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Abstract

Image representations of the behavior of trained machine learning classification models can help machine learning engineers examine
various aspects of a model such as how it partitions its data space into decision zones separated by decision boundaries; how training
samples support the decision in various parts of the data space; and how close training data is to decision boundaries. Yet, for an
image of n ⇥ n pixels, all current methods that create such images have a computational complexity of O(n2) which precludes their
use in interactive visual analytics scenarios. We present a set of techniques for the fast computation of such image-based classifier
representations. Compared to earlier work in this area, we accelerate both so-called decision maps, that compute categorical labels,
and classifier maps, that compute real-valued quantities, in O((log n)2) time. Practically, our method has a speed-up of about one
order of magnitude and yields results very similar to the ground-truth maps; has no free parameters; is model agnostic; and is simple
to implement. We demonstrate our method on several combinations of maps, datasets, and classification models.
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1. Introduction1

Machine learning research proposes increasingly many, and2

more complex, models for classification and regression. As such,3

there is a growing need for techniques and tools that help both4

researchers and practitioners to understand how these models5

work. In particular, visual analytics techniques approach this6

task by depicting various aspects of such models [1, 2, 3]. When7

combined with interaction, such techniques allow users to e↵ec-8

tively explore the behavior of trained models and further answer9

questions concerning their generalizability, robustness, trust, and10

ways of improving their training to gain accuracy [4, 2].11

Decision maps are a simple but e↵ective instrument in12

the above class [5]. Such methods map a part of the high-13

dimensional data space on which a trained classification model14

operates to a 2D image. The hue, saturation, and brightness val-15

ues of image pixels encode inferred label and model confidence16

of the trained model at the respective data locations. Such im-17

ages show the model’s so-called decision zones, i.e. areas where18

the model infers the same label; and decision boundaries, i.e.,19

locations in the data space where the model changes decision.20

The same image-based idea can be used to create so-called clas-21

sifier maps which encode more advanced aspects of the model,22

beyond inferred classes and confidences. Such aspects include23

the model’s sensitivity to small changes in its inputs [6]; the24

distance to training data or decision boundaries; or the model’s25

sensitivity to mislabeled samples [7].26

Several techniques for computing decision maps have been27

proposed [8, 9, 10, 7]. However, computing a decision map28
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image, even at quite small resolutions of hundreds of pixels 29

squared, takes tens of seconds up to tens of minutes, depending 30

on the decision map technique [11]. This precludes using such 31

decision maps in scenarios where users aim to interactively and 32

iteratively improve a classification model by e.g. changing its 33

hyperparameters or performing data pseudo-labeling in active 34

learning settings [12, 9, 13]. 35

To alleviate this, we recently proposed FastDBM, a set of 36

techniques that speeds up the computation of decision maps [14]. 37

This method can speed up any decision map that encodes classi- 38

fier label and confidence without inner knowledge of how the 39

model operates. Also, the method is simple to implement, has 40

no hidden parameters, and creates images practically identical 41

to the ground-truth, slow to compute, ones. However, FastDBM 42

cannot be applied to accelerate the computation of classifier 43

maps that depict properties beyond inferred class value and clas- 44

sification confidence. For instance, FastDBM cannot be used to 45

accelerate gradient maps [6] or di↵erential decision maps [7]. 46

In this work, we show that FastDBM can be easily extended 47

to compute any real-value map created via inverse projection 48

that depends only on sample positions, such as the gradient maps 49

and di↵erential decision maps mentioned above, referred next as 50

classifier maps. This requires only a simple modification of the 51

original FastDBM method. We show that our modification still 52

keeps the attractive speed-up and low error rates proposed by 53

the original FastDBM technique. Besides this key extension, we 54

also explore additional combinations of techniques and quality 55

metrics to gauge the added value of our proposal. 56

We next summarize our contributions: 57

• We present FastDBM, an acceleration technique for com- 58

puting decision maps for trained classification models, 59

which enables such maps to be used in interactive settings. 60
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• We extend FastDBM to accelerate the creation of so-called61

classifier maps that depict any (smooth) real-valued prop-62

erty of the studied classification model, such as gradient63

maps and distance to decision boundary maps.64

• We present a detailed evaluation of FastDBM on di↵erent65

classifiers, datasets, decision map and classifier map meth-66

ods, and quality metrics. Our evaluation confirms the high67

accuracy and speed of FastDBM in all tested cases.68

The structure of this paper is as follows. Section 2 introduces69

related work on decision maps, classifier maps, and techniques70

used for computing these. Section 3 presents the core of our71

FastDBM technique which is used to compute decision maps.72

Section 4 evaluates the three acceleration heuristics we proposed73

for FastDBM and outlines the winning heuristic: binary split.74

Section 5 presents additional evaluations focusing on the binary75

split heuristic. Section 6 presents our extension of FastDBM to76

handle real-valued classifier maps and shows examples of accel-77

erating three such map types. Section 7 discusses the features of78

our method. Finally, Sec. 8 concludes the paper.79

2. Related work80

Let D = {xi} ⇢ Rn be a high-dimensional dataset. A classi-81

fication model f : Rn
! C, trained and/or tested on D, maps82

samples from the data space to a categorical (label) domain C.83

Let c : Rn
! [0, 1] denote the confidence of this classification.84

A decision map is a two-dimensional image I that aims to cap-85

ture f ’s behavior by extrapolating it from D. Two elements are86

key to the construction and use of I, as follows:87

Direct projection: Let P : D ! R2 be a so-called dimension-88

ality reduction, or projection, operation, such as t-SNE [15],89

UMAP [16], PCA [17], or any of the many other such tech-90

niques [18, 19]. Let P(D) = {P(x)|x 2 D} be the mapping of91

D to a 2D scatterplot computed by P. P(D) only depicts the92

behavior of f over the discrete set of samples D. One can next93

color points P(x) 2 P(D) by the value of the inferred class f (x)94

and study the resulting colored scatterplot to get an idea of how95

f acts on groups of similar or di↵erent samples. Yet, one has no96

idea what f does between samples, in the gaps between scatter-97

plot points. This is especially important when one is concerned98

with f ’s behavior close to its so-called decision boundaries, i.e.,99

places where f changes value. Such boundaries most likely will100

pass between points in P(D), so are not shown by the scatterplot.101

Decision maps aim to solve precisely this – namely, present102

users with a dense image that shows f ’s behavior at every103

pixel [8]. To construct such maps, we must extrapolate informa-104

tion from P(D) over the entire image I ⇢ R2.105

Inverse projection: Inverse projections provide precisely what106

is needed for the above-mentioned extrapolation. These are107

functions P
�1 : R2

! Rn that inversely map, or backproject,108

any pixel p 2 I to a data space location P
�1(p). Inverse projec-109

tions allow one to explore the gap areas between the points of110

a projection scatterplot P(D) – either interactively or simply by111

having such information displayed there – for many applications112

such as data augmentation [20, 21], morphing and data impu- 113

tation [22, 6], and, closer to our context, analyzing trained ML 114

classification models by decision maps [23, 10, 9], as discussed 115

next 116

Map creation – overview: Using P
�1, one can now depict, at

every image pixel p, any property of interest that is measured in
the data space Rn. A first example hereof are decision maps

F(p) = f (P�1(p)) (1)

which color each p by the class label inferred by f at that back- 117

projected location. Additionally, the confidence c of the model 118

can be evaluated at p and encoded in e.g. saturation or bright- 119

ness [8, 9, 10, 7]. Figure 2a shows a decision map that encodes 120

the model’s inference for the well-known MNIST dataset [24]. 121

Classifier maps extend this idea by allowing one to substitute
f in Eqn. 1 by any real-valued function of interest defined on
the data space. For instance, gradient maps [6, 7] compute the
(approximate) norm of the gradient of P

�1 at p = (x, y) as

G(p) =

s 
@P�1

@x
(p)

!2

+

 
@P�1

@y
(p)

!2

. (2)

Visualizing G over I shows areas where P
�1 has high gradients, 122

i.e., where extrapolating the model f away from samples in D 123

can be risky due to the so-called compression of the data space 124

to the 2D space created by the projection P [25, 18]. 125

Another classifier map visualizes, for each pixel p, the dis-
tance to the closest decision boundary

dB(p) = min
�x2Rn

�
k�xk2

��� f (P�1(p) + �x) , f (P�1(p))
 
, (3)

which allows one to find di↵erent areas in the data space where 126

the trained model may be brittle [8, 7]. Computing dB is how- 127

ever expensive as it requires bisection-like search for the closest 128

decision boundary [8] or running adversarial example genera- 129

tion [26]. Our acceleration proposal is thus highly relevant here. 130

A final classifier map example is the distance to the closest
training sample

dD(p) = min
x2D
kP
�1(p) � xk (4)

which helps finding areas where f extrapolates far from its 131

training data D, i.e., where the model’s behavior can be less 132

reliable, despite high confidence values [7]. Summarizing, as 133

opposed to decision maps which depict the model f : Rn
! C, 134

classifier maps depict any real-valued function g : Rn
! R that 135

helps understanding f ’s behavior directly or indirectly. 136

Decision and classifier maps are useful tools for explainable 137

AI. At a basic level, decision maps help users understand how a 138

model works by showing where the model is confident and where 139

it is uncertain [23]. This insight supports active learning where 140

the user annotates training-set samples located in low-confidence 141

decision map areas or close to decision boundaries [21, 27]. In 142

this scenario, quickly recomputing the decision map after user 143

annotation is crucial to support the visual analytics ‘human in 144

the loop’ process. Additionally, they can also be used to evaluate 145
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a classifier’s brittleness against backdoor and data poisoning146

attacks [9, 7].147

Map creation – technical choices: The choices for P and P
�1

148

strongly a↵ect the resulting decision maps. Unlike direct projec-149

tions, only a few inverse projection methods P
�1 exist. An early150

such method, iLAMP [22], builds local a�ne mappings that re-151

vert the LAMP [28] direct projection. To address iLAMP’s lack152

of continuity and global mapping, a later study proposed a Ra-153

dial Basis Function (RBF) based inverse projection method [29].154

NNInv massively accelerated computing inverse projections by155

deep learning the 2D to Rn mapping [30]. Self-Supervised Neu-156

ral Projection (SSNP) deep learns P and P
�1 jointly [31] using an157

autoencoder approach [32]. SSNP inherits the speed of NNInv158

but produces smoother decision maps [10, 11].159

To create decision maps, Rodrigues et al.[8] used t-SNE and160

LAMP [28] for P and iLAMP [22] for P
�1, respectively. Further161

on, Rodrigues et al. [23] presented DBM, an approach in which162

one can freely choose P and P
�1 to create decision maps. They163

evaluated 28 methods for P and two methods for P
�1 and found164

out that t-SNE and UMAP are optimal choices for P; and NNInv165

is the optimal choice for P
�1. We next use in our work DBM166

to denote decision maps that use NNInv as P
�1. DBM was next167

refined by Self-Supervised Decision Maps to produce higher-168

quality decision maps (SDBM, [10]). Separately, DeepView [9]169

proposed discriminative dimensionality reduction to construct170

decision maps using UMAP for P
�1. Recently, Wang et al. [11]171

presented a detailed evaluation of decision map techniques from172

the perspective of quality and computational scalability. They173

found that t-SNE and UMAP (for P) and NNInv (for P
�1) yield174

very good results, surpassed only by DeepView. DeepView is,175

however, orders of magnitude slower than other methods, so our176

proposed acceleration cannot bring it to work at near-interactive177

rates. Summarizing the above, we next consider the following178

decision map techniques as targets to accelerate: autoencoders179

(for both P and P
�1); SSNP (for both P and P

�1); and DBM180

(with PCA, UMAP, and t-SNE for P and NNInv for P
�1).181

Scalability: All current decision map techniques are slow – on182

a typical commodity PC, computing a decision map for resolu-183

tions of 2502 pixels takes about 10 seconds for all tested methods184

except DeepView; for DeepView, this takes several hours, de-185

pending on the classifier used [11]. As we shall see in Sec. 4,186

costs increase quadratically with the decision map resolution –187

and higher resolutions are needed to create maps in which users188

see the exact shape of decision boundaries; variations due to189

compression in gradient maps [25, 18]; and distances to deci-190

sion boundary or to training samples [7]. Current decision map191

methods are thus not suitable for visual analytics scenarios that192

require fast recomputation of decision and/or classifier maps193

upon re-training of the studied model.194

3. FastDBM computation195

For an image I of n ⇥ n pixels, the complexity of current196

decision map methods is O(n2
K), where K is the cost of a sin-197

gle f (P�1(·)) operation. Decreasing K is hard if we allow any198
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Figure 1: Illustration for binary and confidence-based splitting heuristics. Given
the block-set in (a), binary split creates the refined block-set in (b). For the block
in (c), binary split would create four equal-sized blocks along the thin dashed
lines. In contrast, confidence-based splitting (d) examines the confidence values
and splits the block in up to 9 smaller blocks along the thin dashed lines.

generic inverse projections P
�1 and classifier model f . Hence, 199

to improve speed, we next aim to reduce the n
2 term. 200

A classification model f , in general, must fit its decision 201

boundaries so that they (a) surround same-class training points, 202

but (b) the boundaries are su�ciently smooth to allow for gener- 203

alization without overfitting. Given (b), f , and thus a decision 204

map that aims to accurately capture f , has in general relatively 205

few compact decision zones (not necessarily one zone per class). 206

We use this property to devise our acceleration as follows. 207

3.1. Binary split 208

We start by dividing the image I into B
2 blocks – each such 209

block is a square of n

B
⇥

n

B
pixels from I. For each block b, we 210

evaluate the label lb = f (P�1(p)) at its central pixel p. Figure 1a 211

shows this for a binary classifier (cyan and yellow are the two 212

classes). Let lu, ld, ll, lr be the labels computed similarly for the 213

up, down, left, and right neighbor blocks of b. Let N be the 214

number of neighbors with labels di↵erent from lb. If N = 0, then 215

b is surrounded by same-label blocks, so, if we assume that a 216

decision zone in the decision map is locally thicker than n

B
pixels, 217

no decision boundary crosses it. Hence, we can assign lb to all 218

pixels in b. If N > 0, we split b into four equal smaller blocks. 219

Figure 1b shows the results of this splitting. We repeat the 220

process, in a quadtree-like fashion, until we arrive at pixel-sized 221

blocks or blocks do not need splitting anymore. During this, we 222

note that (1) splitting larger blocks first helps to ensure a uniform 223

refinement all over the image; and (2) splitting blocks having 224

several neighbors with di↵erent labels is better than splitting 225

blocks having a single such neighbor since the former cover 226
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more decision boundary fragments. We model this by keeping227

blocks to split in a priority queue sorted decreasingly on d · d ·
N

C
228

where d is the size of a block, N is its number of di↵erent-label229

neighbors, and C is its neighbor count (4 for blocks inside the230

decision map, 3 for blocks on the map boundary, and 2 for blocks231

on the map corners).232

As Sec. 2 outlines, a decision map also often shows the confi-233

dence of the visualized model f at each map pixel. Per block,234

however, we have a single data sample P
�1(p), computed at the235

block’s center pixel p. This is fine for class labels since these236

are constant over decision zones, thus also per block as per our237

splitting heuristic. In contrast, confidence varies continuously238

within a decision zone, hence can also vary within a block. We239

avoid computing additional confidence values apart from c(p)240

by interpolating these values, computed at the blocks’ centers p,241

using nearest-neighbor, bilinear, and bicubic schemes.242

3.2. Confidence split243

The binary split is a simple bisection procedure to find the244

places in R2 where decision boundaries are, up to the pixel245

precision of I. We can potentially use the confidence values246

c(p) to refine this process as follows. Take the block b shown in247

Fig. 1c. Binary split would divide b along the dashed lines in the248

image. Consider the confidence values cA and cB for the inferred249

classes purple, respectively orange, sampled at the centers of250

cells bl and b, denoted next as cA,l, cB,l, cA,b and cB,b respectively251

(Fig. 1d). We next linearly interpolate these values to find the252

point where cA = cB (red point, Fig. 1d). This is likely a good253

point to split cell b (along the thick dashed line, Fig. 1d) since,254

left to this point, class A has a higher confidence than class B255

(so the decision zone there should tell A) and, right to this point,256

class B has a higher confidence than class A (so the decision zone257

there should tell B). Note how this confidence maximization is258

precisely similar to how classification models internally decide259

on the class to output, albeit using more complex interpolation260

schemes than our linear one. We proceed in the same way for all261

class values with respect to all four boundaries of cell b. This262

yields a possible set of 2, 3, 4, 6, or 9 cells that split b as opposed263

to the fixed 4 cells done by binary split (see thin dashed red lines264

in Fig. 1d). Confidence is next interpolated as for the binary265

split method.266

3.3. Confidence sampling267

Our final acceleration heuristic uses the underlying idea that,268

if we can capture the confidence c at a coarse sampling res-269

olution, then we can find decision zones (and boundaries) at270

pixel resolution by maximizing c over all inferred labels. This271

will reduce the costs implied by the block-splitting process. For272

this, given our initial B
2 blocks, we compute confidences c(p) at273

block centers p, for all inferred |C| classes, and next interpolate274

these over I using nearest-neighbor, bilinear, or bicubic tech-275

niques – as described above, but now only over the initial blocks,276

which we do not further split. Next, for each pixel p 2 I, we277

compute which class yields the highest interpolated confidence278

and assign that class to p.279

b) binary split (ε
label  

0.001%) c) confidence split (ε
label

  0.012%)a) ground truth DBM
(brightness = confidence)

d) confidence sampling
(NN, ε

label
  6.022%)

e) confidence sampling
(bilinear, ε

label
  2.156%)

f) confidence sampling
(bicubic, ε

label
  1.454%)

a b c

d e f

= =

===

Figure 2: a) Ground-truth DBM with labels and confidence encoded into col-
ors, respectively saturation, MNIST dataset. b-f) Class assignment errors for
FastDBM method variants.

4. Evaluation of acceleration heuristics 280

4.1. Comparison of acceleration heuristics 281

We now compare our three acceleration heuristics (binary 282

split, confidence split, confidence sampling) against each other 283

and with the ground truth. For this, we use two metrics: 284

Label errors: We ideally want to get the same labels for a
FastDBM image I f ast and the ground-truth decision map image
I. We evaluate this by the error

✏label =
100
n2

X

1xn,1yn

�(I(x, y), I f ast(x, y)), (5)

where �(a, b) is 0 if a = b and 1 otherwise. That is, ✏label 285

measures the percent of the n ⇥ n FastDBM map image which is 286

di↵erent from the ground truth. 287

Confidence errors: Our interpolated confidence c f ast should be
as close as possible to the ground-truth one c. We evaluate this
by the normalized MSE error

✏con f =

P
1xn,1yn(c(x, y) � c f ast(x, y))2

P
1xn,1yn c(x, y)2 . (6)

Figure 2 shows our results for the MNIST dataset [24], classified 288

with a simple deep learning network f (flatten layer, dense 289

10-unit layer and softmax activation, 20 training epochs, 3.5K 290

training samples, 1.5K test samples). We use DBM (P set to 291

t-SNE, P
�1 set to NNInv) to create the decision maps; map 292

image size n = 256 pixels, B = 8 blocks. Image (a) shows the 293

ground-truth DBM with labels and confidence color- respectively 294

saturation-coded. Images (b-f) show the results of our binary 295

split, confidence split, and confidence sampling heuristics, the 296

latter using nearest neighbors, bilinear, and bicubic interpolation. 297

Red points show pixels where ground-truth labels di↵er from 298

our results. Our heuristics yield practically the same DBMs, 299
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with only a few di↵erent pixels. The binary split method is best300

– only 8 pixels of the 2562 are di↵erent; the confidence sampling301

method is the worst; for the latter, errors appear strictly on302

the decision boundaries. This is likely since confidence varies303

slowly inside decision zones but rapidly close to boundaries (see304

Fig. 2a), so our interpolation has di�culties in the latter areas.305

Figure 3 shows the errors ✏label and ✏con f and computing time306

for the above experiment for di↵erent image resolutions n (100307

to 2000 pixels squared). For confidence sampling, we only use308

bicubic interpolation as this yields lower errors than nearest309

neighbor and bilinear (see Fig. 2). Error-wise, the binary split310

and confidence split methods are very similar and consistently311

lower than confidence sampling since the latter method uses312

a single fixed block resolution which, if too low, is unable to313

capture complex signal variations over the map image. Also, the314

binary split and confidence split errors are virtually constant with315

n, while confidence sampling errors show a slight increase with316

n. Speed-wise, the binary and confidence-sampling methods317

show near-linear behavior in n (with a very small slope) as318

opposed to the quadratic behavior of ground-truth DBM, with319

the confidence-split method in between the two. The binary and320

confidence-sampling methods are over one order of magnitude321

faster than ground-truth DBMs. The confidence split method’s322

relative low speed can be explained by the fact that it can create323

up to 9 cells when splitting a single block as opposed to exactly324

four for the binary split (see Fig. 1 and related text). Note also325

that our maximal resolution n = 2000 exceeds by far all reported326

DBM results in the literature. From the above, we conclude that327

the binary split method is the clear winner when considering328

computational speed and accuracy factors. As such, we focus329

only on this method in our further evaluations.330

4.2. Parameter setting for binary split heuristic331

Binary split has one parameter – the initial block count B –332

so how to set its value? A high B will limit errors due to dense333

sampling of the image, but will be slow, since f (P�1) must be334

evaluated on many blocks. A low B will be fast, but as Sec. 3335

notes, decision map details under n

B
may be lost. To find a good336

initial value for B, we measure both speed and label errors ✏label337

for various B settings ranging from 8 to 96. To generalize our338

findings, we test several combinations of P and P
�1 to compute339

our ground-truth decision maps, specifically autoencoders (AE,340

used for both P and P
�1); SSNP (used for both P and P

�1); and341

DBM (PCA, UMAP, and t-SNE used for P, NNInv used for342

P
�1). Figure 4 shows the speed and label errors as function of343

B for our maximally considered resolution n = 2000. We see344

that, label-error-wise, all B values above roughly 32 yield (very)345

low errors. Speed-wise, B values in the interval 32-64 o↵er best346

results, which confirms our earlier observations that too low or347

too high B will be slow. Also, we see that the overall speed348

trend as function of B does not strongly depend on the choice of349

(P, P�1), up to a constant bias factor. Hence, we conclude that a350

block size B = 32 is a good preset for FastDBM.351

4.3. Implementation details352

Our FastDBM method is implemented in Python and runs353

fully on the CPU. The full source code, including datasets and354

Figure 3: Label errors ✏label (a), confidence errors ✏con f (b), and computation
time (c) for our three acceleration heuristics, MNIST dataset.

Computation time (secs) Label errors e
label

 (% of map pixels)

Initial number of blocks B 

AE AE

SSNP SSNP

PCA NNInv

UMAP NNInv

t-SNE NNInv

P P
-1

AE AE

SSNP SSNP

PCA NNInv

UMAP NNInv

t-SNE NNInv

P P
-1

Initial number of blocks B   

Figure 4: Speed (left) and label errors (right) of binary split method as function of
initial block count B for decision maps constructed by various (P, P�1) methods.

experiments presented here, is publicly available [33]. 355

5. In-depth evaluation of binary split acceleration 356

We found that binary split works the best among the three 357

proposed heuristics (Sec. 4.1). We now further evaluate the 358

binary split heuristic using more classifiers, an additional quality 359

metric, and using decision maps constructed with all inverse 360

projection techniques that we are aware of. 361
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5.1. Using additional classifiers362

We evaluate the binary split method with additional combina-363

tions of datasets and classifiers used to compute the ground-truth364

DBM (P set to t-SNE or UMAP, P
�1 set to NNInv). The datasets365

include FashionMNIST [34], HAR [35], and Iris [36]. Classi-366

fiers included logistic regression (LR), support vector machines367

(SVM), k-nearest neighbors (kNN), decision trees (DT), random368

forests (RF), and the neural network (NN) we used earlier for369

MNIST. It is important to note that the accuracy of the trained370

models is of no concern in this experiment. If FastDBM approx-371

imates well the ground-truth DBM, FastDBM can be next used372

next to assess how well (or poorly) the models behave.373

Ground-truth DBMs were created by the DBM (t-SNE,374

NNInv) and DBM (UMAP, NNInv) combinations at resolution375

n = 400 pixels squared. Figure 5 shows the ground-truth DBMs;376

those created by our binary split method; 2D projections of377

training samples in green and the label di↵erence encoded by378

red dots as in Fig. 2, for the MNIST, FashionMNIST, and HAR379

datasets. We see that our method yields visually almost identical380

label results as the ground-truth – there are only few red points381

in the ‘di↵erence’ images. This occurs consistently for quite382

di↵erent DBMs, e.g., the smooth decision-zone DBMs created383

for LR, NN, SVM, and KNN, but also the far noisier DBM384

created for DT, and the overall low-confidence DBM created for385

RF. Additional results for all other tested combinations, present386

in the supplementary material, confirm this observation.387

5.2. Consistency evaluation388

To further confirm the visual similarity between the ground-
truth decision maps and the FastDBM versions shown in Fig. 5,
we next compare the map consistency metric computed for both
cases. In detail, map consistency

Consp =

��� {p 2 I | f (P�1(P(P�1(p)))) = f (p)}
���

|I|
(7)

adapts the data consistency metric [9], earlier used to measure389

how well an inverse projection P
�1 reverts the e↵ects of a direct390

projection P, to points outside a given dataset D for which we391

have ground-truth for P
�1. In other words, Consp computes392

the fraction of ‘consistent’ pixels in a decision map image, i.e.,393

pixels whose corresponding data points (obtained by P
�1) have394

the same class label after a round-trip of projection and inverse395

projection [11]. If our acceleration technique works well, then396

the consistency Cons
f ast

p of the images it produces should be397

very close to the consistency Consp of the ground-truth de-398

cision map images. Table 1 shows, for several datasets and399

classifiers, the values of Cons
f ast

p computed by binary split for400

DBM (UMAP+NNInv) and SDBM compared to the ground-401

truth Consp. We see that, although both Cons
f ast

p and Consp402

are less than the ideal value 1 (which would imply that P
�1 is403

an exact inverse of P), their values are very close to each other.404

That is, the quality of the images produced by FastDBM is very405

close to the ground-truth images.406

5.3. Accelerating additional direct and inverse projection tech- 407

niques for creating decision maps 408

So far, we computed our (accelerated) decision maps using 409

NNInv and SSNP for the inverse projection P
�1 since, as men- 410

tioned in Sec. 2, earlier work showed that NNInv and SSNP 411

are fast and accurate for this task. Yet, other inverse projection 412

techniques do exist, most notably iLAMP [22] and the inverse 413

projection using radial basis functions (RBF) [29]. Earlier work 414

has shown that both these techniques are slower than NNInv [30]. 415

However, it is interesting to see how these techniques fare given 416

our acceleration. Separately, iLAMP and RBF have a quite dif- 417

ferent behavior from the already-tested NNInv and SSNP. Hence, 418

if our acceleration technique can create accurate approximations 419

of decision maps using these inverse projections, this increases 420

the claims of generality of our proposal. 421

Figure 6 shows, for the MNIST dataset, the decision maps 422

computed by four ground-truth technique pairs (t-SNE and iL- 423

AMP, UMAP and iLAMP, t-SNE and RBF, and UMAP and 424

RBF) and their counterparts produced by our binary split ac- 425

celeration. The ground-truth maps are noisier than those we 426

computed so far using NNInv and SSNP for P
�1, in line with 427

earlier findings [30, 8]. Our binary split method captures these 428

ground truth images quite well – the label di↵erence images 429

show only a few pixels where our results di↵er from the ground 430

truth, much like in Fig. 5. Our method speeds up the computa- 431

tion of most maps – see timing figures in the lower-left corners 432

of the images. Speed up overall ranges from 140% to 450% 433

except for the t-SNE and iLAMP combination which is only 434

15% faster. This is due to the high irregularity of the decision 435

boundaries in this case, which generates a very large number of 436

cell splits – see the corresponding ‘binary split process’ images 437

in Fig. 6. 438

Concluding, we claim that our binary split heuristic creates 439

accurate decision maps for all existing inverse projections we 440

are aware of; and, for most cases except very noisy decision 441

maps (which are likely not useful in practice), it also accelerates 442

the map computation by several factors. 443

6. Accelerating the computation of continuous maps 444

So far, our binary split method only works for maps with 445

label values like classification functions f : Rn
! C. However, 446

several maps used in classifier visualization have continuous 447

values, i.e., are of the form f : Rn
! R. Examples are the 448

gradient maps G (Eqn. 2), distance-to-closest-training sample 449

dD (Eqn. 4), and distance-to-decision boundary dB (Eqn. 3). In 450

general, one cannot reduce such continuous maps to the compu- 451

tation and comparison of purely categorical (label) values. Yet, 452

we would like to accelerate their computation. 453

To do this, we generalize the binary split idea by replacing
the label comparison (see Sec. 3) with a threshold comparison.
For a dataset D, we compute this threshold globally as

T = ↵ · ⌧ ·

 
max
p2B

f (P�1(p)) �min
p2B

f (P�1(p))
!
. (8)

Simply put, T is a fraction of the range of the function f over the 454

map. B denotes the set of center pixels of the initial B
2 blocks. 455
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Figure 5: Comparison between ground-truth DBM and our binary split method for three datasets, six classifiers, t-SNE and UMAP projections.
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Table 1: Consp of FastDBM vs two ground truth methods for three datasets and six classifiers. � Consp = Cons
f ast

p - Consp. See Sec. 4.

(a) DBM (UMAP+NNInv)

Classifier Metric FashionMNIST HAR MNIST

DT Consp 0.4033 0.3704 0.4718
Cons

f ast

p 0.4041 0.3659 0.4651
� Consp 0.0009 -0.0045 -0.0067

KNN Consp 0.2152 0.0816 0.1414
Cons

f ast

p 0.2159 0.0735 0.1364
� Consp 0.0007 -0.0081 -0.0049

LR Consp 0.2787 0.1776 0.2759
Cons

f ast

p 0.2792 0.1745 0.2727
� Consp 0.0005 -0.0031 -0.0032

NN Consp 0.2959 0.1740 0.2810
Cons

f ast

p 0.2969 0.1712 0.2785
� Consp 0.0010 -0.0028 -0.0025

RF Consp 0.2480 0.2477 0.3009
Cons

f ast

p 0.2464 0.2400 0.2955
� Consp -0.0016 -0.0077 -0.0053

SVM Consp 0.2153 0.1591 0.2470
Cons

f ast

p 0.2149 0.1551 0.2458
� Consp -0.0004 -0.0039 -0.0013

(b) SDBM

Classifier Metric FashionMNIST HAR MNIST

DT Consp 0.2685 0.1515 0.3594
Cons

f ast

p 0.2678 0.1510 0.3616
� Consp -0.0007 -0.0005 0.0022

KNN Consp 0.1145 0.0778 0.0950
Cons

f ast

p 0.1149 0.0767 0.0956
� Consp 0.0004 -0.0011 0.0007

LR Consp 0.0589 0.0432 0.0909
Cons

f ast

p 0.0591 0.0431 0.0910
� Consp 0.0003 -0.0001 0.0002

NN Consp 0.0725 0.0320 0.0872
Cons

f ast

p 0.0726 0.0321 0.0881
� Consp 0.0001 0.0001 0.0009

RF Consp 0.1455 0.0655 0.2174
Cons

f ast

p 0.1456 0.0658 0.2178
� Consp 0.0001 0.0002 0.0004

SVM Consp 0.0597 0.0364 0.0893
Cons

f ast

p 0.0603 0.0364 0.0898
� Consp 0.0006 -0.0000 0.0006

t-SNE + iLAMP UMAP + iLAMP

t-SNE + RBF UMAP + RBF

Figure 6: Maps computed using the iLAMP and RBF inverse projections in combination with the t-SNE and UMAP direct projections for the MNIST dataset.
Resolution: 2562. See Sec. 5.3.
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⌧ = e
�

B·d

n is a decreasing function of the block size d, i.e., smaller456

blocks will use a higher threshold. The intuition behind this is457

that smaller blocks already capture f at a higher resolution so458

we make them harder to further split to reduce over-refinement.459

Conversely, if f exhibits even a small variation over large blocks,460

this is a reason to split these to capture further details. The last461

parameter ↵ is a scaling factor. When the di↵erence between the462

maximum and minimum values of the four neighbors of a block463

including the block itself exceeds T , we split the block.464

Distance-to-boundary maps which compute dB (Eqn. 3) are465

a first example of such continuous maps. Figure 7 shows the466

results of accelerating the computation of dB at resolution 5122
467

pixels for the three datasets as in Fig. 5, and for all four inverse468

projection techniques we are aware of (NNInv, SSNP, RBF, and469

iLAMP) with UMAP as the direct projection. For all inverse470

projection techniques, we show the ground-truth dB map, the471

map computed by our binary split acceleration, and the blocks472

created by the binary split process. Ground-truth maps are473

visually almost identical from those computed by our binary474

split heuristic. Speed-wise, our binary split heuristic is up to475

roughly ten times faster than computing the ground truth, see476

the figures in the bottom-left corners in the respective images477

in Fig. 7. This speed-up is in line with what we visually see as478

amounts of cells being split in the rightmost columns in Fig. 7479

– the largest cells in those columns indicate the original block480

sizes, that is, using B = 32 initial cells for the acceleration481

heuristic, as explained earlier in Sec. 4.482

Gradient maps G (Eqn. 2) are a second example of continuous483

maps we can accelerate. Figure 8 shows gradient maps computed484

by ground truth and our generalized binary split acceleration for485

the same dataset-projection-inverse projection combinations as486

shown in Fig. 7. Our accelerated maps are very similar to the487

ground truth, while the computation time is up to 10 times lower488

– see timing figures in the lower-left corners of the images.489

Figure 9 shows a final example of continuous maps, namely490

distance-to-closest sample maps dD (Eqn. 4). As for dB and G,491

our acceleration yields practically the same images with high492

speed-ups vs ground truth. Given these results and the fact that493

our binary split works entirely agnostically on the nature of494

the function f , we claim that similar results can be obtained495

for any function f : Rn
! R that produces a real value from496

an inversely-projected 2D pixel. The only implicit assumption497

our acceleration method makes for f is that it should be locally498

smooth, i.e., not have unbounded variations on a small spatial499

extent, so that we can use the threshold computed by Eqn. 8 to500

locate map areas needing subdivision.501

To find a suitable choice for ↵, we executed a grid search over502

the range [0, 0.6] by evaluating both computation time and MSE503

error of our resulting map vs the ground-truth maps G, dD, and dB504

for the MNIST dataset. The MSE error is computed analogously505

to ✏con f (Eqn. 6). Figure 10 shows the search results. For larger506

↵ values, we get higher errors since the split threshold T is507

larger, so fewer block refinements (splits) occur; for smaller ↵508

values, the error decreases but the computational time increases,509

since there are more splits. We found that ↵ 2 [0.1, 0.2] is a510

good choice balancing between speed and accuracy. Specifically,511

we set ↵ = 0.125 for G, ↵ = 0.1 for dD, and ↵ = 0.15 for dB512

consistently in all our following experiments. 513

Figure 11 shows the computation times and normalized MSE 514

errors of our generalized binary split method for di↵erent image 515

sizes and for all the three maps dD, G, and dB. The results are 516

quite similar with the binary split used for label-based maps 517

(Fig. 3c): Our method is roughly linear in the map resolution (as 518

compared to quadratic in resolution for the brute-force ground 519

truth computation), while errors decrease inversely quadratically 520

with resolution. All in all, the above results show us that the gen- 521

eralized binary split is a computationally e↵ective and accurate 522

way to accelerate the construction of continuous maps. 523

7. Discussion 524

We next discuss several aspects of our method. 525

Genericity: Our acceleration method based on the binary split 526

can accommodate the construction of classifier maps for any 527

function f : Rn
! R. This covers, but is not restricted to, 528

the actual classification label F, gradient maps G, distance-to- 529

boundary maps dB, and distance-to-closest-training sample maps 530

dD. We can accelerate the computation of all such functions, 531

while preserving their accuracy, in a black-box manner, i.e., 532

without knowing anything additional about what the respective 533

functions capture or how they are computed. The only constraint 534

we have is that such functions are smooth. 535

Performance: Our experiments showed that our binary split is 536

roughly 5 times faster than the brute-force computation of the 537

decision maps. This factor varies mainly as a function of the 538

smoothness of the inverse projection method P
�1 used: NNInv, 539

SSNP, and RBF are relatively smooth mappings so fewer block 540

splits are needed to capture their variation, which yields higher 541

speed-ups. iLAMP is far less smooth so it requires more block 542

splits, thereby reducing our speed-up to roughly 1 to 2 times. 543

For the inverse projection methods NNInv and SSNP, which 544

were earlier found to be the most reliable for computing decision 545

maps, FastDBM is linear in the map resolution as compared to 546

quadratic time for the brute-force computation. 547

A related point involves using GPU for further acceleration. 548

Take a decision map algorithm which uses some projection P and 549

inverse projection P
�1. Here, both, one of, or none of P and P

�1
550

can use the GPU, depending on how these methods were desired 551

by their creators. For example, considering P
�1, NNInv [30], a 552

deep-learning method, uses the GPU; while iLAMP [22] does 553

not. Our method accelerates the decision map construction 554

independently on how P and P
�1 work internally – in a nutshell, 555

we reduce the number of times one needs to evaluate P
�1 over 556

a given map. Our acceleration does not currently use the GPU 557

but works ‘atop’ a set of algorithms which themselves are CPU 558

or GPU based. This leaves an interesting open opportunity 559

of further accelerating our algorithm using the GPU – again, 560

independently on whether P or P
�1 are CPU or GPU based. 561

Quality: All our experiments showed that we can obtain the 562

maps virtually identical visually to the ground-truth ones no 563

matter which type of function we visualize. Moreover, the 564

quality, measured in terms of normalized MSE vs ground truth, 565

only increases with the image resolution. This means that our 566
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Figure 7: Distance-to-decision-boundary maps dB for the generalized binary split method, three datasets (resolution: 5122). See Sec. 6.
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Figure 8: Gradient maps G for the generalized binary split, three datasets (resolution: 5122). See Sec. 6.
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Figure 9: Distance to nearest sample maps dD for the generalized binary split method, three datasets (resolution: 5122). See Sec. 6.

12



Figure 10: Generalized binary split method: Search for the best threshold ↵ for
the MNIST dataset. Columns show di↵erent classifier maps (dD, G, dB). Top
row shows computation time. Bottom row shows computation error.

Figure 11: Performance of the generalized binary split method with varying
grid resolutions for NNInv and SSNP on the MNIST dataset. Columns show
di↵erent classifier maps (dD, G, dB) with optimized thresholds ↵. Top row shows
computation time for binary split and ground truth methods. Bottom row shows
the error as the image resolution increases.

accelerated maps can be safely substituted for the brute-force-567

computed ones for all practical reasons.568

Ease of use: Our acceleration method is essentially parameter-569

free – the only two parameters B (initial block count, see570

Sec. 3.1) and ↵ (controlling the split threshold for continuous571

mappings, see Eqn. 8) have well-tested presets which are inde-572

pendent on the classification model, choice of direct and inverse573

projections P and P
�1, and type of map being computed.574

Limitations: The key assumption behind our acceleration is575

that the combination of function f we aim to visualize with576

the inverse projection function P
�1 is smooth and has bounded577

variation over R2. While this is true of all f and P
�1 we know of,578

and is also in line with the well-known smoothness assumption579

underlying most machine learning methods for f , that cases580

could exist where smoothness would not hold. In such cases,581

it is possible that our acceleration does not yield worthwhile582

speed-ups and/or the accelerated maps have visible errors as583

compared to the ground truth ones. Separately, we believe that584

the confidence split method (Sec. 3.2) has not yet reached its true585

potential. Better interpolation schemes than our current linear586

one should be able to decrease the number of generated cells and587

thereby achieve higher performance at the same quality level as 588

compared to the so far currently best-ranked binary split. An- 589

other open challenge lies in scaling decision map visualizations 590

to a large number of classes (e.g., dozens or more). In that case, 591

encoding class values in categorical colors will not work well. 592

This limitation is broadly shared by many visualizations that use 593

categorical color maps to encode class values. Potential solu- 594

tions can group class values hierarchically to reduce the needed 595

color count and o↵er detail-on-demand interactively. Note that 596

this scalability problem only a↵ects decision maps (which depict 597

class value) and not the classifier maps (which depict real-valued 598

quantities). 599

8. Conclusion 600

We have presented FastDBM, a technique for accelerating 601

the computation of maps that describe the working of general- 602

purpose classification models. Our technique is agnostic of the 603

exact type of maps being computed as shown by its application 604

to create maps of classification label, classification confidence, 605

distance-to-classification-boundary, distance-to-closest-training 606

sample, and gradient maps. Compared to earlier work [14], we 607

show that our technique can be applied also to real-valued maps; 608

and also show high speed-ups and accuracy for more combina- 609

tions of direct and inverse projection methods used to compute 610

the maps. Practically, we show that our method can compute 611

classifier maps that are visually almost identical to ground-truth 612

ones with a speed-up of one order of magnitude on average. 613

This allows the further deployment of such visualizations in 614

interactive visual analytics workflows for classifier engineering. 615

Our method depends on just two free parameters for which we 616

provide good preset values. Our method can accelerate any cur- 617

rent classifier map computation technique, and can be applied 618

to any trained classifier model, as it only requires access to the 619

inverse projection function this technique uses, respectively to 620

the black-box execution of the trained model. 621

Future work aims to explore our acceleration technique to 622

compute additional classifier maps. Also, we consider speeding 623

up our method by more advanced sampling and interpolation 624

schemes, GPU execution of our block splitting scheme, and eval- 625

uating it on novel direct and inverse projection methods which 626

arrive in the infovis arena. In parallel, measuring the added 627

value of computing near-real-time classifier maps for classifier 628

engineering, e.g., in the context of visual active learning, is a 629

key goal we aim at. 630
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