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Abstract. Viscoelastic solids and granular materials have been exten-
sively studied in Classical Continuum Mechanics (CCM). However, CCM
faces inherent limitations when dealing with discontinuity problems. Peri-
dynamics, as a non-local continuum theory, provides a novel approach for
simulating complex material behavior. We propose a unified viscoelasto-
plastic simulation framework based on State-Based Peridynamics (SBPD)
which derives a time-dependent unified force density expression through
the introduction of the Prony model. Within SBPD, we integrate various
yield criteria and mapping strategies to support granular flow simulation,
and dynamically adjust material stiffness according to local density. Ad-
ditionally, we construct a multi-material coupling system incorporating
viscoelastic materials, granular flows, and rigid bodies, enhancing compu-
tational stability while expanding the diversity of simulation scenarios.
Experiments show that our method can effectively simulate relaxation,
creep, and hysteresis behaviors of viscoelastic solids, as well as flow and
accumulation phenomena of granular materials, all of which are very chal-
lenging to simulate with earlier methods. Furthermore, our method allows
flexible parameter adjustment to meet various simulation requirements.

Keywords: Peridynamics · Viscoelastic simulation · Granular materials
· Multi-material coupling.

1 Introduction

Viscoelastic solids and granular materials are ubiquitous in our daily lives and
industrial production. From kneading dough and biological soft tissues to natural
disasters like avalanches and mudflows, these materials demonstrate complex
dynamic characteristics. Accurate simulation of these behaviors is of great signif-
icance to fields such as materials science, geotechnical engineering, biomedical
simulation, and – last but not least – computer graphics.

Viscoelastic solids have time-dependent characteristics including stress re-
laxation, creep, and hysteresis. For large deformations, memory effects and non-
linearities further complicate the simulation. Granular materials consist of a
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large number of discrete particles and can exhibit both the shear resistance of
solids and the deformability of fluids. Recent advances in computational and
physical modeling techniques have made the accurate simulation of viscoelastic
and granular materials an active area of research in both computer graphics and
computational physics.

Early simulation methods used mesh-based discretization strategies such
as the Finite Element Method (FEM) [25] and described the time-dependent
behavior of viscoelastic materials by generalized Maxwell or Kelvin-Voigt models.
While widely used in structural mechanics, when handling fractures, separations,
and large deformations, such models encounter complex challenges when topology
changes and meshes need reconstruction. Mesh-free methods such as Smoothed
Particle Hydrodynamics (SPH), the Material Point Method (MPM), and Position-
Based Dynamics (PBD) compute physical interactions through particle-based
interactions and show clear advantages in handling fracture, large deformation,
and free surface flows. They can model a wide range of natural phenomena
and materials such as muscle [15], sand [7, 27], snow [19, 5], and multi-material
mixtures [21, 4].

However, most existing mesh-free methods still rely on CCM with foundations
in partial differential equations (PDEs). PDEs are not applicable at discontinuities,
e.g., cracks and interface slippage; additional techniques are needed to capture
such phenomena. The Peridynamics method [16] replaces differential with integral
equations to naturally handle material discontinuities. State-Based Peridynamics
(SBPD) [17] further expanded the range of constitutive models by introducing
the deformation state and force state concepts. While some viscoelastic and
elastoplastic models have been developed within the Peridynamics framework,
the potential for granular flow simulation and unified coupling with elastic bodies
remains underexplored.

In this paper, we propose a unified viscoelasto-plastic simulation framework
based on SPBD that supports both the time-dependent behavior of viscoelastic
solids and the yield-driven flow dynamics of granular materials, with the following
key contributions:

- We introduce the Prony model to an SPBD-bsed framework to derive time-
dependent force density expressions, accurately capturing relaxation, creep, and
hysteresis.

- We integrate various yield criteria and plastic mapping strategies within SBPD,
combine them with dynamic and static friction forces and density-based stiffness
adjustments, and achieve realistic granular flows.

- We create a multi-material coupling system supporting interactions between vis-
coelastic solids, granular materials, and rigid bodies. This improves computational
stability and significantly enriches the diversity of simulation scenarios.
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2 Related Work

2.1 Viscoelastic Simulation

Viscoelastic materials under external loads exhibit both only equilibrium elastic
responses and non-equilibrium viscous characteristics.

Terzopoulos and Fleischer [23, 22] pioneered the use of elastic models into
computer graphics and expanded them into three typical non-elastic behavior
simulations including viscoelasticity, plasticity, and fracture. Müller et al. [11]
introduced SPH into computer graphics, greatly promoting the application of
meshless methods in deformable body simulation. Takahashi et al. [20] proposed
an implicit SPH method for stable simulation of highly viscous fluids. Peer et
al. [14], by extracting rotation from the SPH deformation gradient, improved
the efficiency of elastic solid simulation nearly hundredfold. The MPM [19] is a
particle-grid hybrid method initially introduced to graphics primarily for snow
simulation, and subsequently extended to handle many materials and phase
transitions [24]. Yue et al. [26] used MPM to simulate shear-dependent dense
foams. Current research on viscoelasticity in computer graphics primarily focuses
on viscoelastic fluids and much less on viscoelastic solids. Fang et al. [3] proposed
a predictor-corrector algorithm that achieves viscoelastic and elastoplastic solid
simulation under large deformation conditions.

Peridynamics has attracted increasing interest due to its advantages in han-
dling material failure problems such as cutting and crack propagation [1]. Yet,
developing systematic viscoelastic models within a peridynamics framework re-
mains limited. Madenci et al. [10] proposed a viscoelastic constitutive model
based on ordinary state-based peridynamics, capturing material relaxation charac-
teristics under mechanical and thermal loads. Ozdemir et al. [13] further modeled
crack propagation in films based on this approach. Our method differs from theirs;
although also based on the Prony model, we have derived a unified force density
expression by combining it with a corotational elastic energy model.

2.2 Granular Flow Simulation

Continuum methods have been widely used in graphics to simulate granular mate-
rials. Zhu and Bridson [28] simulated sand through an improved PIC fluid solver.
Narain et al. [12] made key improvements to this method, effectively eliminating
cohesive artifacts related to incompressibility, significantly enhancing simulation
quality. Lenaerts and Dutre [9] implemented coupling interactions between water
and sand based on the SPH method. Daviet and Bertails-Descoubes [2] devel-
oped a MPM-based granular material model that behaves like a solid due to
internal friction, representing granular matter as a viscoplastic fluid combining
the Drucker-Prager yield criterion and unilateral compressibility constraints.
Tampubolon et al. [21] proposed a multi-phase MPM simulation of sand-water
mixtures, handling fluid permeation and interaction in sand via porous media
theory.
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Compared to SPH and MPM methods, Peridynamics-based simulation of
granular materials is an emerging research direction with great potential. In
structural mechanics, Peridynamics is commonly used to simulate the fracture
of geotechnical materials under loading [8]. However, current research on Peri-
dynamics for simulating granular flows remains relatively limited, particularly
lacking a framework that unifies viscoelastic response with granular plastic flow.

3 SBPD Theory

State-based Peridynamics (SBPD) is a reformulation of continuum mechanics.
Unlike bond-based peridynamics, which models particle interactions as springs,
SBPD defines interactions through the relation between a particle and its neigh-
borhood. This allows for asymmetric forces and the modeling of more complex
material behavior.

Let H denote a spherical neighborhood of radius r and center xi. Let Lm

denote the space of order-m tensors. An order-m state is a mapping A⟨ξ⟩ : H →
Lm, where ξ = xj − xi, ξ ∈ H is the so-called bond vector between particle xi

and its neighbor xj . Let y = φ(x) denote a deformation under a motion φ. The
corresponding reference and deformation vector states (see Fig. 1) are defined as
X⟨ξ⟩ = xj − xi and Y⟨ξ⟩ = yj − yi.

Classical continuum mechanics defines the deformation gradient as F(x) =
∂y/∂x. Yet, this partial derivative does not exist at discontinuities. To overcome
this, Peridynamics approximates F using a least-squares minimization over H as
F = (Y ∗X) (X ∗X)

−1 with the generalized tensor product defined by

A ∗B =

∫
H
w(ξ)A⟨ξ⟩ ⊗B⟨ξ⟩ dξ, (1)

where w(ξ) is a weight function and ⊗ denotes the dyadic product.
The motion of particle i is governed by the balance of linear momentum in

integral form

ρiai =

∫
H
(Ti⟨ξ⟩ −Tj⟨−ξ⟩) dξ + g, (2)

where ρi is the density of particle i, ai is its acceleration, g is the external body
force, and the state function T models internal forces.

4 Viscoelastic Constitutive Model

We extend the classical elastic SBPD framework to incorporate viscoelastic
behavior using a Prony-series-based energy model. Our approach captures time-
dependent effects such as creep, relaxation, and hysteresis through control param-
eters. We implement our approach in a discrete numerical form that is compatible
with particle-based simulations.
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Fig. 1: Deformation state mapping.

The Prony model [18] is a widely used linear viscoelastic constitutive model
which models the material’s stress response σ as a sum of exponentially decaying
functions via

σ(t) = E∞ · ε(t) +
N∑

k=1

Ek · e−t/θk · ε(t), (3)

where ε is strain, N is the approximation order, E∞ is the steady-state modulus,
and Ek and θk are the relaxation modulus and relaxation time of the k-th mode,
respectively.

To implement this model numerically, we discretize time and introduce vari-
ables qk to capture the memory effect associated with each mode. These variables
are updated over time as

qn+1
k = αk · qnk + (1− αk) · εn+1, (4)

where αk = e−∆t/θk . Each qk term gives the contribution of a specific relaxation
mode and decays exponentially over time. This yields the stress update rule

σn+1 = E∞ · εn+1 +

N∑
k=1

Ek ·
(
εn+1 − qn+1

k

)
. (5)

Similar to the projected Peridynamics elastic model of by He et al. [6], we use
a linear co-rotational elastic energy model to simulate the hyperelastic body and
decompose it into a deviatoric part Wdev and an isotropic part W iso

Ψ =

∫
H
w⟨ξ⟩

(
µWdev⟨ξ⟩+ λ

2
W iso⟨ξ⟩

)
dξ, (6)

where µ and λ are the first and the second Lamé parameters, respectively.
Assuming that all particles in H share the same deformation gradient F, the
ideal deformation tensor state can be expressed as Ŷ = Fξ. Wdev is the energy
of shear deformation and W iso is the energy of volume deformation, which are
defined as

Wdev = (|Ŷ|/|X| − 1)2,

W iso = (|Y|/|X| − 1)
2
.

(7)
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When the horizon H is small and the deformation field is smooth, Ŷ ≈ Y.
For each relaxation mode, we can now express the time evolution of the energy

via our internal history variables as

Ψdev
i,j = µ∞Wdev

i,j +

N∑
k=1

µk

(
Wdev

i,j − qdev,k
i,j

)
,

Ψ iso
i,j =

λ∞

2
W iso

i,j +

N∑
k=1

λk

2

(
W iso

i,j − qiso,k
i,j

)
,

(8)

where, following (4), we have that

qdev,k,n+1
i,j = αkq

dev,k,n
i,j + (1− αk)Wdev,n

i,j ,

qiso,k,n+1
i,j = αkq

iso,k,n
i,j + (1− αk)W iso,n

i,j .
(9)

The deviatoric force density is expressed as

Tdev
ij =

2w(ξ)γdev

|X|2
(|Y| − |X|)dir(Ŷ), with

γdev = µ∞ +
∑
k

µk

(
1−

qdev,k
i,j

Wdev
i,j

)
.

(10)

Similarly, the isochoric force density is given by

Tiso
ij =

w(ξ)γiso

|X|2
(|Y| − |X|)dir(Y), with

γiso = λ∞ +
∑
k

λk

(
1−

qiso,k
i,j

W iso
i,j

)
.

(11)

In the above, γ is the effective modulus, i.e., the effective stiffness of the deviatoric
and isotropic components of the material at the current moment t. Using (10)
and (11), we get the total force density Tij = Tdev

ij +Tiso
ij . Finally, we derive the

discrete form of the equation of motion

ρiai = h2
∑
j∈H

(Tij(ξ)−Tji(−ξ))Vj . (12)

5 Granular Material Simulation

Granular materials such as sand and snow often exhibit discrete elastoplastic
behavior in the framework of continuum mechanics. We propose a peridynamics-
based simulation method for granular flows under different yield criteria. We
adopt the unified yield criterion proposed by Tu et al. [24] and implement three
projection strategies for plastic mapping. Additionally, we dynamically update
the Lamé parameters based on particle density to correct particle positions and
enhance simulation stability.
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5.1 Modeling yield for different materials

When a particle’s internal stress state reaches the yield condition, irreversible
plastic deformation occurs. We define a yield surface by the condition y(τ ) ≤ 0,
where τ is the Kirchhoff stress tensor. If y(τ ) > 0, stress must be projected back
to the yield surface, and the excess stress is interpreted as plastic flow. To define
y, we first decompose the stress tensor τ into

s = dev(τ ), p = −1

d
tr(τ ), q =

√
6− d

2
∥s∥, (13)

where d ∈ {2, 3} is the spatial dimension, s is the deviatoric stress tensor, the
hydrostatic pressure p gives the compression or expansion of the volume, and the
equivalent shear stress q gives the intensity of s.
Granular materials and fluids: We model these by the Drucker–Prager yield
criterion

yvmdp = Cf tr(τ ) + ∥s∥ − Cc = 0, (14)

where Cf is the friction coefficient related to the friction angle, and Cc controls
the intercept of the yield surface. When Cf = 0, the model degenerates into the
Von Mises criterion, indicating purely shear-dominated yielding.
Clay and soil materials: We model these (under compressive loading) by the
Cam-Clay yield criterion given by

yvmcc(p, q) = C2
fp

2 + q2 − C2
c = 0, (15)

where Cf and Cc have similar meanings as in the Drucker–Prager model. Cc is the
radius of the yield surface and is used to control hardening/softening behavior.

5.2 Plasticity mapping strategy

We simulate plastic deformation of granular materials such as sand or snow
by implementing a plasticity mapping strategy within the SBPD framework.
We use a classical ‘return mapping’ algorithm where plasticity is evolved by
an elastic predictor step followed by a plastic corrector step: In the prediction
step, plastic flow is temporarily ignored and stress and internal variables are
updated elastically, yielding a trial deformation gradient Ftr. If the yield surface
is exceeded, we enter the plastic correction step and project stress back to the
yield surface.

To incorporate plastic flow, we compute the elastic left Cauchy-Green defor-
mation tensor as

btr = Ftr
e Ftr

e
T
. (16)

Assuming a purely elastic response, the Kirchhoff stress tensor can be defined
using a Neo-Hookean model as

str = µJ−2/d

(
btr − 1

d
tr(btr)I

)
,

τ tr = str +
λ

2
(J2 − 1)I,

(17)
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where J = det(Ftr) is the volumetric change. The tensor str captures shear
response, while τ tr includes both volumetric and deviatoric effects.

We classify the return mapping into three cases (denoted A–C below) depend-
ing on the relation between the stress state and the yield limit τmax = Cc/Cf .

Case A: If y(τ tr) ≤ 0, stress lies inside the yield surface, thus Fn+1
p = Ftr.

Case B: If | tr(τ tr)| > τmax, the particle reaches the yield surface, setting
τn+1 = τ tip. We update the principal stretch isotropically as

Jn+1 =

√
2

dλ
| tr(τ tip)|+ 1,

Σn+1 = (Jn+1)1/d · I,
(18)

and compute the plastic deformation gradient using singular value decomposition

Fn+1
p = UΣn+1VT . (19)

This process represents the direct projection of stress to the yield apex under
isochoric stretching, avoiding further decomposition in shear direction.

Case C: If y(τ tr) > 0 but the tip condition is not met, we perform a
projection of the deviatoric stress norm. For the Drucker–Prager yield criterion,
this becomes

∥sn+1∥ = ∥str∥ − yvmdp(τ
tr). (20)

For the Cam–Clay case, this becomes

∥sn+1∥ =

√
∥str∥2 − 2yvmcc(τ tr)

6− d
. (21)

The deviatoric direction is preserved, and the updated stress is used to
reconstruct the Cauchy-Green tensor:

sn+1 = ∥sn+1∥ · str

∥str∥
,

bn+1 =
sn+1

µJ−2/d
+

1

d
tr(b)I.

(22)

The corrected plastic deformation gradient becomes

Fn+1
p = U diag(

√
bn+1)VT . (23)

5.3 Dynamic adjustment of stiffness

In granular flow simulation, we no longer use fixed Lamé parameters, but instead
update these adaptively based on local material compaction. Drawing from snow
material handling methods in MPM [19], we estimate elastic response changes
based on the particle’s current compression density. We compute the local density
as

ρi =
∑
j

mjW (xi − xj , h), (24)
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where W is a kernel function with support radius h. The local density reflects
the current compression level of the material, and the rest density reads ρt0,i =

ρti
∣∣det(Ft

e,i)
∣∣.

Using the ratio of this rest density to the initial density, we dynamically
adjust the current Lamé parameters as

λt
i =

Eν

(1 + ν)(1− 2ν)
exp

(
ξ ·

ρt0,i − ρ0

ρt0,i

)
,

µt
i =

E

2(1 + ν)
exp

(
ξ ·

ρt0,i − ρ0

ρt0,i

)
.

(25)

This can be seen as a compression rate driven exponential hardening rule, which
effectively enhances the response stiffness of materials such as snow in compacted
states.

6 Boundary Handling

In the overall coupling of viscoelastic materials, granular flow materials, and rigid
body boundaries, boundary collision mechanisms strongly influence simulation
stability and realism. We introduce a boundary handling method using Sparse
Signed Distance Fields (SDF) which improves stability and physical fidelity.

We directly sample and store SDF information on each rigid boundary particle,
where each particle maintains a signed distance value ϕ and its gradient ∇ϕ,
representing the shortest distance to the boundary and its direction, respectively.
This design allows particle-to-particle collision detection and avoids repeated
grid-based sampling. Collisions are triggered when the distance between particles
is below a threshold ∥xi − xj∥ < r, or when |ϕ| < r for boundary contact.

Upon collision, particles are displaced along the contact normal direction with
penetration depth d = min(|ϕi|, |ϕj |) and mass-based weighting. The contact
normal is approximated by the gradient of the closer particle’s SDF. For example,
the position correction for particle i is given by:

∆xi = − wi

wi + wj
(d · nij),

∆xj =
wj

wi + wj
(d · nij),

(26)

where wi = 1/mi.
To resolve sliding or sticking effects at boundaries, we introduce both dynamic

and static friction models, as follows.
Dynamic friction: During particle-boundary contact, we compute the change
in velocity due to collision ∆vi = vn+1

i − v∗
i , where vn+1

i is the post-collision
velocity and v∗

i is the elastic response velocity. We compute the tangential velocity
as

vit = vn+1
i − nvin, vin = n · vn+1

i . (27)
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With j = mi∆vi the impulse, the friction constraint reads ∥ft∥ ≤ cb∥j∥. When
the friction force can completely eliminate the tangential velocity, the velocity
correction is simply vn+1

i = nvin. Otherwise we set

vn+1
i = v∗

i −
cb
mi

∥j∥ vit

∥vit∥
, (28)

where cb is the dynamic friction coefficient.
Static friction: To prevent persistent sliding near boundaries and simulate
stacking behavior, we find stationary particles using a geometric criterion: If the
motion of particle i satisfies

(yt+1
i − y∗

i ) · (yt
i − y∗

i ) ≥ η∥y∗
i − yt

i∥2, (29)

we freeze its position, i.e., set yt+1
i = yt

i . η is the static friction coefficient, set to
η = 0.8 in our simulations.

7 Results and Discussion

We implemented our framework on an NVIDIA GeForce RTX 4090 GPU using
the Taichi programming language for efficient parallel simulation. The overall sim-
ulation procedure is outlined in Algorithm 1, where we typically set the maximum
number of iterations itermax to 5, and terminate early if the maximum iteration
displacement falls below a predefined threshold ϵ = 10−4. All visual results were
rendered offline via Houdini. Detailed simulation performance information is
given in Table 1.

Table 1: Simulation information for selected examples. P is the number of
particles.

Exp. P ∆t FPS E0 ν

Fig. 2 80k 5 ms 68.67 1× 108 0.45
Fig. 3 195k 2 ms 27.20 1× 107 0.45
Fig. 4 348k 2 ms 13.19 3× 105 0.20
Fig. 5 95k 5 ms 17.06 2× 105 0.20
Fig. 6 167k 2 ms 7.56 2× 105 0.20

Fig. 7 416k 1 ms 8.80 1× 107 (elast.) 0.25
2× 105 (sand) 0.20

Viscoelastic stretch: We validate our algorithm using a N = 3 (rd) order
Prony model. The total Young’s modulus E0 gives the initial stiffness of the
material, while the long-term modulus E∞ characterizes its stiffness at infinite
time. Each Ek denotes the relaxation modulus of the k-th component, with θk
being the corresponding relaxation time. The material behavior is defined using
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Algorithm 1 Elastomer-Sand Coupling Simulation Based on SBPD
1: Input: yt,vt, phase, ∆t, itermax, E0, ν, E∞, Ek, θk, Cf , Cc, η, ϵ
2: Particle advection: yt+1 ← yt + vt∆t
3: while iteration < itermax and max (∥∆xi∥) > ϵ do
4: // Elastic Phase:
5: Compute deformation gradient F
6: Compute force density T (Eq. (10), (11))
7: Compute displacement ∆x (Eq. (12))
8: Update position: yt+1 ← yt+1 +∆x
9: // Sand Phase:

10: Compute deformation gradient F
11: Project F onto yield surface (Cases A/B/C)
12: Compute force density T
13: Compute displacement ∆x (Eq. (12))
14: Update position: yt+1 ← yt+1 +∆x
15: end while
16: // Constraints and Collisions:
17: while iteration < itermax do
18: Apply self and inter-phase collision response (Eq. (26))
19: Apply boundary advection
20: end while
21: // Post-processing:
22: Update velocity: vt+1 ←

(
yt+1 − yt

)
/∆t

23: Apply static friction constraint
24: Apply dynamic friction constraint
25: Update neighbor list j
26: Update Lamé parameters (Eq. (25))

the empirical relation: E0 = E∞+
∑N

k=1 Ek. The configuration of relaxation times
at each order can be determined according to the empirical rules of exponential
decay.

Figure 2 shows a stretching–unloading experiment that compares the re-
laxation behavior of hyperelastic, viscoelastic, and elastoplastic materials after
external force removal. The hyperelastic model was configured with E0 = E∞ and
recovered quickly upon unloading, with almost no energy dissipation. For the vis-
coelastic model, we set E∞ = 0.4E0, Ek = [0.3, 0.2, 0.1]·E0, and θk = [0.1, 1.0, 5.0].
The recovery behavior showed exponential time-decay characteristics (see the
supplemental video). The elastoplastic model with Von Mises yield criterion
showed significant energy dissipation and permanent deformation.

We further illustrate the flexibility of our viscoelastic model by an “armadillo
stretch-rest-unload” experiment with E0 = 1× 107 and ν = 0.45. We compared
three different viscoelastic material parameters:

– Purely elastic: E∞ = E0;
– High viscosity: E∞ = 0.3E0, Ek = [0.3, 0.2, 0.2] · E0, θk = [0.5, 2.0, 5.0];
– Low viscosity: E∞ = 0.5E0, Ek = [0.25, 0.15, 0.1] · E0, θk = [0.5, 2.0, 5.0].
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(a) Stretch-release process of pure elastic body [6]

(b) Stretch-release process of viscoelastic body

(c) Stretch-release process of elastoplastic body

Fig. 2: Comparison of recovery behavior of different materials during the stretch-
release process.

Figure 3 shows the evolution of energy (in red) throughout the simulation and
presents a quantitative analysis. During the stretching phase, the total energy of
all three materials increases non-linearly due to the work done by external forces,
consistent with the non-linear characteristics of stress-strain relationships. For
the purely elastic material, the external work is entirely converted into elastic
potential energy, whereas for viscoelastic materials, a portion of the energy is
dissipated through viscous effects. In the constant-stretching phase, the energy of
the elastic material remains unchanged, while the viscoelastic materials exhibit
stress relaxation, demonstrating the physical plausibility of our model. In the
relaxation phase, the purely elastic material released energy most rapidly and
almost completely returned to its original state. Highly viscous materials release
energy more slowly, showing significant hysteresis effects as part of the energy is
converted to heat through viscous mechanisms. The energy release rate of the
low-viscosity elastic material lies between the two. These results demonstrate
the effectiveness of our viscoelastic model and its strong tunability in capturing
diverse material responses.
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Fig. 3: Energy evolution of the armadillo stretching experiments.

Sand simulation: We designed a series of granular flow experiments and com-
pared them with MPM simulations based on the Drucker–Prager yield criterion.
These comparisons validate the effectiveness of different yield mapping schemes
under the peridynamic framework in reproducing physically plausible granular
flow and pile-up behaviors.

Figure 4 shows a sand pile experiment with E0 = 3× 105 and ν = 0.2. Under
high friction coefficients, our method successfully produced stable, high-friction
sandpiles in which the upper particles resisted sliding. Compared to the MPM
approach under the same friction angle and coefficient, our method achieved more
pronounced pile-up effects by introducing stronger cohesive forces. Additionally,
the peridynamics framework, extended from elastic energy, allows for larger time
steps, improving overall simulation efficiency.

To further study the influence of cohesion, we conducted a slope-divided
sand pile experiment (Fig. 5). We used the Drucker-Prager yield criterion with
E0 = 2× 105 and ν = 0.2, and used materials with different cohesion coefficients.
Under higher cohesion, some sand particles could adhere to the inclined surface
forming local accumulations. For lower cohesion, only a thin layer of particles
remained, with the rest quickly sliding down. The accumulation patterns on the
ground also showed significant differences: high-cohesion materials formed more
compact sand pile structures; low-cohesion materials appeared more dispersed.

To evaluate the influence of friction coefficients on granular flow behavior and
accumulation patterns, we conducted an hourglass experiment under constant
cohesion (Fig. 6). The results show that higher friction coefficients yield in poorer
flow of particles near boundaries, while internal particles still show a certain flow.
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(a) Sand piling based on MPM [7]

(b) Sand piling under high friction coefficient

(c) Sand piling under high cohesion coefficient

Fig. 4: Sand piling simulation experiments.

In contrast, materials with low friction exhibited more uniform flow between
interior and exterior regions. After exiting the funnel, high-friction materials
formed taller and steeper piles with an angle of repose measuring 30.61◦, while
low-friction materials produced flatter deposits with an angle of repose of 20.80◦.

Coupling simulation: To validate the multi-material coupling capability of our
framework, we performed an experiment involving viscoelastic bunnies interacting
with bunny-shaped sand (Fig. 7). The viscoelastic material has E0 = 1 × 107,
ν = 0.25. Sand particles have E0 = 2 × 105, ν = 0.2. During free fall, the
viscoelastic bunnies undergo deformation upon impact, while sand flows into
the gaps between them and forms a stable pile. The experiment shows realistic
two-way coupling, where both material types influence each other’s behavior
under collision and accumulation.

8 Conclusions and Future Work

We proposed a unified visco-elasto-plastic simulation framework based on SBPD
to address the limitations of CCM in modeling discontinuities. Our framework
demonstrates flexibility and effectiveness in simulating both viscoelastic solids
and granular materials.

In terms of viscoelastic simulation, we derived time-dependent force density
formulations based on the Prony model, accurately capturing complex response
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(a) Cohesion coefficient Cc = 1

(b) Cohesion coefficient Cc = 100

Fig. 5: Sand-slope experiments.

characteristics such as stress relaxation, creep, and hysteresis. For granular
flow simulation, we integrated various yield criteria and mapping strategies,
combined with density-based dynamic stiffness adjustment mechanisms, achieving
natural flow, accumulation, and separation behaviors of particles. The framework
further supports interactions among viscoelastic solids, granular media, and rigid
bodies via a multi-material coupling mechanism, enhancing its robustness and
applicability.

However, the computational efficiency of the current method for large-scale
granular flow simulations still remains a challenge. In future work, we will focus
on developing implicit iterative acceleration strategies to enhance the stability
and efficiency of large-scale computations. Furthermore, we plan to leverage
the advantages of Peridynamics in handling fracture and crack propagation
by incorporating fracture mechanics mechanisms into the viscoelastic model,
enabling the simulation of richer material discontinuity behaviors. Building on
the extensibility of our framework, we will also integrate viscoelastic fluids into
the unified framework, extending its application capabilities in biological fluid
and soft matter simulations.
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(a) Friction coefficient Cf = 0.1

(b) Friction coefficient Cf = 2

Fig. 6: Hourglass experiments.

Fig. 7: Viscoelastic bunny and sand coupling experiment.
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