
and component-based systems [OMG 2008]. Metrics can be com-
puted by static analysis tools [Wust 2006], simulation tools [Bon-
darev et al. 2006] or dynamic analysis tools such as profilers or
debuggers. In the engineering practice, metrics are usually shown
as separate numerical tables, making their correlation with large di-
agrams difficult and time-consuming.

Several attempts were made to combine metrics and UML-like dia-
grams. Lanza ef al. render class-level metrics by mapping them to
the class size and/or color [Lanza and Marinescu 2006]. In this way,
two metrics can be shown simultaneously. Similar techniques are
used by many software visualization tools, such as the well-known
Rigi framework [Tilley et al. 1994]. An extensive overview of such
tools is given by Diehl [Diehl 2007]. However, in typical UML
diagrams, element sizes are constrained (fixed), so they cannot be
used to show a metric. This happens when UML diagrams are cre-
ated in the design process: designers carefully craft the layout of
diagrams and would not accept the elements’ sizes or positions to
be modified, as this destroys their *'mental map’. Element back-
ground colors can also be constrained e.g. when we want to draw
method names or other text annotations inside each class. Termeer
et al. show UML class-level metrics with icons scaled, colored, and
drawn atop classes [Termeer et al. 2005]. This technique can show
individual metric values and helps spotting outliers. However, cor-
relating several metrics on a large diagram is difficult, as one has to
memorize the metric values while visually scanning the diagram.

Moreover, all the above-mentioned techniques address only met-
rics defined on diagram elements (e.g. classes) or members (e.g.
methods). We also want to visualize metrics defined on groups of
elements, also called areas of interest (AOlISs), e.g. safety of all mul-
tithreaded components, speed of all performance-critical compo-
nents, and so on. Byelas and Telea addressed the problem of show-
ing the AOIs themselves by surrounding the grouped elements with
a smooth contour, similarly to the way humans draw such groups
on paper diagrams [Byelas and Telea 2006]. This shows which ele-
ments are in which AOI, e.g. all multithreaded elements in our ex-
ample. However, the problem of showing metrics defined on AOlIs,
to correlate metrics with structure, is still open.

3 Drawing area-level metrics: Data model

To explain how we render metrics on AOIs, we first introduce our
data model. Consider a diagram with n areas of interest A; ... A,
defined over its elements, where ¢;;, j € [1,]A;]] are the elements in
area A; and |A;| is the number of elements in area i. For each A;, we
have a metric m; : [1,|A;|] — RU None defined over its elements!.
m;j, the value of m; on ej, can have either a numerical value, or
None, if that value is missing. Missing metric values are frequent
in software analysis, e.g due to various limitations of the analysis
tools [Wust 2006]. The set of metrics m; can be seen as a multivari-
ate scattered-point dataset [Spence 2007], with elements j as data
points and the metric values i as variables.

We want to show all metric values for all areas in one image, so that

e we can compare the metric values of each element,
e we can visually follow how a metric varies over an area,

e we see the elements having missing values,

!'Several metrics defined on the same area are handled analogously

element | value |
A low

B none

C medium
D high

a) metric values

b) constant interpolation

c) smoothing

d) texturing

N

Figure 1: Smooth interpolation of element metrics over an area-of-interest

e we do not draw metrics on the elements themselves.
e we use, but do not change, a given diagram layout

We can visualize the AOI itself (but not its metrics) as shown
by [Byelas and Telea 2006], by drawing a contour that encloses
the elements located in the AOI (see e.g. Fig. 1 b). We show next
how to render several metrics defined on several such AOIs so that
metric values and areas can be easily correlated. We use a two step
solution. First, we render the values of a single metric m; over a
given area A; (Sec. 3.1). Next we combine all metrics m; for all
areas A; in a single image (Sec. 3.2). Finally, we add shading to the
areas to further emphasize their structure (Sec. 3.3).

3.1 Rendering a single metric

Termeer et al. show element metrics using icons scaled and colored
by metric values, drawn atop of the elements [Termeer et al. 2005].
This has several drawbacks. Consider a diagram with five metrics
over five areas of interest (Fig. 5). First, icon sizes are constrained
by the element sizes (which can be very small), so it is hard to see
the specific metric values. Second, we want to keep the element
surfaces free to draw other data, such as method names and method
metrics, as we shall see in Sec. 4.2. Third, correlating metrics with
areas of interest, e.g. seeing how metric values change over one or
several areas, is difficult, since there is no explicit visual correspon-
dence (mapping) from the metric icons to areas.

We address these issues by rendering metric values outside the di-
agram elements. Denote by {e;} the elements in area A, with met-
ric values m; - we drop area-indexes here since we consider a sin-
gle area. We encode missing metric values in a separate dataset
pi:[1..|A]] — {0,1}, i.e. set p; to O if m; is missing, else set p; to 1.

Our key idea is to produce an interpolation function .# of the val-
ues m; over area A. . (x) should equal the given metric values m;
for points x inside or close to the elements ¢;, and vary smoothly
in-between. We compute .# as follows. First, we compute the
Delaunay triangulation of A using the Triangle library [Shewchuk
1996]. Next, we initialize .# at each triangulation vertex x with the
metric value m(egjpses) Of the element

argmin
i€[1..|Al],mj#None

(lle: =x[)

€closest =

i.e. the closest element to point x which has a metric value. This
yields an approximation of the Voronoi diagram of the element set
{ei}, so ./ is a piecewise-constant interpolation of {m;} over A.
Figure 1 b shows . for the metric values in Fig. 1 a, using a red-
to-blue colormap?. Element D has a maximum value, as shown by
the surrounding red color. Element A has a minimum value, shown
by the blue color. Elements E and F do not belong to the area.
Element B, although inside the area, has no value. We show this

2The colormap choice is discussed further in Sec. 5

using a neutral gray hue, as follows. We compute an interpolation
& of the set {p;} over A, just as the interpolation .# of {m;}. With
A and &, we now compute the hue-saturation-value color of any
point x € A as

h(x) = rainbow (A (x)) (D
s(x) = 2(x) 2
v(x)=1 3)

where rainbow() is the chosen colormap (see Fig. 1 d). Hence,
points having metric values are rendered with saturated colors,
while points with missing values are gray. Finally, we render the
area’s border using a soft gray texture.

In the final step, we smooth our piecewise-constant interpolation.
For this, we apply a Laplacian filter [da Fontoura Costa and Cesar
2004] on .# and &, by setting the value of each triangle vertex x
to the average value of all vertices connected to it, and repeating
the process for 30..50 iterations. The points contained inside the
elements e; are kept fixed to the prescribed metric values m;, to
enforce the interpolation’s boundary conditions. The result shows
the values m; close to their elements ¢;, smooths values in-between,
and grays out colors close to elements without values (see Fig. 1 c).

3.2 Combining several metrics

Now we must combine several metrics defined on possibly over-
lapping areas. We cannot simply additively blend areas of different
colors as in [Byelas and Telea 2006], as this would mix the individ-
ual colors which show metric values beyond recognition. We use a
texture-based solution: For each area A;, we use a different texture>.
We carefully designed a small set of textures (Fig. 2). The overlap
of any textures in this set creates a visually different pattern. The
textures contain just opacity: black denotes opaque zones, white
gaps are fully transparent, gray indicates an alpha value between 0

and 1.
““l“ 10. 20p|xels
P"'!
I.OO!
LA Al
“.l

Figure 2: The proposed set of textures. Gray value denotes opacity

o

A

N

c)

3We can relax this: non-overlapping areas can use the same texture, see
Fig. 6.

We now render each area A; by combining its color (showing met-
rics) computed by interpolation (Sec. 3.1) with its transparency tex-
ture (showing the area’s identity) using OpenGL’s texture modula-
tion. Figure 1 d shows the application of texture ¢ from Fig. 2 on
the area in Fig. 1 c. To maximize information visibility, we draw ar-
eas starting from the largest to the smallest one, so that small areas
appear atop, or possibly nested within, large areas.

Figure 3 shows three overlapping areas defined over four elements.
Transparency creates hole-like patterns that let us see which tex-
tures, i.e. which areas, overlap, since each area has a different tex-
ture. The visual weaving’ of the textures also lets us distinguish
their different colors, hence correlate metric values. For example,
we see that D has low values in area 1 and high values in area 3 -
blue circles atop red diagonal lines; B has high values in area 1 and
no value in area 3 - red circles atop gray diagonal lines; and so on.

Transparency acts more like a stencil, so there is little or no ac-
tual blending; colors do not mix, but get spatially woven. Color
interpolation spreads the metrics information from elements over
entire areas, creating large smooth hue spots which are easier to
follow than rapid changes. We acknowledge this is a controversial
issue: color blending may suggest that there is a continuous met-
ric variation over an AOI, which is not the case. If less blending
is perceived as better, one can simply do less smoothing iterations:
See e.g. Fig. 10 where only a few iterations are done, which yields
well-separated color areas around the elements, and almost no color
interpolation. For instance, the transition between blue and green
in A; is sharp and quick . Also, one can use discrete (categorical)
colormaps with no change in our method, if these are believed to
produce easier interpretable results.

Area Elements Texture
LA Al
A B,D e
[
’,
A, A B, C
z %

As ACD &

Figure 3: Diagram showing three areas of interest with metrics

3.3 Shading for enhanced area separation

Although each area has its own distinctive texture, this can create
confusing overlaps where it is hard to tell where an area exactly
stops and another one starts. This happens e.g. where contours of
different areas run almost tangent.

To alleviate this, we emphasize each area A by shading, as follows.
We construct a signal . over A that is zero on the contour dA
of A, one further from the contour, and varies smoothly with the
distance within a narrow band of thickness 8 along the contour. We
compute . on the same triangle mesh as .# and & used for the
color interpolation (Sec. 3.1), as follows. First, we set .# to 0 on the

contour vertices and 1 elsewhere. Next, we use the same Laplacian
filter as for color smoothing, keeping . fixed to 0 on the contour
points, for 10..30 iterations. More iterations increase the thickness
of the shading effect. After each iteration, we renormalize .7 to the
range [0, 1].

We now use . as luminance by setting v(x) = .7 in Eqn. 3. This
darkens areas close to their borders, but keeps them bright in the
middle. Normalization ensures that shading is always bright in the
middle of an area and dark on the contour. A direct application
of shading would only affect the texture stripes (non-transparent)
but would not show up in the texture "holes’. This would create a
broken, distracting shading effect. We prevent this by increasing
the holes’ opacity in the texture patterns from O (fully transparent)
to 0.2 (slightly opaque).

Overall, we obtain the effect of convex, shaded 3D shapes - com-
pare Fig. 3 (no shading) with Fig. 4 (with shading). At overlaps,
the shaded shapes get woven by blending. The darkened borders
help to visually separate areas (see the images in Sec. 4). The slight
opacity of the texture pattern holes is able to show the shading close
to the areas’ contours and also a faint hue of the interpolated colors,
i.e. metrics, in the pattern holes. This further strengthens the vi-
sual cohesion of all elements within an area and limits the breaking
effect of the holes, but still allows pattern weaving to take place.
When using textures to show metrics, as users noted on several oc-
casions, textures seem to complicate the visual tracking of an area’s
contour, so shading has a stronger value in helping users to separate
the areas.

Figure 4: Enhanced areas using shading (compare with Fig. 3)

4 Applications

We now illustrate the use of our multivariate metric-and-structure
visualization in two different case studies.

4.1 Case Study - JPEG Decoder Architecture

We consider a real-world software project: the architecture of a
component-based JPEG decoder [Bondarev et al. 2007; Trust4All
2005]. The system model was built and its operation numerically
simulated using the CARAT toolkit [Bondarev et al. 2006]. This
delivered several run-time performance metrics. We next show two
such metrics:

e Licpy: CPU usage for active components (each active compo-
nent has its own process)

® luem: memory usage for passive components (a passive com-
ponent is used by active processes)

Given the actual architecture of the JPEG decoder, not all compo-
nents have both memory and CPU metric values.

The decoder performs five tasks (7’1 ...T5): JPEG stream starter
(T'1), inverse discrete cosine transform (IDCT), IDCT column pro-
cess (T2), IDCT row process (7'3), rasterization (7'4), and render-
ing (T5). For a detailed description, we refer to [Bondarev et al.
2007]. We consider six areas: Aj...As contain the components in
tasks 7'1...T5. Each component has a memory usage metric Lyem
for each task area it is part of. The sixth area Acpy holds all active
components, which also have a CPU usage metric licpy. We now
address two goals which were named as important by the architects:

e understanding the distribution of tasks over the system struc-
ture and the memory usage of passive components

e understanding the CPU utilization over different tasks

To illustrate the advantage of our method, we first use the existing
metric icons technique [Termeer et al. 2005]) to show the memory
usage metric. First, we draw the areas 7'1...T5. Next, we draw pie
and height-bar icons colored by task and scaled to show memory
usage Umem (Fig. 5). The metric legend shows the tasks’ colors and
also shows where each icon from each task-area is placed within
each element (see [Termeer et al. 2005]). The results are clearly
not easy to interpret: In Fig. 5 it is hard to tell the metric values
of each component for each area it belongs to. We cannot increase
icon sizes, as each icon already takes one-sixth of a component’s
size. It is hard to visually correlate metric values over large areas.
Also, a missing icon has an ambiguous meaning: does it show a
Zer0 Umem = 0 or missing metric value or a missing metric value
Wmem = None?

We now use our proposed technique. Each area (task) uses a dif-
ferent texture (see legend in Fig. 6 left). Color shows the memory
usage Uyem (blue=low, red=high). We now better see which value
Umem €ach component has in each area, even though the images in
Fig. 6 are half the size of the icon-based visualization in Fig. 5.
We see, for instance, that components A, C, D, E and F use much
more memory than the rest in at least one task they are involved
in. Components A and C consume high memory amounts in the
tasks they are involved in (7'1 and 73 for A and 72 and T4 for C).
Component C is the main memory consumer of the entire system,
as both textures surrounding it are red. Indeed: C implements the
decoder’s pixel raster buffer, which consumes a lot of memory. Fi-
nally, we see that components D. .. F have a similar memory usage
pattern: low in task 7'4, high in task 7’5. The results match the
design expectations, as rendering (7'5) is more memory-demanding
than rasterization (7'4).

In our second scenario, we add the CPU utilization metric Ucpy
(Fig. 6 right). The area Acpy, containing all active components us-
ing CPU cycles (G...K), intersects the task-areas 71...T5. To
visually segregate the two aspects (tasks and CPU utilization),
we use diagonal stripes for the task-areas 7T'1...7T5 and vertical
stripes for the CPU utilization area Acpy. We see now the CPU-
intensive components: J and K. We also see that all components
in Acpy miss memory consumption data: the diagonal stripes tex-
tures around all components (G...K) are gray (Fig. 6 left). This
is correct, as the design of this JPEG decoder splits data (passive)
components from algorithm (active) components.

Figure 7 shows the effect of adding shading. The left image de-
picts the six areas with color interpolation (showing metrics) but no
textures. We provide this image to emphasize the useful effect of
shading in understanding area overlaps. The right image shows the
six areas and two metrics (memory and CPU usage). Compared to
Fig. 6 right, it is easier to tell in the shaded image which compo-
nents are in which areas.

4.2 Case Study - Large Class Diagrams

In our second application, we extracted an UML class diagram from
the source code of a C++ graphics editor in a reverse engineer-

ing process, using an ANTLR-based C++ parser [Parr and Quong
1995]. Talking to the system designer, we identified several high-
level functional aspects of interest:

e main: the application’s entry point
e core: the application’s control code

e Jogging: code involved in logging actions
e GUI: user interface code

1/0: code for saving and loading data
e OpenGL: rendering code
e XML: code for loading 3D models

Each aspect yields an area-of-interest A;. We now want to see which
class participates in which design aspect, and how much. A ’pure’
object-oriented design would require each class strongly involved
only in one aspect [Lanza and Marinescu 2006]. We quantify the
participation degree p;; of each class j in each aspect A; as its code
percentage specific to A;. For example, an OpenGL class has p =
0.5 if it has 50% OpenGL-specific code. The goal is to understand
how the identified aspects map to actual classes, i.e. whether the
code follows the intended design, and whether we have modularity
problems.

The entire system is shown in Fig. 8. The legend shows, for each
area A;, the number of classes it contains, the number of classes
having missing values for that area’s metric p; (due to the fact that
we were unable to reliably estimate the percentage of code involved
in each aspect), and the texture used to show the area. We notice
several facts. Few classes participate in two aspects, and none take
part in three. This indicates a good functional modularity. The only
class strongly involved in two aspects is B, part of the main and
core areas. Since B is actually the system’s entry point, this strong
involvement is not a problem. Class E participates strongly in core
(red in Ag) and weakly in GUI (blue in A1). E the main window, so
its weak involvement in core and strong in GUI is correct. Class D
is strongly I/O-related (A7), and also part of the core (A¢). However,
its code is quite complex, so we were unable to assess how strongly
it belongs to the core (missing metric of D in Ag).

Figure 9 shows the same diagram, areas, and metrics as in Fig. 8,
with shading added. As for the JPEG decoder example, shading
helps users to see quicker which elements are in which areas.

4.3 Adding method-level metrics

Figure 10 shows another class diagram: a part of our own UML
visualizer. We show two functional areas: classes involved in visu-
alization (A;), and the class hierarchy modeling a UML graphical
element, or glyph (A1). Colors show degrees of participation in the
two aspects. Since our metric-rendering does not draw on classes,
we can show an additional metric: the lines-of-code (LOC) for all
class methods. For this, we use a simple adaptation of the well-
known table lens technique [Rao and Card 1994]: method metrics
are drawn with colored horizontal bars, scaled to show the metric
values. Long bars indicate large methods. Methods are sorted in
decreasing LOC from top to bottom within each class. This effec-
tively shows the size distribution of all methods, and correlates it
with the participation of each class in the two AOIs.

Using this table lens-like technique to show method-level metrics
has several advantages. First and foremost, the table lens scales
well even for classes having tens or hundreds of methods, as each
table row (i.e. class method) can be rendered as small as one pixel
line. Second, by using the same scaling factors and sorting order
for all classes of a given diagram, we can easily compare the range
and distribution of a given metric over an entire system. Placing
the table lens renderings within each element frame lets us corre-
late metric values with system structure. Finally, a few different

.

ECAImagevButel

T
’

a

IPEGAIDCT Col,
i3} =ip

fecccighioea

- T
. >

L y §

4

lrciouociaua = =
N L, | N

Metrics legend

Figure 5: JPEG decoder architecture. Icons show the memory usage metric [yem over five tasks. Areas show the tasks. The metric legend
shows the placement of metric icons within each component. Although this figure is quite large, it is hard to correlate metric values and areas

EGumgeHnute

 e—— oy pGroreuer peGae Curuiginzanl)

ARV /AR
ANNIEV/ AL

Areas legend

VAV /AL NN
N 142 75 |[[] cru Areas legend

Figure 6: JPEG decoder architecture. Left: 5 tasks with memory usage metric. Right: a sixth task and a second metric is added (CPU usage)

method-level metrics can be shown simultaneously, by adding sev-
eral table lens renderings along each other within each class (this
example is not shown here for lack of space).

We can use Fig. 10 to understand how code complexity relates to
system structure, to predict potential maintenance hot-spots. First,
we see that area A contains a class hierarchy, rooted at A, which is
the glyph common interface. A is entirely contained inA,, which
is desirable, as glyphs are visualization objects. All glyph classes
in A; have the same number of methods and similar bar graphs,
i.e. similar LOC distributions for their methods. This confirms a
desired property: all glyph subclasses should use the same coding
pattern. At closer code investigation, this was confirmed. Secondly,
we notice that class C, although in the visualization area A, has no
metric here (is gray). C is also the root of a small class hierarchy.
This indicates a mix-in class: its code cannot be readily classified as
visualization, but it roots several visualization classes, so it is classi-
fied as visualization-related. The reason for the mix-in is clear when
looking at the class name: C is a C++ STL container (set), so its
two visualization subclasses inherit implementation rather than in-
terface.

The classes having the largest methods (longest bars) have also the
most methods: B, D, E. Stronger, the largest class B has also the
largest methods. This suggests a *God class’ pattern [Lanza and
Marinescu 2006]. Code examination confirmed this: B contains a

(complex) part of the system’s data model. Correlating the meth-
ods’ LOC metric with the areas, we also see that D and E are the
largest visualization classes, but the most complex class (B) is lo-
cated outside these areas. Hence, we identified three potential main-
tenance hot-spots, two in the visualization subsystem (D,E) and one
outside (B). In contrast, the glyph subsystem (area A;) contains
only simple, small, similar-pattern classes, hence should be much
easier to maintain.

4.4 Informal User Feedback

We have conducted several informal evaluation studies of our pro-
posed multivariate metric visualization technique.

Our main aim is to compare the effectiveness and acceptance of
the new texture-based technique as opposed to classical icon-based
techniques. We compared our new method against [Termeer et al.
2005] as both methods are implemented within the same UML visu-
alization tool, so we can share the same user interface, input file for-
mats, and visual look-and-feel. Moreover, we had a relatively large
base of users already familiar with this UML tool, in the frame-
work of a 2-year industry-academic cooperation project [Trust4All
2005]. The user base includes around 10 professional software en-
gineers involved in creating UML architecture diagrams, such as
the JPEG decoder (Sec. 4.1), and computing quality metrics on

EZZ=RA N

FEEp’

A
TR RIS
GO0
R OO0 0008
OO GO0
R I 0 9"0.0‘9’. Lototats
Pl ? o L8 # loeciooconna® L9 S5 Pt

A,: logging
.

Figure 8: Large UML class diagram with 7 areas and over 50 classes. Metrics show the participation of classes in two aspects

them.

We asked the designers to utilize both the icon-based and texture-
based metric visualizations to present their own work (diagrams and
metrics) in around 10 project meetings of around 20 participants
over a period of about 1 year. In such presentations, important
goals are to show metric-metric and metric-structure correlations,
as described in the previous sections. We silently observed the pre-
sentations and gathered off-line feedback from presenters and par-
ticipants. Overall, there was a strong positive feedback about using
areas of interest: they are quick to understand and effective to show
software aspects. Metric icons were accepted only when showing
a single metric, possibly over several areas. Texture-based met-
ric visualizations were seen as more effective and intuitive when
correlating several metrics. The overlap of more than three metric
textures was, however, hard to understand. In such cases, presenters
would switch metrics on and off to show only three metrics simul-
taneously. Interestingly, color smoothing was not seen as a prob-
lem, even though it generates colors between the diagram elements
which do not correspond to actual values in the data. When talking
about this issue, we got the impression that users focus predomi-
nantly on the colors close to the diagram elements and use color
smoothing as a visual cue to navigate from element to element over
a given area, being aware that in-between colors do not represent
data.

5 Disscussion

We discuss several aspects of our technique, as follows.

Scalability: we can easily show up to 10 areas of interest, each with
its own metric, on diagrams of 20..80 of classes. Larger diagrams
occur very rarely in software engineering practice. The Delaunay
triangulator and Laplacian filter used are well-known for their fast,
subsecond performance on meshes of thousands of triangles. Ren-
dering a metric over an AOI uses a single texture pass over a triangle
mesh, which is very fast on any graphics card.

Understandability: The main limitation is the number of distinct
areas that can overlap at one given place. Consider the AOIs
A1 =(A,B,C,D),A; = (A,B,C) and A3 = (A, B, D) in Fig. 11, ren-
dered with textures shown in the legend. From the woven’ texture
pattern we believe it is reasonably easy to see which element is in
which area and the colors (metric values) at overlaps. The addition
of shading (Sec. 3.3 further helps in separating areas with complex
overlaps. Yet, adding a fourth overlapping area would make this
image hard to understand. Yet, typical software understanding sce-
narios rarely involve correlating more than 2-3 metrics at the same
time.

Obtaining a good pattern mix constrains the texture parameters. All
textures should have similar ratios of opaque-to-transparent pixels,
so we can ’see through’ at all overlaps. Ratios between 40% and

Area Elements Texture
LA I
A AB,C,D (LA
- a

Az A, B,C

%

N\

As AB,D k\

Figure 11: Complex intersection of three overlapping areas

60% give good results - lower values yield too sparse textures, on
which we cannot see colors or shading; higher values yield occlu-
sion at overlaps, so we cannot see more than one texture. Patterns
must be chosen so that the overlap of any n— 1 patterns looks differ-
ent from the n'" pattern, n being the number of overlapping areas.
The texture set used here gives good results for n < 3, as shown
in a different application [Voinea and Telea 2006]. Finally, the fre-
quency range (related to the pattern stripe thickness and circle ra-
dius) is important. Too thin patterns are hard to distinguish at over-
laps; too thick patterns do not let the eye smoothly switch between
areas at overlaps. We found an empirically good pattern size in the
range of 10..20 pixels (Fig. 2).

Related methods: To our knowledge, there is only one other soft-
ware visualization that uses textures to show numeric metric val-
ues [Holten et al. 2005]. Our method differs from this as follows.

Holten er al encode two metrics in the texture frequency and lu-
minance, and use a treemap layout, so their areas are rectangular,
cannot overlap, and always contain a single element. We smoothly
interpolate metrics over arbitrarily-shaped, overlapping areas. We
use a fixed texture-set, use opacity to allow overlaps, and encode
metric values in hue and metric availability in saturation. Finally,
we use luminance to pseudo-shade the areas to visually emphasize
contours rather than encoding data. This is conceptually similar
to the cushion treemaps used by Holten et al, but generalizes to
complex-shaped, overlapping, areas.

The colormap choice is very important. Here, we use only a simple
blue-to-red continuous colormap, for simplicity and conciseness.
However, better choices are available, such as other hue gradients
or discrete few-hue colormaps. Such issues need to be further in-
vestigated. A second discussion point is our choice to interpolate
colors. As mentioned, this creates colors between elements which
do not reflect actual values. However, we believe this is acceptable
since users are fully aware that there are no data values except on
the diagram elements, and smooth colors help following the con-
tents of a given area as opposed to hard color boundaries between
elements. Also, using a (discrete) few-hue colormap would consid-
erably alleviate this problem as there would be less, or no, different
hues created between the ones in the colormap. Still, a rigorous
user evaluation of the effectiveness and/or limitations of color in-
terpolation is still needed.

Finally, using full-saturation hues on the areas is sometimes seen as
distracting. Luckily, this is easy to tune: we provide a global opac-
ity control that allows users to set the overall opacity of all AOlIs,
thus smoothly navigating between ’bare’ diagrams and diagrams
with full-saturation textured areas. In practice, using a global area
opacity of 0.4..0.6 gives good results - the actual value used de-
pending on one’s taste and type of color screen.

6 Conclusion

We proposed a method to render a multivariate set of metrics, with
potential missing values, on elements of areas of interest on UML
diagrams, so that metric-area correlations and distributions of met-
rics over areas are easy to distinguish. Texture patterns encode dif-

area A,:
visualization
subsystem

Area
Elements

Missing values

Texture

area Aq:
Glyph
interface

Figure 10: UML class diagram with two areas, class-level participation metrics, and method-level lines-of-code metrics

ferent aspects in a diagram and also allow areas to overlap. Ad-
ditional shading further visually separates complex overlapping ar-
eas. The space inside elements can be used to show member-level
metrics, using a table lens technique. Although our interest is in
software diagrams, our method can be used in other contexts, such
as organization diagrams or spatial maps.

‘We would next like to study how interaction can help understanding
the metrics correlation, and also evaluate the practical effectiveness
of the proposed methods by means of user studies involving actual
software engineers in the industry.

Acknowledgements

We would like to thank Egor Bondarev (TU Eindhoven) for sup-
porting us with the JPEG case study and the ITEA Trust4All con-
sortium for supporting part of our research.

References

BONDAREV, E., CHAUDRON, M., BYELAS, H., AND DE WITH,
P. 2006. A toolkit for design and performance analysis of real-
time component-based software systems. In Proc. Intl. Conf. in
Software Eng. Advances, 4-8.

BONDAREV, E., CHAUDRON, M., AND DE Kock, E. 2007.
Exploring performance trade-offs of a JPEG decoder using the
DeepCompass framework. In Proc. Intl. Workshop on Software
and Performance, 153-163.

BYELAS, H., AND TELEA, A. 2006. Visualization of areas of
interest on software architecture diagrams. In Proc. ACM SoftVis,
105-114.

DA FONTOURA COSTA, L., AND CESAR, R. M. 2004. Shape
Analysis and Classification: Theory and Practice. CRC Press.

DIEHL, S. 2007. Software Visualization - Visualizing the Structure,
Behaviour, and Evolution of Software. Springer.

HOLTEN, D., VLIEGEN, R., AND VAN WIIK, J. J. 2005. Visual
realism for the visualization of software metrics. In Proc. VisSoft,
1EEE, 27-32.

LANZA, M., AND MARINESCU, R. 2006. Object-Oriented Metrics
in Practice - Using Software Metrics to Characterize, Evaluate,
and Improve the Design of Object-Oriented Systems. Springer.

OMG. 2008. The Unified Modeling Language. http://www.
uml.org.

PARR, T., AND QUONG, R. 1995. ANTLR: A predicated-LL(k)
parser generator. Software - Practice and Experience 25,7, 789—
810.

RAO, R., AND CARD, S. 1994. The table lens: Merging graphi-
cal and symbolic representations in an interactive focus+context
visualization for tabular information. In Proc. CHI, ACM, 222—-
230.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D quality mesh
generator and delaunay triangulator. In Proc. Applied Computa-
tional Geometry, ACM Press, 124—133.

SPENCE, R. 2007. Information Visualization: Design for Interac-
tion (2" ed.). Prentice Hall.

TERMEER, M., LANGE, C., TELEA, A., AND CHAUDRON, M.
2005. Visual exploration of combined architectural and metric
information. In Proc. VISSOFT, IEEE Press, 21-26.

TILLEY, S. R., WONG, K., STOREY, M.-A. D., AND MLLER,
H. A. 1994. Programmable reverse engineering. Intl. J. of
Software Eng. and Knowledge Eng., 501-520.

TRUST4ALL, 2005. The Trust4All project. www.win.tue.nl/
trust4all.

VOINEA, L., AND TELEA, A. 2006. Multiscale and multivari-
ate visualizations of software evolution. In Proc. SoftVis, ACM,
115-124.

WUST, J. 2006. SDMETRICS: The software design metrics tool
for UML. www .sdmetrics.com.

