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Abstract

In recent years, many dimensionality reduction (DR) algorithms have been proposed for visual analysis of multidimensional data.
Given a set of n-dimensional observations, such algorithms create a 2D or 3D projection thereof that preserves relative distances
or neighborhoods. The quality of resulting projections is strongly influenced by many choices, such as the DR techniques used
and their various parameter settings. Users find it challenging to judge the effectiveness of a projection in maintaining features
from the original space and to understand the effect of parameter settings on these results, as well as performing related tasks such
as comparing two projections. We present a set of interactive visualizations that aim to help users with these tasks by revealing
the quality of a projection and thus allowing inspection of parameter choices for DR algorithms, by observing the effects of these
choices on the resulting projection. Our visualizations target questions regarding neighborhoods, such as finding false and missing
neighbors and showing how such projection errors depend on algorithm or parameter choices. By using several space-filling
techniques, our visualizations scale to large datasets. We apply our visualizations on several recent DR techniques and high-
dimensional datasets, showing how they easily offer local detail on point and group neighborhood preservation while relieving
users from having to understand technical details of projections.
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1. Introduction1

Dimensionality reduction (DR) techniques are an increas-2

ingly popular and pervasive part of visual analytics solutions.3

Their key value is the ability to transform, or project, high-4

dimensional datasets into low-dimensional datasets which keep5

the underlying structure of the data similar. The results can be6

visualized by scatterplots [1], treemaps, timelines, and paral-7

lel coordinates [2]. DR methods have been used for the visual8

analysis of text documents [3, 4, 5], multimedia [6], text min-9

ing [7, 8], vector fields [9], and biomedical data [10, 11].10

Although DR techniques have become increasingly more ro-11

bust and computationally scalable, several major usability chal-12

lenges still exist. One such challenge involves the quality anal-13

ysis of DR algorithms. Currently, tens of DR algorithms exist,14

each with several parameters, whose values strongly influence15

the projection result. Changes of a single parameter can pro-16

duce different projections, casting doubt on the correctness or17

meaning of the resulting projection. However, such parameters18

are typically quite technical and non-intuitive for the average19

end-user. Our question is, thus: How to provide insight into20

the quality of DR algorithms, and how to explore their param-21

eter settings, so that users understand how these settings affect22

the shape, structure, and quality of the resulting projections? In23

this paper, we present a set of visualization techniques that help24

users with exploring the link between DR algorithm parameter25

settings and the quality of the resulting projections. Our visual-26

izations target the following questions:27

• How is the projection error spread over the 2D space?28

• How to find points which are close in 2D but far in nD?29

• How to find points which are close in nD but far in 2D?30

• How do DR algorithm choice and parameter settings affect31

the above quality aspects?32

For this, we propose several space-filling techniques that visu-33

ally scale to large datasets, offer a multiscale (or level-of-detail)34

view on the projection behavior, and do not require users to un-35

derstand the internal formulation of DR algorithm. We illustrate36

our visualizations by exploring the parameters of five state-of-37

the-art DR techniques for several real-world datasets.38

This paper is structured as follows. Section 2 presents related39

work on DR algorithm quality analysis. Section 3 presents our40

analysis goals. Section 4 describes our proposed visualizations.41

Section 5 uses these methods to explore the quality, as function42

of DR method parameters, of several DR techniques. Section 643

discusses our results. Section 7 concludes the paper.44

2. Related Work45

2.1. Dimensionality reduction46

For a dataset Dn = {pi ∈ Rn}1≤i≤N of N n-dimensional points,
dimensionality reduction (DR) can be seen as a function

f : Rn × P→ Rm (1)
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which maps each point pi ∈ Dn to a point qi ∈ Dm. Here, n is
typically large (tens up to thousands of dimensions), and m is
typically 2 or 3. P denotes the parameter space of f , i.e. the
various settings that control the projection algorithm, including
the algorithm type itself. f is designed to keep the so-called
structure of the data as similar as possible in Rn and Rm. One
way for this is to let f minimize the normalized stress function

σ =

∑
1≤i≤N,1≤ j≤N(dn(pi,p j) − dm(qi,q j))2∑

1≤i≤N,1≤ j≤N(dn(pi,p j))2 (2)

where dn : Rn×Rn → R+ and dm : Rm×Rm → R+ are distance47

metrics for Dn and Dm respectively. Other ways to compute f48

are to optimize for having the k-nearest neighbors for a point49

qi ∈ Dm be the same as the k-nearest neighbors of pi ∈ Dn.50

Many DR methods are special cases of a wider class of tech-51

niques called Multidimensional Scaling (MDS). MDS methods52

compute f using only pairwise point distances. This avoids53

having to access the full nD coordinate data. However, com-54

puting distances creates additional costs (O(N2) for N points).55

The PLMP algorithm avoids this by using distances only for a56

small set of representative points and using nD coordinates for57

the other points [10].58

DR methods can be classified by the techniques used to com-59

pute f [10]. Spectral decomposition techniques project points60

along the largest-eigenvalue eigenvectors of the pointwise dis-61

tance matrix [12]. LLE [13] and ISOMAP [14, 15] use ef-62

ficient numerical methods tailored to solve sparse eigenprob-63

lems. Landmarks MDS [16] and Pivot MDS [17] book further64

speed-ups by using classical MDS on a subset of representative65

points and projecting remaining points by local interpolation.66

Fastmap achieves linear complexity in the input point count but67

has a worse stress minimization [6].68

Nonlinear optimization methods iteratively search the pa-69

rameter space P to minimize the stress σ [18, 19]. Besides70

naive gradient descent, multigrid numerical solvers can be used71

to speed searching [20]. Pekalska et al. propose a speed-up72

that projects a representative subset (by gradient descent) and73

fits remaining points by local interpolation [21]. Force-based74

methods are a special class of nonlinear optimization with many75

uses in graph drawing [22]. Chalmers speeds this up by us-76

ing the representative subset idea outlined earlier [23]. Further77

speed-ups are achieved by multilevel solvers and GPU tech-78

niques [24, 25], and by recursively selecting representatives via79

a multilevel approach [26]. Tejada et al. use a heuristic to em-80

bed instances by force-based relaxation [27]. LSP positions the81

representative subset by a force-based scheme and fits the re-82

maining points by Laplacian smoothing [4]. LAMP also uses a83

representative subset to locally construct affine projections, and84

allows users to interactively place these points to optimize the85

overall projection layout [3]. More details on LSP, LAMP, and86

ISOMAP are given further in Section 5.2.87

2.2. Visualizing projection quality88

Although projection quality is acknowledged as important,89

most DR literature considers mainly aggregated quality metrics90

such as the stress function (Eqn. 2), correlation [28], neigh-91

borhood preservation average plots [4], and distance scatter-92

plots [3], which are distance and neighborhood based metrics,93

or cluster segregation metrics [29]. 2D scatterplots can show94

the correlation of Dn with Dm [3]. Such metrics capture the95

overall quality of a projection, but do not help finding local96

quality variations. In other words, they do not show projection97

problems for any point i vs all points j , i in the input dataset.98

Local metrics can be used to highlight where (in a projection)99

errors happen. Shreck et al. compute, for each p ∈ Dn, the pro-100

jection precision score (pps) defined as the normalized distance101

between the two k-dimensional vectors having as components102

the Euclidean distances between p and its k nearest neighbors103

in Dn, respectively D2 [30]. Visualizing pps as a color map104

shows areas where neighborhoods are not preserved. However,105

a neighborhood cannot be preserved for two distinct reasons:106

true neighbors (in Dn) are missing (in D2), or neighbors (in D2)107

are actually false neighbors (in Dn). The pps metric does not108

differentiate between such situations, and can also be sensitive109

to permutations of points that do not change distances.110

Recognizing that DR methods can create distance approxi-111

mation errors, Van der Maaten et al. extend the t-SNE tech-112

nique [31] to output a set {Mi} of 2D projections rather than a113

single one [32]. All points appear in all projections Mi, with114

potentially different weights and at different locations. This al-115

lows better modeling non-metric similarities. Yet, correlating116

points over the several Mi is done manually by the user, and117

can be challenging for large datasets and many projections Mi.118

Several quality metrics for continuous DR techniques are119

proposed by Aupetit [33]. Point-based stretching and compres-120

sion metrics measure, for each pi ∈ Dn, the aggregated increase,121

respectively decrease, of the distances of its projection qi ∈ D2
122

to all other projections q j,i vs the distances of pi to all other123

points p j,i. Segment stretching and compression measures the124

variation of distances of close point pairs (i, j) between Rn and125

R2. For a selected pi, the proximity metric maps distances in126

Rn from pi to all other points p j,i to the corresponding points127

qi ∈ R2 and thereby helps understanding how (and where) the128

projection may have distorted the structure of the data. These129

metrics are visualized with piecewise-constant interpolation of130

the point, respectively segment, data using Voronoi diagrams.131

Our proposed techniques in Secs. 4.2, 4.3, and 4.4 adapt and132

extend these visualizations in several directions.133

Still using colored Voronoi cells, Lespinats and Aupetit134

show, at the same time, point stretching and compression by135

using a 2D color map [34]. The proposed color map encodes136

stretching as green, compression as purple, low-error points137

as white, and points with high stretching and compression as138

black, respectively. While this color map can show local er-139

ror types (or the absence thereof), it cannot explicitly show the140

point-pairs which cause stretching and compression. Besides,141

as the authors also note, Voronoi cells can lead to visualization142

bias due to the cells’ sizes and shapes being heavily dependent143

on the D2 point density, and the fact that cells cover the entire144

R2 space, even in areas where no projected points exist.145

To assist the task of navigating projections while also consid-146

ering distortions, Heulot et al. present an interactive semantic147
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lens that filters points projected too closely to a user-selected148

focus point in R2 [35]. Such points, also called false neigh-149

bors, are pushed towards the lens border, so they do not attract150

the user’s attention. Separately, points are colored by the dis-151

tance in Dn to the focus point, to help users navigate to the so-152

called missing neighbors of the focus point. Instead of Voronoi153

cells of [33, 34], points are colored using Shepard interpolation,154

which yields a smoother, and arguably less distracting, image.155

However, in contrast to [33, 34], this method can only show156

errors related to a selected focus point.157

3. Analysis goals158

A projection f should preserve the structure of the original159

space Rn. This implies a mix of distance and neighborhood160

preservations at various scales and happens at different rates for161

different datasets, projection algorithms and parameter values.162

For users, the projection’s precision [30] is not clear unless163

they can interpret projected neighborhoods adequately [33].164

Thus, given any DR algorithm (Eqn. 1), we aim to show how165

neighborhood preservation is affected by choices of parameter166

values in P, highlighting aspects that can adversely affect the167

interpretation of the projected point set in Dm. To simplify168

the discourse, we next consider m = 2, and that projec-169

tions are drawn as scatterplots (the most common option for170

DR visualization). We identify the following aspects of interest:171

172

A. False neighbors: Take a point pi ∈ Dn and its 2D pro-173

jection qi = f (pi). A necessary condition for neighborhood174

preservation is that all points q j which are close to qi (in175

2D) should be projections of points p j which are close to pi176

(in Dn). If not, i.e. we have a q j close to qi for which p j is177

not close to pi, the user wrongly infers from the projection178

that p j is close to pi. We call such a point j a false neighbor of i.179

180

B. Missing neighbors: The second necessary condition for181

neighborhood preservation is that all p j which are close182

to pi (in Dn) project to points q j which are close to qi (in183

2D). If not, i.e. we have a p j close to pi for which q j is184

not close to qi, the user will underestimate the set of points185

similar to point i. We call such a point j a missing neighbor of i.186

187

C. Groups: A main goal of DR is to help users find groups of188

similar points, e.g. topics in a document set [3, 4] or classes of189

images in a database [6]. False and missing point neighbors190

generalize, for groups, to false members and missing members191

respectively. Given a group Γ of closely projected points,192

we aim to find if all points in Γ truly belong there (no false193

members), and if all points that belong to the topic described194

by Γ do indeed project in Γ (no missing members).195

196

D. Detail: Aggregated local metrics such as [30, 33, 34, 35] can197

show, up to various extents, where missing or false neighbors198

occur. However, they do not directly show which are all such199

neighbors, for each projected point. Also, they do not explicitly200

address locating false and missing group members. We aim to201

provide interactive visual mechanisms to support these tasks on202

several levels of detail.203

4. Visualization methods204

We next propose several visualization methods to address the205

analysis goals outlined in Sec. 3. As a running example, we use206

LAMP as projection method, with the default parameter set-207

tings given in [3], and as input the well-known 19-dimensional208

Segmentation dataset with 2300 points from [36, 3, 37, 10].209

Herein, each point describes a randomly drawn 3x3 pixel-block210

from a set of 7 manually segmented outdoor images, by means211

of 19 statistical image attributes, such as color mean, standard212

deviation, and horizontal and vertical contrast.213

4.1. Preliminaries214

To quantify the neighborhood preservation issues in Sec. 3,
we first define the projection error of point i vs a point j , i as

ei j =
dm(qi,q j)

maxi, jdm(qi,q j)
−

dn(pi,p j)
maxi, jdn(pi,p j)

. (3)

We see that ei j ∈ [−1, 1]. Negative errors indicate points whose215

projections are too close (thus, false neighbors). Positive errors216

indicate points whose projections are too far apart (thus, miss-217

ing neighbors). Zero values indicate ‘good’ projections, which218

approximate optimally the distances in Dn.219

4.2. Aggregated error view220

We first provide an overview of how the projection error
spreads over an entire dataset, by computing for each point i
the aggregate error

eaggr
i =

∑
j,i

|ei j|. (4)

The value of eaggr
i gives the projection error of point i with221

respect to all other points. Low values of eaggr show points222

whose projections can be reliably compared with most other223

projections in terms of assessing similarity. These are good224

candidates for representatives in multilevel projection meth-225

ods [6, 21, 23, 4]. Large values of eaggr show points which226

are badly placed with respect to most other points. These are227

good candidates for manual projection optimization [38, 37].228

Fig. 1 (a) shows eaggr by color mapping its value on the
2D projected points, using a blue-yellow-red diverging col-
ormap [39]. Brushing and zooming this image allows inspect-
ing eaggr for individual points. However, given our goal of
providing an overview first, we are actually not interested in
all individual eaggr values, but rather to (a) find compact ar-
eas in the projection having similar eaggr values, (b) find out-
lier eaggr values in these areas (if any), and (c) see how eaggr

globally varies across the projection. For this, we propose an
image-based, space-filling visualization, as follows. Denote by
DT (x ∈ R2) = minq∈Dm‖q − x‖ the so-called distance transform
of the 2D point cloud Dm delivering, for any screen pixel x, its
distance to the closest point in Dm. We then compute eaggr at
every screen pixel x as

eaggr(x) =

∑
q∈Nε (x) exp

(
−
‖x−q‖2
ε2

)
eaggr∑

q∈Nε (x) exp
(
−
‖x−q‖2
ε2

) (5)
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a) b) c)

high eaggr

low eaggr

A1..A3

A4

A5

A6

A4

Figure 1: Aggregate error view, several levels of detail: (a) α = 1, β = 1. (b) α = 5, β = 5. (c) α = 20, β = 20 pixels (see Sec. 4.2).

with
ε = DT (x) + α. (6)

Here, Nε(x) contains all projections in Dm located within a ra-
dius ε from x. We next draw eaggr(x) as a RGBA texture, where
the color components encode eaggr(x) mapped via a suitable
color map, and the transparency A is set to

Aaggr(x) =

1 − DT (x)
α
, if DT (x) < β

0, otherwise
(7)

For α = 1, β = 1, we obtain the classical colored scatterplot229

(Fig. 1 (a)). For α = 1, β > 1, the space between projections is230

filled, up to a distance β, by the eaggr value of the closest data231

point. For α = 1, β = ∞, we obtain a Voronoi diagram of the232

projections with cells colored by their eaggr values. This does233

not change the eaggr data values, but just displays them on larger234

spatial extents than individual pixels, making them easier to see.235

This creates visualizations identical to those obtained by draw-236

ing scatterplots with point radii equal to β, without having the237

issues created by overlapping points. For α > 1, β > 1, the re-238

sult is similar to Shepard interpolation where the kernel size ε is239

given by the local point density. The parameter α ≥ 0 controls240

the global level-of-detail at which we visualize eaggr: Small val-241

ues show more detail in dense point zones, but also emphasize242

small-scale signal variations which are less interesting. Larger243

α values create a smoother signal where coarse-scale error pat-244

terns are more easily visible.245

Figs. 1 (b,c) show the aggregate error for the Segmentation246

dataset for various values of the parameters α and β. Here,247

ei j ∈ [−0.67, 0.35]. The error range already tells that we have248

poorly projected points, but does not tell where these are. In249

Fig. 1 (b), with low values for both α and β, we see that eaggr is250

relatively smoothly distributed over the entire projection. How-251

ever, we see three small red spots A1..A3. These are high-error252

outlier areas, which indicate points that are badly placed with253

respect to most other points. We also see a relatively high error254

area A4 of larger spatial extent. Increasing both α and β pro-255

duces a simplified visualization (Fig. 1 (c)). Larger β values fill256

in the gaps between points. Larger α values eliminate outlier257

regions whose spatial extent is smaller than α, such as the three258

small outlier areas A1..A3, but A4 remains visible, since it is259

larger than α. We now also notice, better than in Fig. 1 (b), that260

the bottom and top areas (A5, A6) in the projection have dark261

blue values, with a significantly lower error than the rest of the262

projection.263

Our image-based results are slightly reminiscent of the dense264

pps maps of Schreck et al. [30] (see Sec. 2.2). Differences ex-265

ist, however. First, our eaggr
i is a global metric, that tells how266

point i is placed with respect to all other points, whereas the267

pps metric characterizes local neighborhoods. Interpolation-268

wise, our technique (used with α = 1, β = ∞) delivers the269

same Voronoi diagram as Schreck et al., which is also iden-270

tical to the space partitioning of the point-based Voronoi dia-271

grams in [33, 34]. The data being mapped is, however, different:272

Our eaggr shows the sum of distance compression and stretch-273

ing, whereas [33, 34] treat these two quantities separately. In274

the next sections, we show how we split our aggregated insight275

into separate insights. Further on, both Schreck et al. and our276

method use smoothing to remove small-scale noise from such277

maps. However, whereas Schreck et al. uses a constant-radius278

smoothing kernel, which blurs the image equally strong every-279

where, we use, as explained, a variable-radius kernel controlled280

by local density, which preserves better detail in non-uniform281

point clouds.282

4.3. False neighbors view283

However useful to assess the error distribution and find badly
vs well-projected point groups, the aggregate error view does
not tell us if the error is due to false neighbors, missing neigh-
bors, or both. Let us first consider the false neighbors (case
A, Sec. 3). To visualize these, we create a Delaunay triangula-
tion of the projected point cloud that gives us the closest neigh-
bors of each projected point in all directions, i.e., the most im-
portant false-neighbor candidates for that point. To each edge
Ek, 1 ≤ k ≤ 3 of each triangle T of this triangulation, with
vertices being the points qi and q j of Dm, we assign a weight
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high efalse

low efalse

Figure 2: False neighbors view (see Sec. 4.3).

e f alse
k = |min(ei j, 0)|, i.e., consider only errors created by false

neighbors. Next, we interpolate e f alse over all pixels x of T by
using

e f alse(x) =

∑
1≤k≤3

1
d(x,Ek) ‖Ek‖

e f alse
k∑

1≤k≤3
1

d(x,Ek) ‖Ek‖

(8)

where d(x, E) is the distance from x to the edge E and ‖E‖ is
the length of the edge. Similarly to the aggregated error, we
construct and render an image-based view for e f alse as a RGBA
texture. In contrast to the aggregated error, we use here a heated
body colormap [39], with light hues showing low e f alse values
and dark hues showing high e f alse values. This attracts the at-
tention to the latter values, while pushing the former ones into
the background. The transparency A is given by

A f alse(x) = Aaggr(x)
(
1 −

1
2

(
min

(
DTT (x)
DTC(x)

, 1
)
+

max
(
1 −

DTC(x)
DTT (x)

, 0
)))

(9)

where DTT (x) = min(d(x, E1), d(x, E2), d(x, E3)) is the dis-284

tance transform of T at x, DTC(x) is the distance from x to285

the barycenter of T , and Aaggr is given by Eqn. 7. The same286

technique is used in a different context to smoothly interpolate287

between two 2D nested shapes [40], where we refer for fur-288

ther implementation details. The combined effect of Eqns. 8289

and 9 is to slightly thicken, or smooth out, the rendering of290

the Delaunay triangulation. Note that this interpolation does291

not change the actual values e f alse
k rendered on the triangulation292

edges. The distance-dependent transparency ensures that data293

is shown only close to the projection points.294

Fig. 2 shows the false neighbors for the Segmentation295

dataset. Several things are apparent here. First, the rendering is296

similar to a blurred rendering of the Delaunay triangulation of297

the 2D projections colored by e f alse, showing how each point298

relates to its immediate neighbors. Light-colored edges show299

true neighbors, while dark edges show false neighbors. Since300

edges are individually visible, due to the transparency modula-301

tion (Eqn. 9), we can see both the true and false neighbors of a302

point separately. The smooth transition between opaque points303

(on the Delaunay edges) and fully transparent points (at the tri-304

angles’ barycenters) ensures that the resulting image is contin-305

uous and easier to follow at various screen resolutions than a306

Delaunay triangulation rendered with pixel-thin edges, as our307

edges appear slightly thicker.308

In Fig. 2, two error-related aspects are visible. First, we see309

an overall trend from light to dark colors as we go further from310

the projection’s border towards the projection center. This con-311

firms the known observation on DR methods that projections on312

the border tend to be more accurate, since there is more freedom313

(and space) to place these. In contrast, projections falling deep314

inside the resulting point cloud tend to have more false neigh-315

bors, because the DR algorithm has there less space to shift316

points around to accommodate all existing distance constraints.317

Intuitively, we can think of this phenomenon as a ‘pressure’318

which builds up within the projected point set from its border319

inwards. We shall see more examples of this phenomenon in320

Sec. 5. Secondly, we see a few small-scale dark outliers. Zoom-321

ing in Fig. 2, we see that these are points connected by dark322

edges to most of their closest neighbors in a star-like pattern.323

Clearly, false neighbors exist here. These can be either the star324

‘center’ or the tips of its branches. However, we also see that325

these tips have only one dark edge. Hence, they are too closely326

positioned to the star center only, and not to their other neigh-327

bors. Since the tip points are all positioned well with respect328

to their neighbors (except the star center), and the center point329

is positioned too closely with respect to all its direct neighbors,330

we can conclude that too little space was offered in the projec-331

tion to the center point, or in other words that the center point332

is a false neighbor of its surrounding points.333

The false neighbors view is related to Aupetit’s segment334

compression view, where the shortening of inter-point distances335

due to projection is visualized [33]. The underlying metrics, i.e.336

our ei j (Eqn. 3) and mdistor
i j ([33], Sec. 3.2) are similar, up to337
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a) b)

c) d)

color

discontinuities

low emissing high emissing

Figure 3: Missing neighbors view for different selected points. Selections are indicated by markers (see Sec. 4.4).

different normalizations. However, the proposed visualizations338

are quite different. Aupetit uses so-called ‘segment Voronoi339

cells’ (SVCs). SVCs essentially achieve piecewise-constant340

interpolation of the values e f alse
k , defined on the edges Ek of341

each Delaunay triangle T , over T ’s area, by splitting T in three342

sub-triangles using its barycenter. In contrast, our interpola-343

tion (Eqn. 8) is C∞ over T . Also, our triangles are increasingly344

transparent far away from their edges (Eqn. 9). Comparing our345

results (e.g. Figs. 2, 9 (a,d,g)) with SVCs (e.g. Figs. 7 (d), 12 (c)346

in [33]), we observe that SVCs exhibit several spurious elon-347

gated Voronoi cells that do not convey any information. Such348

cells do not exist in our visualization due to the transparency349

blending. Also, we argue that the artificial SVC edges linking350

projected points with Delaunay triangulation barycenters do not351

convey any information, but only make the visualization more352

complex. Such edges do not exist in our visualization due to353

our continuous interpolation.354

4.4. Missing neighbors view355

Besides false neighbors, projection errors (and subsequent356

misinterpretations) can also be caused by missing neighbors357

(case B, Sec. 3). Visualizing this by a space-filling method like358

for the aggregate error or false neighbors is, however, less easy.359

Given a projected point q, its missing neighbors can be any-360

where in the projection, and are actually by definition far away361

from q. To locate such neighbors, we would need to visualize a362

many-to-many relation between far-away projected points.363

We first address this goal by restraining the question’s scope:364

Given a single point qi, show which of the other points Dm \ qi365

are missing neighbors for qi. For this, we first let the user select366

qi by means of direct brushing in the visualization. Next, we367

compute the error emissing
i = max j,i(ei j, 0), i.e., the degree to368

which q j is a missing neighbor for qi, and visualize emissing by369

the same technique as for the aggregated error (Sec. 4.2).370

Fig. 3 shows this for the Segmentation dataset, using the371

same heat colormap as in Fig. 2. In Figs 3 (a,b), we selected two372

points deep inside the central, respectively the lower-right point373

groups in the image. Since Figs. 3 (a,b) are nearly entirely light-374

colored, it means that these points have few missing neighbors.375

Hence, the 2D neighbors of the selected points are truly all the376

neighbors that these points have in nD. In Figs. 3 (c,d), we next377

select two points located close to the upper border of the large378

central group and the left border of the left group respectively.379

In contrast to Figs. 3 (a,b), we see now an increasingly darker380

color gradient as we go further from the selected points. This381

shows that points far away from these selections are actually382

projected too far, as they are actually more similar than the383

projection suggests. This is a known (but never visualized as384

such) issue of many DR methods, which have trouble in em-385

bedding high-dimensional manifolds in 2D: points close to the386

embedding’s border are too far away from other points in the387

projection. Another interesting finding is that the color-coded388

Figs. 3 (c,d) do not show a smooth color gradient: We see, es-389
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selected point
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Figure 4: Missing neighbors finder view for four selected points. Selections are indicated by markers (see Sec. 4.5).

pecially in Fig. 3 (c) that the colors appear grouped in several390

‘bands’, separated by discontinuities. In other words, the pro-391

jection method suddenly increases the error as we get over a392

certain maximal 2D distance.393

The missing neighbors view is related to the proximity view394

of Aupetit [33]. In both views, a point i is selected and a scalar395

value, related to this selection, is plotted at all other points j , i.396

For Aupetit, this is the distance mprox
j = dn(pi−p j) (normalized397

by its maximum). For us, it is the error emissing
j . Both the dis-398

tance and emissing have, in general, the tendency to be small at399

points j close in 2D to the selected point i, and increase farther400

off from point i. However, the two quantities are different and401

serve different purposes. Visualizing mprox is useful in finding402

points located within some distance to the selection i. Finding403

projection errors is only implicitly supported, as these appear404

as non-monotonic variations in the mprox signal. In contrast,405

emissing specifically emphasizes points projected too far, rather406

than conveying the absolute distance. Thus, our visualization407

helps locating projection errors rather than assessing proximity.408

4.5. Missing neighbors finder409

Although providing details for single points, the views in410

Sec. 4.4 cannot show missing neighbors for an entire dataset.411

We address this goal by a different method, as follows. Con-412

sider all positive values of ei j. By definition, these give all413

point-pairs which are projected too far away. We sort these414

values decreasingly, and select the largest φ percent of them,415

where φ is a user-provided value. The selected values give the416

point pairs which are worst placed in terms of overestimating417

their true similarity. We next construct a graph G = (V, E)418

whose nodes V are the projected points qi present in such point419

pairs, and edges E indicate the pairs, with ei j added as edge420

weights. Next, we draw G using the KDEEB edge bundling421

technique [41], which provides robust, easy to use, and real-422

time bundling of graphs with tens of thousands of edges on a423

modern GPU. We color the bundled edges based on their weight424

using a grayscale colormap (with white mapping low and black425

mapping high weights), and draw them sorted back-to-front on426

weight and with an opacity proportional to the same weight.427

The most important edges thus appear atop and opaque, and the428

least important ones are at the bottom and transparent.429

Fig. 4 shows this visualization, which we call the missing430

neighbors finder, with bundles that connect a single selected431

point with its most important missing neighbors (bundles con-432

necting multiple points are discussed later on). The background433

images show emissing (Sec. 4.4). Dark bundle edges attract atten-434

tion to the most important missing neighbors. For the selected435

points in images (a) and (b), we see that there are only very436

few and unimportant missing neighbors (few half-transparent437

edges). For the selected points in images (c) and (d), the situa-438
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a) φ=1% b) φ=3% c) φ=20%

high emissinglow emissing

high eaggrlow eaggr
Bundles

Background

Figure 5: Missing neighbors finder view, all point pairs, for different φ values (see Sec. 4.5).

tion is different, as the bundles are thicker and darker. Bundle439

fanning shows the spread of missing neighbors for the selected440

points: In image (c), these are found mainly in the left point441

group, with a few also present in the lower part of the central442

group. In contrast, all missing neighbors of the point selected443

in image (d) are at the top of the central group.444

The main added value of the missing neighbors finder ap-445

pears when we visualize the many-to-many relations given by446

all projected points. Fig. 5 shows this result for three values447

of φ for the Segmentation dataset. The background shows now448

the aggregated error (eaggr, Sec. 4.2). We color bundles from449

black for largest error ei j to white for largest error above the450

user-provided parameter φ. Image (a) shows the φ = 1% worst451

missing-neighbor point-pairs. These link the top-right area of452

the central group with the left frontier of the left group. Adding453

more missing neighbor pairs to the view (image (b), φ = 3%)454

strengthens this impression. Adding even more missing neigh-455

bor pairs (image (c), φ = 20%) reveals additional missing-456

neighbor pairs between the two areas indicated above (light457

gray parts of thick top bundle), and also brings in a few missing458

neighbors between these areas and the lower-right point group459

(light gray thin bundle going to this group). Nearly all bundles460

appear to connect point pairs located on the borders of the pro-461

jection. This strengthens our hypothesis that such point pairs462

are challenging for the LAMP projection, which we noticed us-463

ing the interactive missing neighbors view (Sec. 4.4). However,464

as compared to that view, the bundled view shows all such point465

pairs in a single go, without requiring user interaction.466

4.6. Group analysis views467

As outlined in Sec. 3, the false and missing neighbors issues468

for individual points become, at group level, the problems of469

false and missing group members respectively. We next pro-470

pose two visualizations that assist in finding such issues.471

First, let us refine the notion of a group. Given the tasks in472

Sec. 3 (C), a group Γ ⊂ Dm is a set of projected points which473

form a visually well-separated entity. When users see points in474

a group, they understand that these share some commonality,475

but are different from points in other groups. In the LAMP pro-476

jection of our Segmentation dataset, we see three such groups477

(Figs. 1-5). Group perception is, obviously, subject to many478

factors such as user preferences and level-of-detail at which479

one focuses. However, once a user has established which are480

the groups (s)he sees in a visualization, the false and missing481

membership issues become relevant.482

We allow users to select groups in a given projection by sev-483

eral mechanisms: direct interactive selection, mean-shift clus-484

tering [42], and upper thresholding of the point density [43].485

Other user-controlled methods can be used if desired, e.g., K-486

means or hierarchical agglomerative clustering e.g. [44, 45].487

The actual group selection mechanism is further of no impor-488

tance to our visualization method. We next render each ob-489

tained group Γ = {qi} by the shaded cushion technique in [46] as490

follows. First, we compute a density map ρ(x) =
∑

q∈Γ K(x−y),491

where K is an Epanechnikov kernel of width equal to the aver-492

age inter-point distance δ in Γ, following [42]. Next, we com-493

pute a threshold-set Γδ of ρ at level δ, and its distance transform494

DTΓδ . Finally, we render a RGBA texture over Γδ, where we495

set the color a fixed hue (light blue in our case) and the trans-496

parency A to
√

DTΓδ .497

Having now groups both as a data structure and also shown
in the visualization, we adapt the missing neighbors and finder
techniques (Secs. 4.4, 4.5) to show missing group members.
For this, we compute a value

emissing
Γ

(qi) =

minq j∈Γ(ei j) if qi < Γ

0 otherwise
(10)

at each projected point qi, and visualize emissing
Γ

using the same498

technique as for missing neighbors.499

Fig. 6 (a,b) show two missing group members views. The500

shaded cushions show the three groups identified in our Seg-501

mentation dataset. Several points fall outside of all groups.502

This is normal, in general, e.g. when the user cannot decide503

to which group to associate a point. In image (a), we select504

the bottom group Γbottom. The underlying color map shows now505
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Figure 6: Missing members for two point groups. Points in the selected groups are drawn as marked (see Sec. 4.6).

emissing
Γbottom

, (Eqn. 10). All points appear light yellow. This means506

that, with respect to Γbottom seen as a whole, no points are pro-507

jected too far, so Γbottom has no missing members. In image508

(b), we do the same for the left group Γle f t. The image now509

appears overall light yellow, except for a small dark-red spot510

in the upper-right corner of the central group Γcenter. Here are511

a few points which are placed too far from any point in Γle f t.512

These are highly likely to be missing members of Γle f t. To ob-513

tain more insight, we now use the bundle view in Sec. 4.5, with514

two changes. First, we build only bundles that have an endpoint515

in the selected group. Secondly, we consider all edges rather516

than showing only the most important ones. Image (c) shows517

the bundle view for Γbottom. We see only a few bundled edges,518

ending at a small subset of the points in Γbottom. This strength-519

ens our hypothesis that there are no points outside Γbottom which520

should be placed closer to all points in Γbottom – or, in other521

words, that Γbottom has no missing members. Image (d) shows522

the bundled view for Γle f t. The bundle structure tells us that523

the top-right part of Γcenter contains many missing neighbors of524

Γle f t. In particular, we see dark bundle edges that connect to525

dark-red points. This is a strong indication that these points can526

indeed be missing members of Γle f t. For a final assessment, the527

user can interactively query the discovered points’ details (at-528

tribute values) and, depending on these, finally decide if these529

points are missing group members or not.530

4.7. Projection comparison view531

Consider running the same DR algorithm with two different532

parameter sets, or projecting a dataset by two different DR al-533

gorithms. How to compare the results from the viewpoint of534

neighborhood preservation? Subsequent questions are: Which535

points that were (correctly) placed close to each other in one536

projection are now ‘pulled apart’ in the other projection? Do537

the two projections deliver the same groups of points?538

To answer such questions, we propose the projection com-
parison view. The view reads two projections Dm

1 and Dm
2 of the

same input dataset Dn. For each point-pair (q1
i ∈ Dm

1 ,q
2
i ∈ Dm

2 ),
we compute a displacement

edisp
i =

‖q1
i − q2

i ‖

maxi ‖q1
i − q2

i ‖
. (11)

We next build a graph whose nodes are points in Dm
1 ∪ Dm

2 .539

Edges relate point pairs (q1
i ∈ Dm

1 ,q
2
i ∈ Dm

2 ), and have the val-540

ues edisp as weights. We visualize this graph via edge bundling,541

as for the missing neighbors finder (Sec. 4.5).542

Fig. 7 (a) shows a view where we compare the Segmentation543

dataset projected via LAMP (red points, Dm
1 ) and LSP (green544

points, Dm
2 ). The two projections are quite similar, since red and545

green points occur together in most cases. However, this image546

does not tell if the two projections create the same groups of547

points, since we do not know how red points match the green548

9



a) b)

ALSP ALSP

ALAMPALAMP

BLAMP
BLSP BLAMP

BLSP

Bundles

high edisplow edispPoints in LSP

Points in LAMP

Figure 7: Comparison of two projections. (a) LAMP (blue) and LSP (red) points. (b) Bundles show corresponding point groups in the two projections (see Sec. 4.7).

ones. Fig. 7 (b) shows the projection comparison view for this549

case. We immediately see a thin dark bundle in the center:550

This links corresponding points which differ the most in the551

two projections. Correlating this with image (a), we see that552

LSP decided to place the respective points at the bottom (ALS P)553

of the central group, while LAMP moved and also spread out554

these points to the top (ALAMP). However, points around the555

locations ALS P and ALAMP do not move much between the two556

projections, as we see only light-colored bundles around these557

locations, apart from the dark bundle already discussed. Hence,558

the motion of these points indicates a neighborhood problem559

in one or both of the projections. Indeed, if e.g. the points in560

A were correctly placed by LAMP (into ALAMP), then the de-561

cision of LSP to move the point-group A all the way up in the562

visualization (to ALS P) should also have moved the neighbors563

of ALAMP. Since this does not happen, ALS P cannot be close to564

the same points that ALAMP was. A similar reasoning applies565

if we consider that ALS P is correct – it then follows that ALAMP566

cannot be correctly placed with respect to its neighbors.567

Apart from this salient dark-colored bundle, we see many568

shorter and light-colored bundles. These show smaller-scale569

displacements between the two projections. For instance, we570

see how the red points at the right of the left group (BLAMP) are571

moved to the left (BLS P) of the same group. As these bundles572

fan out relatively little, do not have many crossings, and they573

are short, it means that BLS P is almost a translation to the left574

of BLAMP, so the two projections depict the same structure of575

the left group. Also, we do not see any bundle exiting this left576

group. This means that both LAMP and LSP keep all points577

in this group together. Finally, in the bottom-right group we578

see just a very few short light-colored bundles. Most points in579

this group do not have any bundles connected to them. This580

means that edisp for these points is very small (yielding thus581

very short, nearly transparent, bundles). From this, we infer582

that LAMP and LSP produce very similar layouts for this group.583

If users are interested only to spot the most salient differences584

between two projections, and want to ignore such small-scale585

changes, this can be easily obtained by mapping edisp
i to bundle-586

edge transparency.587

4.8. Usage scenario588

Considering that the user is offered quite a few different589

views to analyze projection errors, each with specific features590

and goals, the next question arises: How to put all these views591

together to form a coherent usage scenario for a common anal-592

ysis task? Below we propose such a usage scenario. The view593

names herein refer to the respective techniques presented earlier594

in this section.595

Step 1. Start with the Aggregated Error view. This shows an596

overview of the error at all points, without a distinction be-597

tween false or missing neighbors. Next, check if (a) there are598

regions or groups with substantial errors or (b) the overall error599

is low. Case (b) indicates that the projection is quite good and600

that nothing else needs to be improved. In case (a), continue601

with steps 2, 3, and 4.602

Step 2. The Missing Neighbors Finder view can be enabled603

and disabled freely over the Aggregated Error view to show the604

most important missing neighbors between all points. The user605

should notice now whether this view shows bundles having high606

error values (i.e. dark-colored). If so, there are important miss-607

ing neighbors between the groups connected by such bundles.608

These groups must be further analyzed with the Group Analy-609

sis Views. If not, i.e. the bundles are colored (light) gray, this610

tells that the projection is good and, although there are missing611

neighbors, they are in a low error range and should not threaten612

the projection interpretation.613

Step 3. Points, groups or regions found problematic in steps 1614

and 2 are now analyzed in more detail using the False Neigh-615

bors and Missing Neighbors views. For groups detected in step616

1 the most important thing is to find out exactly what kind of er-617

ror is present: Are they (a) wrongly placed with respect to each618
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other and other close points (false neighbors) or (b) in relation619

to far away points that should be closer (missing neighbors)?620

For groups detected in step 2, the error is already identified621

from the beginning: They have a high rate of missing neigh-622

bors. In this case, the question to be answered is: Which points623

are exactly the problematic ones inside the detected groups, or624

where exactly do the relations (bundle edges) with the highest625

errors start and end from? By using these two views, the user626

should be able to establish exactly which are the more problem-627

atic points (or groups), and what kind of error these have.628

Step 4. Knowing now where exactly errors occur, we consider629

the next questions: (1) Are such errors really a problem? (2)630

Do they show unexpected results related to how the projection631

should work with the provided data? (3) Are the problematic632

points important for the analysis task at hand? If questions (1-633

3) all answer ‘no’, then we have a good projection for our data634

and analysis task, and our analysis stops. If any question (1-635

3) answers yes, then the user must improve the projection of636

problematic points, as follows. If the user is a projection de-637

signer testing the accuracy of a new method, (s)he should go638

back to the algorithm and use the new insight gotten from this639

analysis to improve that algorithm. If the user has no access to640

the projection implementation, the solution is to re-execute the641

analysis from step 1 with either (i) a new projection algorithm642

that might better fit the specific data and task; or (ii) a new set643

of parameters for the same algorithm. The new results can be644

compared with the old ones to determine if the errors have de-645

creased or if the errors moved into a new region where they are646

not as important for the task at hand. For the second task, the647

Projection Comparison View can be used.648

5. Applications649

We now use our views to study several projections for several650

parameter settings – thus, to explore the space P that controls651

the creation of a DR projection. First, we present the datasets652

used (Sec. 5.1), the studied projection algorithms (Sec. 5.2), and653

their parameters (Sec. 5.3). Next, we use our views to explore654

the considered parameter settings (Secs. 5.4, 5.5).655

5.1. Description of Datasets656

Apart from the Segmentation dataset used so far, we consider657

the following datasets:658

659

Freefoto: contains 3462 images grouped into 9 unbalanced660

classes [47]. For each image, we extract 130 BIC (border-661

interior pixel classification) features. Such features are widely662

used in image classification tasks [48].663

664

Corel: composed of 1000 photographs that cover 10 specific665

subjects. Similarly to the Freefoto dataset, we extract for each666

image a vector of 150 SIFT descriptors [49].667

668

News: contains 1771 RSS news feeds from BBC, CNN,669

Reuters and Associated Press, collected between June and670

July 2011. The 3731 dimensions were created by removing671

stopwords, employing stemming and using term-frequency-672

inverse-document-frequency counts. We manually classified673

the data points based on the perceived main topic of the news674

feed resulting in 23 labels. Given the imprecision of the manual675

classification and the restriction to have one topic per point, the676

labels are unbalanced for a number of points. Also, for other677

points (with different labels), we can still have a high similarity678

of content.679

680

Sourceforge: This publicly available dataset contains 24 soft-681

ware metrics computed on 6773 open-source C++ software682

projects from the sourceforge.net website [50]. Metrics include683

classical objet-oriented quality indicators such as coupling, co-684

hesion, inheritance depth, size, complexity, and comment den-685

sity [51], averaged for all source code files within a project.686

5.2. Description of Projections687

We detail next the projection algorithms whose parameter688

spaces we will next study. We chose these particular algo-689

rithms based on their availability of documented parameters,690

scalability, genericity, presence in the literature, and last but691

not least availability of a good implementation.692

693

LSP: The Least Squares Projection [4] uses a force-based694

scheme to first position a subset of the input points, called695

control points. The remaining points in the neighborhood696

of the control points are positioned using a local Laplace-697

like operator. Overall, LSP creates a large linear system698

that is strong in local feature definition. LSP is very precise699

in preserving neighborhoods from the nD space to the 2D space.700

701

PLMP: The Part-Linear Multidimensional Projection702

(PLMP) [10] addresses computational scalability for large703

datasets by first constructing a linear mapping of the control704

points using the initially force-placed control points. Next,705

this linear mapping is used to place the remaining points, by a706

simple and fast matrix multiplication of the feature matrix with707

the linear mapping matrix.708

709

LAMP: Aiming to allow more user control over the final lay-710

out, the Local Affine Multidimensional Projection (LAMP) [3]711

provides a user-controlled redefinition of the mapping matrix712

over a first mapping of control points. LAMP also works by713

defining control points, which are used to build a family of714

orthogonal affine mappings, one for each point to project.715

LAMP has restrictions regarding the number of dimensions716

against the number of points. Also, LAMP cannot directly717

work with distance relations, i.e., it needs to access the nD718

point coordinates. However, LAMP is very fast, without com-719

promising the precision reached, for instance, by LSP. Both720

LSP and LAMP can be controlled by a number of parameters,721

such as the control point set.722

723

Pekalska: Another class of projection techniques works with724

optimization strategies. These are, in general, quite expensive725

computationally. To improve speed, Pekalska et al. [21] first726

embeds a subset of points in 2D by optimizing a stress function.727

Remaining points are placed using a global linear mapping,728
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much like LAMP and LSP.729

730

ISOMAP: The ISOMAP technique [14] is an extension of731

classical Multidimensional Scaling (MDS) that aims to capture732

nonlinear relationships in the dataset. ISOMAP replaces the733

input distance between point pairs by an approximation of the734

geodesic distance given by the shortest path on a graph created735

connecting neighbor points in the original space with the origi-736

nal distance as weight. The final 2D coordinates are computed737

via a conventional MDS embedding with calculations of eigen-738

values over the distance relations of the previous step.739

5.3. Description of parameters to analyze740

Most techniques that initially project control points use a741

simplified iterative force-based algorithm, such as the one of742

Tejada et al. [27]. The number of iterations of force-based743

placement influences the control points’ positions, and is, thus,744

a relevant parameter. LSP control points are typically the cen-745

troids of clusters obtained from a clustering of the input dataset.746

The number of control points is thus a second relevant param-747

eter for LSP. To position points in the neighborhood of a given748

control point, LSP solves a linear system for that neighborhood.749

The neighborhood size (number of neighbors) is a third relevant750

parameter.751

In LAMP, the affine mappings are built from a neighborhood752

of control points. The size of the control point set used to build753

the mapping, expressed as a percentage of the size of the con-754

trol point set, is the main parameter here. The choice of con-755

trol points and the choice of the initial projection of the con-756

trol points are also parameterizable, just as for LSP, PLMP, and757

Pekalska. However, in LAMP, these parameters are mainly in-758

teractively controlled by the user, and thus of a lesser interest to759

our analysis.760

ISOMAP, just as the previous methods, also requires the ex-761

pression of neighborhoods. The main, and frequently only, ex-762

posed parameter of ISOMAP is the number of nearest neigh-763

bors that defines a neighborhood.764

5.4. Overview comparison of algorithms765

To form an impression about how the goals outlined in Sec. 3766

are better, or less well, satisfied by LAMP, LSP, PLMP, and767

Pekalska, we start with an overview comparison.768

Figure 8 shows the false neighbors, aggregated error, and769

most important φ = 5% missing neighbors for the Segmen-770

tation dataset. To ease comparison, color mapping is normal-771

ized so that the same colors indicate the same absolute values772

in corresponding views. The aggregate error (top row) is quite773

similar in both absolute values and spread for all projections,774

i.e., lower at the plot borders and higher inside, with a few dark775

(maximum) islands indicating the worse-placed points. Over-776

all, thus, all studied projections are quite similar in terms of dis-777

tance preservation quality. The false neighbors views (middle778

row) show a similar insight: Border points have few false neigh-779

bors (light colors), and the density of false neighbors increases780

gradually towards the projections’ centers. Although local vari-781

ations exist, these are quite small, meaning that all studied pro-782

jections are equally good from the perspective of (not) creating783

false neighbors. The missing neighbors view (bottom row) is784

however quite different: By looking at the size and color of785

the depicted bundles, we see that LSP and Pekalska have much786

more important missing neighbors than PLMP, while LAMP787

has the fewest missing neighbors. In all cases, we see bundles788

that connect borders of the projected point-set. This confirms789

that all studied projections optimize placement of close points790

than far-away points. We also see that the missing neighbors are791

spread differently over the data: For LAMP, there are no bun-792

dles going to the bottom-right point cluster, showing that this793

cluster is indeed well separated in the projection, as it should be794

in relation to the nD data. In contrast, LSP, PLMP, and Pekalska795

all have bundles going to this cluster, indicating that they place796

these points too close to the remaining projected points.797

5.5. Parameter analysis798

We next refine our overview analysis by selecting two of the799

studied algorithms: LAMP and LSP. We next vary several of800

their parameters, and evaluate the resulting projections’ quality801

with respect to this variation.802

803

LAMP - Different control point percentages: Fig. 9 shows804

the results of LAMP for the Freefoto dataset with three different805

values for the percentage parameter: 10%, 30% and 50%. The806

error has been normalized on each view type (column in the807

figure).808

First, we see that the final layout of the point cloud does809

not change drastically while varying the percentage parame-810

ter, only showing a 90 degree clockwise rotation for the value811

of 30%. While analyzing the false neighbors view, we also see812

that, while the light brown areas are large – meaning that a mod-813

erate amount of error can be expected on the whole layout – the814

dark-colored spots are found nearer to the center. This suggests815

that LAMP positions the most problematic points in the center,816

surrounded by the rest of the points. By focusing on the dark817

spots (points with the largest false neighbor errors) throughout818

the parameter variation we can see that the value of the largest819

errors on each result remain similar – no view has many more,820

or much darker-colored, areas.821

For the missing neighbors view, we selected a point near the822

upper border of the layout, marked by a cross in Figs. 9 (b), (e)823

and (h)), since missing neighbors occur mainly on the borders824

of the projection, as we have already observed in Section. 4.4.825

The dark spot in Fig. 9 (h) is where the largest error occurs over826

these three views. While in Fig. 9 (b) there are a few orange827

spots showing moderate error, in Fig. 9 (e) the error decreases828

considerably, and then increases again in Fig. 9 (h). This sug-829

gests that using about 30% of neighbors is a good value for830

avoiding large numbers of missing neighbors. We confirmed831

this hypothesis on several other datasets (not shown here for832

brevity). Finally, the aggregated error view shows results very833

similar to the false neighbors view: More problematic points834

(dark spots) are pushed to the center, and moderate error is835

found spread evenly over the entire layout. This shows that,836

for LAMP, most errors come from false neighbors rather than837

from missing neighbors.838
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Figure 8: Comparison of LAMP, LSP, PLMP, and Pekalska projections for the Segmentation dataset (see Sec. 5.4)
.

LSP - Different numbers of control points: Figure 10 shows839

the same dataset (Freefoto) projected with LSP. The varying840

parameter is the number of control points. We use here the841

same views as in Fig. 9, and normalized the error in each col-842

umn. By looking at the false neighbors views, we see a spatial843

interleaving of light-yellow and orange-brown colored areas844

in the projection. This contrasts with LAMP (Fig. 9) where845

the larger missing neighbor errors are consistently located846

away from the projection border. As the number of control847

points increases, the large error areas get more compact and848

closer to the projection center, but we see no increase in error849

severity (the amount of the orange and dark-red spots stays850

the same). In the missing neighbors views, the dark-colored851

areas in Fig. 10 (b) disappear largely in images (e) and (h),852

which means that the missing neighbors severity decreases853

when our control parameter increases. Comparing this with854

LAMP (Fig. 9 b,e,h), this shows that LAMP and LSP behave in855

opposite ways when dealing with missing neighbors. Finally,856

like for LAMP, the aggregate error views show the worst errors857

(dark spots) located in the center: The most problematic points858

are pushed inside by the other points which surround them,859

creating a mix of both false neighbors and missing neighbors.860

The severity of the errors, however, does not change visibly861

between the three parameter values.862

863

LSP - Different numbers of neighbors: We next examine864

the effect of a second parameter of LSP: number of neighbors.865

For the Freefoto dataset, we fix 250 control points and vary866

the number of neighbors to 10, 50 and 100. Fig. 11 shows the867

results with the missing neighbors finder view. We see that868

the most significant errors are initially concentrated between869

groups A, B and C, with C being essentially too far placed from870

both A and B. Increasing our parameter reduces has a positive871

impact on solving the missing neighbors problem between872

groups A and C, bringing them together into the group marked873

AC. The main missing neighbors are now concentrated in the874

relationship between groups AC and B. The ‘concentration’ of875

error given by the parameter increase is, upon further analysis,876

explainable by the working of LSP: Given a neighborhood877

N, LSP’s Laplace technique positions all points in N close878

to each other in the final layout. However, the position of879

the neighborhoods Ni themselves is given only by the control880
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Figure 9: Applications – LAMP algorithm, Freefoto dataset, different neighbor percentages per row (see also Fig. 10).

points, which are determined by the initial force-based layout.881

If this layout suboptimally places two control points i and882

j too far away from each other, then all points within the883

neighborhoods Ni and N j end up being too far away from884

each other. Hence, as the neighborhood size increases, the885

likelihood to see fewer thick high-error bundles increases. This886

insight we found is interesting since it was not reported in the887

LSP literature so far, and it can be explained (once we are888

aware of it) by the algorithmics of LSP.889

890

LAMP - Different datasets: We next analyze the LAMP tech-891

nique applied to three different datasets: Corel (1000 elements),892

Freefoto (3462 elements), and Sourceforge (6773 elements).893

The varying parameter is now the input dataset itself. The aim894

is to see whether (and how) errors are affected by the nature895

of the input data, e.g. distribution of similarity, number of di-896

mensions, and number of points. Figure 12 top row shows the897

false neighbors views. We see here that, while for the first two898

datasets the behavior of false neighbors is similar to earlier re-899

sults, for the largest dataset (Sourceforge) there are much fewer900

false neighbors. These are located close to the intersection area901

of the two apparent groups in the image, and on the borders of902

these groups. This, and the low errors (light colors) inside the903

groups may indicate that both groups have a high degree of co-904

hesion between their inner elements. The large errors on close905

to the intersection areas and borders can indicate elements that906

could be in either group, respectively very different from all907

other elements. Figure 12 (a) shows a similar pattern: Most908

false neighbors are located at the ‘star’ shape’s center, while909

the arms of the start contain elements that are more cohesive.910

This may indicate that the dataset contains a number of cohe-911

sive groups equal to the number of start arms, and elements in912

the center belong equally to all groups.913

While analyzing the missing neighbors for several points914

selected on the periphery of the projections, we see that the915

errors are smaller for Figs. 12 (d) and (e), and considerably916

larger for Fig. 12 (f). For the last image, we selected a point917

close to the intersection area of the perceived groups. Image (f)918

shows that this point is equally too far placed from most points919

14



False neighbors Missing neighbors Aggregated error

1
8

0
 c

o
n

tr
o

l p
o

in
ts

2
5

0
 c

o
n

tr
o

l p
o

in
ts

3
4

0
  c

o
n

tr
o

l p
o

in
ts

a) b) c)

d) e) f )

g) h) i)

largest
error

Figure 10: Applications – LSP technique, Freephoto dataset, different numbers of control points per row (compare with Fig. 9)

in both perceived clusters. The size and speed of increase of the920

error (as we get further from this point in the projection space)921

strongly suggests that the selected point belongs stronger to922

both perceived groups than the projection indicates. This923

strengthens our initial hypothesis that the area separating the924

two groups belongs equally to these groups.925

926

ISOMAP - Different numbers of neighbors: To illustrate927

a different type of analysis made possible by our work, Fig.928

13 shows the effect of changing the number of neighbors in929

ISOMAP on missing group members. Our group Γ of interest,930

shown first on Fig. 13 (a), is highlighted in images (b-d) by a931

shaded cushion. Besides the fact that Γ moves from the left of932

the projection to the right, images (b-d) show how its missing933

members behave as we change our parameter. At first, in934

Fig. 13 (b), we see that the most important missing neighbors935

are found in two other areas A1 and A2 on the far side of936

the layout. We also notice many black edges, which means937

that the points in A1 and A2 are indeed too far away from all938

points in the selected group. The relatively large fan-out of the939

bundles show that the group misses many members, and these940

are scattered widely over the projection. As the parameter941

increases, we see in image (c) that the missing members spread942

out even more, but the severity of the errors decreases (as943

shown by the lighter colors of emissing
Γ

background. The inner944

fanning of the edges, inside Γ, is still large, which shows that945

many group members miss neighbors. Finally, in Fig. 13 (d),946

issues decrease significantly: We see thinner bundles, which947

imply less error; the bundle fanning inside Γ is relatively small,948

meaning that most of Γ’s points do not miss neighbors; and949

the fan-out of the bundles is smaller, showing that the missing950

group members are now more concentrated than for the first951
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Figure 11: Applications – LSP technique, Freefoto dataset, different numbers of neighbors. Bundles show most important missing neighbors.

two parameter values. This leads to the conclusion that, for952

the analyzed group, the increase of the number of neighbors953

parameter has a positive impact on the final projection quality.954

955

LSP - Different numbers of iterations: The final analysis we956

present compares two different LSP projections of the same957

dataset (News), computed using values of 50, respectively 100958

for the number of iterations parameter of the control-point959

force-directed placement.960

Figures 14 (a) and (b) show the two LSP projections. In961

each of them, several high-density groups are visible. These962

are strongly related news feeds, i.e., which likely share the same963

topic (see Sec. 5.1). However, without extra help, we cannot re-964

late the two projections, e.g., find out (a) if points significantly965

change places due to the parameter change; (b) which groups966

in one projection map to groups in the other projection; and (c)967

whether points in a group in one projection are also grouped in968

the second projection.969

To answer question (a), we use the projection comparison970

view (Sec. 4.7). The result (Fig. 14 (c)) shows that there are971

many large point shifts; the bundle criss-crossing also shows972

that groups change places in the projection. This is a first indi-973

cation that LSP is not visually stable with respect to its num-974

ber of iterations parameter. Next, we manually select three975

of the most apparent point groups in one projection, shown in976

Fig. 14 (a) by the shaded cushions A,B,C. We examine these977

in turn. In Fig. 14 (d), we show how points in group A shifted,978

in the second projection, to a group A1. Virtually all bundled979

edges exiting A end in A1, so the parameter change preserves980

the cohesion of group A (though, not its position in the layout).981

The same occurs for group B (Fig. 14 (e)). However, the pa-982

rameter change spreads B more than A – in image (e), we see983

that B maps to three groups, B1..B3. These visualizations thus984

answer question (b). Group C behaves differently (Fig. 14 (f)):985

This group is split into two smaller groups C1 and C2 when we986

change our parameter. For question (c), thus, the answer is par-987

tially negative: not all groups are preserved in terms of spatial988

coherence upon parameter change.989

6. Discussion990

We have implemented our visualization techniques in C++991

using OpenGL 1.1, and tested them on Linux, Windows, and992

OSX. Below we discuss several aspects of our method.993

994

Computational scalability: For Delaunay triangulation and995

nearest-neighbor searches, we use the Triangle [52] and996

ANN [53] libraries. Both can handle over 100K points in997

subsecond time on a commodity PC. Further, we accelerate998

imaging operations using GPU techniques. For distance trans-999

forms, we use [54]. On an Nvidia GT 330M, this allows us to1000

compute shaded cushions and perform our Shepard interpola-1001

tion at interactive frame rates for views of 10242 pixels. For1002

edge bundling, we implemented KDEEB [41] fully on Nvidia’s1003

CUDA platform. This yields a speed-up of over 30 times1004

(on average) as compared to the C# implementation in [41]1005

and allows bundling graphs of tens of thousands of edges in1006

roughly one second. All in all, we achieve interactive query-1007

ing and rendering of our views for projections up to 10K points.1008

1009

Visual scalability: Our image-based approaches scale well to1010

thousands of data points or more, even when little screen space1011

is available. Moreover, all our techniques have a multiscale1012

aspect: The parameters α and β (Eqns. 6, 7) effectively control1013

the visual scale at which we want to see false neighbors,1014

missing neighbors, and the aggregate error. Increasing these1015

values eliminates spatial outliers smaller than a given size,1016

thereby emphasizing only coarse-scale patterns (see e.g.1017

Fig. 1). The bundled views (Sec. 4.5) also naturally scales1018

to large datasets given the inherent property of bundled edge1019

layouts to emphasize coarse-scale connectivity patterns.1020

1021

Genericity: Our visualizations are applicable to any DR1022

algorithm, as long as one can compute an error distance1023

matrix encoding how much 2D distances deviate from their nD1024

counterparts (Eqn. 2). No internal knowledge of, or access to,1025

the DR algorithms is needed – these can be employed as black1026

boxes. This allows us to easily compare widely different DR1027
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Figure 12: Applications – One algorithm (LAMP), different datasets. Top row: false neighbors. Bottom row: missing neighbors.

algorithms, e.g. based on representatives, based on distance1028

matrices, or based on direct use of the nD coordinates.1029

1030

Ease of use: Our views are controlled by three parameters: α1031

sets the scale of the visual outliers we want to show; β sets the1032

radius around a point in which we want to display information,1033

i.e., controls the degree of space-filling of the resulting images;1034

φ sets the percentage of most important missing neighbors we1035

want to show. These parameters, as well as the interaction1036

for selecting point groups (Sec. 4.6) are freely controllable by1037

users by means of sliders and point-and-click operations.1038

1039

Comparison: Similarly to Van der Maaten et al. [32], we use1040

multiple views showing the same data points to explain a pro-1041

jection, e.g., the false neighbors, missing neighbors view, miss-1042

ing neighbors finder, and group-related maps. However, the1043

multiple maps in [32] are used to actually convey the projection,1044

so the same point can have different locations and/or weights in1045

different maps. In contrast, we use multiple views to convey1046

different quality metrics atop of the same 2D projection. Sim-1047

ilar to Aupetit [33], our error metrics encode discrepancies in1048

distances in Rn vs R2. However, our error metrics are different.1049

More importantly, our visualizations are different: Our false1050

neighbors view does not show (a) spurious Voronoi cell edges1051

far away from data points or (b) cell subdivision edges whose1052

locations does not convey any information, since we (a) use1053

distance-based blending and (b) continuous rather than constant1054

per-cell interpolation (Sec. 4.3). Secondly, our missing neigh-1055

bors finder (Sec. 4.5) can show one-to-many and many-to-many1056

error relationships, whereas all other methods are constrained to1057

one-to-one relationships. Finally, we can show errors at group1058

level, whereas the other studied techniques confine themselves1059

to showing errors at point level only.1060

Our projection comparison view is technically related to the1061

method of Turkay et al., which connects two 2D scatterplots1062

to each other by lines linking their corresponding points [55].1063

However, Turkay et al. stress that line correspondences only1064

work for a small number of points. In contrast, we use bundles1065

to (a) show up to thousands of correspondences, and coloring1066

and blending to encode correspondence importance.1067

1068

Findings: It can be argued that our results are limited, as we1069

did not decide, using our method, which of the studied DR1070

algorithms are best. However, this was not the aim of our1071

work. Rather, our goal was to present a set of visual techniques1072

that help analyze the effect of parameters on projection quality1073

for several DR techniques of interest. Deciding whether a1074

certain degree of quality, e.g. in terms of false neighbors,1075

missing neighbors, grouping problems, or projection stability1076

is a highly context, dataset, and application-dependent task.1077

Having such a context, our tools can be then used to assess1078

(a) which are the quality problems, (b) how parameter settings1079

affect them, and (c) whether these problems are acceptable1080

for the task at hand. The same observation applies to the1081
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Figure 13: Applications – ISOMAP projection, finding missing group members for different numbers of neighbors.

datasets used here. Our analyzes involving these should be1082

seen purely as test cases for assessing the quality problems of1083

DR projections, and not as findings that affect the underlying1084

problems captured by these datasets.1085

1086

Limitations: As outlined by our examples, our visualizations1087

can show (a) which projection areas suffer from low quality;1088

and (b) how two projections differ in terms of neighborhood1089

preservation. However, we cannot directly explain (c) why a1090

certain DR algorithm decided to place a certain point in some1091

position; and (d) how the user should tune (if possible) the al-1092

gorithm’s parameters to avoid errors in a given area. In other1093

words, we can explain the function f : P (Eqn. 1) and its first1094

derivatives over P, but not the inverse f −1. This is a much more1095

challenging task – currently not solved by any technique we1096

know of. Further explaining such second-order effects to help1097

users locally fine-tune a projection is subject to future work.1098

Secondly, the parameter space P of some DR algorithms can1099

be high-dimensional. So far, we can only analyze the variation1100

of one or two parameters at a time. Extending this to several1101

parameters is a second challenging next topic.1102

1103

7. Conclusions1104

We have presented a set of visualization methods for the anal-1105

ysis of quality of dimensionality-reduction (DR) algorithms by1106

exploration of their parameter settings. By generically mod-1107

eling such algorithms as functions from nD to 2D in terms of1108

their distance-preservation error, we propose several views for1109

assessing the distribution of false neighbors, missing neighbors,1110

and aggregated projection error at both individual point and1111

point-group level. We use several dense-pixel, visually scal-1112

able, techniques such as multi-scale scattered point interpola-1113

tion and bundled edges to make our methods visually and com-1114

putationally scalable to large datasets and also work in a mul-1115

tiscale mode. We demonstrate our techniques by analyzing the1116

parameters of five state-of-the-art DR techniques. In contrast1117

to existing assessments of DR projections by aggregate figures,1118

that can only infer overall precision, we offer more local tools to1119

examine how neighborhoods and groups are mapped in the fi-1120

nal projection. The usage of our techniques is simple and, most1121

importantly, allows users of DR techniques to study their qual-1122

ity without needing to understand complex internal processes1123

or the exact role of each parameter in the projections.1124

Future work can target several directions. First, we plan to1125

support ‘what if’ scenarios, i.e., help users to decide how they1126

could correct local projection problems by shifting wrongly-1127

placed points while dynamically assessing the ensuing overall1128

projection errors. Secondly, we plan to explicitly visualize the1129

reasons that determine point placement, i.e., depict the nD vari-1130

able values which cause points to be placed close to, or far away1131

from, each other. Additionally, we intend to provide tools for1132

local evaluation of projections customized for specific target au-1133

diences. By this, we hope to make the operation of DR algo-1134

rithms more transparent and understandable for users ranging1135

from algorithm designers to end-users.1136
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