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 A B S T R A C T

Inverse projections enable a variety of tasks such as the exploration of classifier decision boundaries, creating 
counterfactual explanations, and generating synthetic data. Yet, many existing inverse projection methods 
are difficult to implement, challenging to predict, and sensitive to parameter settings. To address these, we 
propose to invert distance-preserving projections like Multidimensional Scaling (MDS) projections by using 
multilateration – a method used for geopositioning. Our approach finds data values for locations where no 
data point is projected under the key assumption that a given projection technique preserves pairwise distances 
among data samples in the low-dimensional space. Being based on a geometrical relationship, our technique 
is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional 
projections up to |𝐷|−1 dimensional spaces if given at least |𝐷| data points. We compare several strategies for 
multilateration point selection, show the application of our technique on three additional projection techniques 
apart from MDS, and use established quality metrics to evaluate its accuracy in comparison to existing inverse 
projections. We also show its application to computing decision maps for exploring the behavior of trained 
classification models. When the projection to invert captures data distances well, our inverse performs similarly 
to existing approaches while being interpretable and considerably simpler to compute.
1. Introduction

Dimensionality reduction techniques, also known as multidimen-
sional projections (MPs), are methods of choice for the analysis and 
visual exploration of high-dimensional data. Given such a dataset, 
projections create a (much) lower-dimensional version thereof in which 
relations such as inter-sample relationships are preserved as much 
as possible [1–3]. To achieve the above, a subset of projections aims 
to preserve distance relations between data samples, e.g., Principal 
Component Analysis (PCA) [4], Multidimensional Scaling (MDS) [5], 
or Sammon’s mapping [6]. Preserving distances, as compared to other 
relationships, allows a simpler interpretation of dense point clusters and 
neighborhoods in the resulting 2D scatterplots in terms of their shared 
data similarities [7–9].

Inverse projections 𝑃−1 aim to perform the inverse of a given projec-
tion mapping 𝑃 , that is, map from the 2D space to the data space. They 
enable multiple applications such as user-driven data interpolation 
based on interaction in a 2D space for shape control [10] or elec-
tronic instrument synthesis [11]; visual exploration of trained Machine 
Learning (ML) models [12–14]; user-driven pseudo-labeling of training 
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datasets [15]; assessment of distortions caused by direct projection 
methods [16]; and creation of counterfactual explanations, i.e., help 
analyze why a classifier made a certain decision by generating close 
alternative inputs that would flip the prediction outcome [17].

While tens of direct projection techniques exist, only a handful of in-
verse projections have been proposed. All of these, however, suffer from 
various challenges such as non-smooth variations, a black-box, hard to 
interpret, behavior, and sometimes high computing times  [18,19]. We 
addressed such limitations for MDS-class projections by leveraging their 
distance-preserving property via an algebraic multilateration-based in-
version process [20]. We evaluate MultiInv – our multilateration-based 
inverse projection approach – on six datasets and in combination with 
four direct projections, namely MDS, CCA, Sammon’s mapping, and 
PCA. We also explore six different strategies for the selection of points 
to compute the inversion and evaluate projection quality by considering 
four established quality metrics. Finally, we show how MultiInv, which 
is simple to implement, simple to interpret, computationally efficient, 
and avoids the black-box behavior of existing inverse projections, can 
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be applied to compute gradient maps and decision maps for exploring 
trained ML models. To summarize, our contributions are as follows:

• We introduce MultiInv - an interpretable technique for the multi
lateration-based inversion of distance-preserving projections.

• We give an extended qualitative and quantitative evaluation of our 
technique using gradient maps, decision maps, direct projection 
errors, and mean-squared inverse-projection errors to provide: (1) 
a comprehensive validation on different datasets and parameter-
izations, and (2) a comparison with existing inverse projection 
approaches.

• We publish our source code, datasets, and results on OSF.

2. Related work

2.1. Notations

We start by introducing the needed notations to describe direct and 
inverse projections. Let 𝐷 = {𝑥𝑖}1≤𝑖≤|𝐷|

 be a dataset of high-dimensional 
samples 𝑥𝑖 ∈ R𝑛, also called observations or data points. A projection
technique is a function 𝑃 ∶ 𝐷 → R𝑚 𝑚 ≪ 𝑛, where typically 𝑚 ∈ {2, 3}
for visualization purposes. Without loss of generality, we confine our 
work to 𝑚 = 2. For convenience, we next denote 𝑃 (𝐷) = {𝑃 (𝑥𝑖) ∣ 𝑥𝑖 ∈
𝐷} to be the projection of the entire dataset 𝐷. An inverse projection
𝑃−1 is a function that maps 𝑚-dimensional points back to the high-
dimensional space, defined implicitly by minimizing a cost of the form 
𝑃−1(𝑃 (𝐷)) ≈ 𝐷. A 𝑃−1 becomes valuable when applying it to points
outside the set 𝑃 (𝐷), which allows creating synthetic high-dimensional 
samples from any point 𝑞 ∈ R𝑚.

2.2. Projections

The main goal of a projection 𝑃  is to preserve the underlying 
structure of 𝐷 as well as possible in the low-dimensional space such 
that conclusions about 𝐷 can be drawn directly from 𝑃 (𝐷) [3]. Sev-
eral projection techniques exist that differ in how they capture such 
structures and how they are technically implemented. Data structures,
i.e., the mapping goals of 𝑃 , are usually defined by a loss function that 
is being minimized during the computation of 𝑃 . Two main structure 
types can be found here: Distance-preserving projections aim to capture 
distances between data samples. For example, the objective function of 
Multidimensional Scaling (MDS) [5] directly optimizes for the preser-
vation of pairwise distances by minimizing the stress ∑𝑖,𝑗 (𝑑𝑖𝑗 − 𝑑𝑖𝑗 )2, 
where 𝑑𝑖𝑗 denotes the Euclidean distance in R𝑛 and 𝑑𝑖𝑗 the distance in 
R𝑚. Neighborhood-preserving projections aim to map samples so their 
𝑘-nearest neighbors are similar in both R𝑛 and R𝑚. Examples of such 
projections are t-SNE [21] and UMAP [22]. Projection techniques have 
been extensively discussed and evaluated in several surveys [1–3,8,23]. 
In our work, we focus on distance-preserving projections as these are 
simpler to interpret – distances in the projection scatterplot should 
directly reflect data similarity.

Projection methods can also be classified into linear or non-linear; 
and local or global. Linear methods map the data to R𝑚 using a 
single linear transformation. While computationally efficient, they can, 
however, only capture linear structures in the data and fail for more 
complex datasets. Principal Component Analysis (PCA) [4] is a well-
known linear technique that computes the 𝑚 dimensions, called prin-
cipal components, as linear combinations of the 𝑛 data dimensions, by 
maximizing variance. This is equivalent to searching for a linear com-
bination of dimensions that best preserves Euclidean distances [24]. 
In doing so, PCA focuses on global data structures. Metric Multidi-
mensional Scaling (MDS) [5] is also a global method that is, however, 
non-linear. Non-linear methods allow to capture non-linear relation-
ships in the data often existent in high-dimensional datasets with 
complex structures. Opposed to global methods, local approaches fo-
cus on the preservation of local data features. Projections that work 
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similarly to MDS, i.e., aim to preserve distances, but focus on local 
neighborhoods are Sammon’s mapping [6] and Curvilinear Component 
Analysis (CCA) [25]. Sammon’s mapping gives small distances in the 
data space a higher weight, i.e., tends to better preserve distances of 
close samples in the projection. Its cost function is defined as ∑𝑖,𝑗 (𝑑𝑖𝑗 −
𝑑𝑖𝑗 )2𝑊 (𝑑𝑖𝑗 ), where 𝑊  is a monotonically increasing weighting func-
tion that emphasizes small data distances. While Sammon’s mapping 
penalizes missing neighbors, it is prone to false neighbors (see next 
Section 2.3). In contrast, CCA aims to preserve distances of points that 
are close in the projection by optimizing the cost function ∑𝑖,𝑗 (𝑑𝑖𝑗 −
𝑑𝑖𝑗 )2𝑊 (𝑑𝑖𝑗 ), where 𝑊  is a monotonically increasing weighting function 
that emphasizes small projected distances.

2.3. Projection quality

Any projection function 𝑃  will be unable to fully achieve its distance-
or neighborhood-preserving objectives on sufficiently complex and/or 
high-dimensional datasets 𝐷. Practically, this leads to so-called distor-
tions, i.e., patterns in 𝑃 (𝐷) which may not correspond to patterns in 𝐷; 
and/or patterns in 𝐷 which are not captured by 𝑃 (𝐷) [3,9,26]. Common 
distortions include false and missing neighbors. False neighbors refer 
to points close in 𝑃 (𝐷) which are far apart in 𝐷. Missing neighbors 
refer to points close in 𝐷 which are mapped far apart in 𝑃 (𝐷). The loss 
functions of CCA and Sammon’s mapping can be used respectively to 
identify false and missing neighbors [24].

Measuring and visualizing distortions is crucial to determine how 
well a 𝑃 (𝐷) truly captures (all of) 𝐷. Several quality metrics and 
visualization approaches have been proposed to this end [9,24,26,27]. 
Quality metrics can be computed on different levels, i.e., on point-
pairs, neighborhoods, classes, or on an entire 𝑃 (𝐷) [3,23]. We next 
focus on global metrics – the latter type – that are well-established and 
commonly used.

Trustworthiness [28] measures if the 𝑘 nearest neighbors in 𝑃 (𝐷) are 
neighbors in 𝐷, i.e., is an indicator for false-neighbor distortions, and 
is defined as 

TW(𝑘) = 1 − 2
|𝐷|𝑘(2|𝐷| − 3𝑘 − 1)

|𝐷|

∑

𝑖=1

∑

𝑥𝑗∈𝐹𝑘(𝑥𝑖)
(𝑟(𝑥𝑖, 𝑥𝑗 ) − 𝑘) ∈ [0, 1], (1)

where 𝐹𝑘(𝑥𝑖) denotes the set of points that are among the 𝑘 nearest 
neighbors of point 𝑥𝑖 in 𝑃 (𝐷) but not among the respective neighbors 
of the same point in 𝐷; and 𝑟(𝑥𝑖, 𝑥𝑗 ) refers to the rank of point 𝑥𝑗 within 
the ordered nearest neighbors of 𝑥𝑖 in 𝑃 (𝐷). A TW value close to 1 
indicates that one can trust the local patterns visible in 𝑃 (𝐷).

Continuity [28] measures if the 𝑘 nearest neighbors in 𝐷 are also 
neighbors in 𝑃 (𝐷), i.e., indicates missing neighbors, and is computed 
as 

CT(𝑘) = 1 − 2
|𝐷|𝑘(2|𝐷| − 3𝑘 − 1)

|𝐷|

∑

𝑖=1

∑

𝑥𝑗∈𝑀𝑘(𝑥𝑖)
(�̂�(𝑥𝑖, 𝑥𝑗 ) − 𝑘) ∈ [0, 1], (2)

where 𝑀𝑘(𝑥𝑖) refers to the set of points that are among the 𝑘 nearest 
neighbors of 𝑥𝑖 in 𝐷 but not among the 𝑘 nearest neighbors in 𝑃 (𝐷); 
and ̂𝑟(𝑥𝑖, 𝑥𝑗 ) is the rank of point 𝑥𝑗 within the ordered nearest neighbors 
of 𝑥𝑖 in 𝐷. Similar to trustworthiness, a CT value of 1 is best.

For labeled data that is ideally well separable in 𝐷, Neighborhood 
Hit [29] measures the proportion of the 𝑘 nearest neighbors of a point 
in 𝑃 (𝐷) that share the same class label as the point itself as 

NH(𝑘) =
|𝐷|

∑

𝑖=1

|{𝑥𝑗 ∈ 𝑁𝑘(𝑥𝑖) ∣ 𝑙𝑗 = 𝑙𝑖}|
|𝐷|𝑘

∈ [0, 1], (3)

where 𝑁𝑘(𝑥𝑖) denotes the set of 𝑘 nearest neighbors of the point 𝑥𝑖 in 
𝑃 (𝐷). A value NH = 1 tells that the projected data can be well separated 
into different classes.

Finally, Normalized Stress [30] measures how well a projection pre-
serves pairwise distances as 

NS =
∑

𝑖,𝑗 (𝑑𝑖𝑗 − 𝑑𝑖𝑗 )2
∑ 2

∈ [0, 1], (4)

𝑖,𝑗 𝑑𝑖𝑗
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where 𝑑𝑖𝑗 is the Euclidean distance of samples 𝑥𝑖 and 𝑥𝑗 in 𝐷 and 𝑑𝑖𝑗
is the Euclidean distance of the projected points 𝑃 (𝑥𝑖) and 𝑃 (𝑥𝑗 ). A 
distance-preserving projection should ideally produce NS = 0.

2.4. Inverse projections

An inverse projection is a function 𝑃−1 ∶ R𝑚 → R𝑛 that aims to 
reverse the mapping of a given projection 𝑃  for a dataset 𝐷. 𝑃−1 is typi-
cally constructed by minimizing a cost of the type ∑𝑥∈𝐷 ‖𝑃−1(𝑃 (𝑥))−𝑥‖, 
where ‖⋅‖ denotes the 𝐿2 norm. Also, inverse projections should ideally 
be smooth so that one can use them to extrapolate synthetic data values 
away from the projected points 𝑃 (𝐷).

While many projection techniques exist, only a few inverse projec-
tions have been proposed. One early such technique inverts a sample 
𝑥 ∈ R2 by Shepard interpolation of all samples 𝑥𝑖 ∈ 𝐷 with weights 
‖𝑥 − 𝑃 (𝑥𝑖)‖ [11]. This inverse projection is smooth by design and can 
handle, in theory, any direct projection 𝑃 . Yet, this method has a 
global nature, so it cannot handle local structures of high-dimensional 
datasets. Local Shepard interpolation was further refined by iLAMP [31] 
to invert the piecewise-linear affine projection LAMP [30]. As iLAMP 
uses only a small set of neighbor points, it is not smooth. Later, Amorim 
et al. [10] refined it using Radial Basis Functions (RBFs) to a local 
and piecewise continuous result. The UMAP technique [22] is, to our 
knowledge, the first technique (besides PCA-class methods) to jointly 
compute 𝑃  and 𝑃−1. However, UMAP’s 𝑃−1 can be difficult to interpret 
as UMAP’s 𝑃  has a highly non-linear nature that tends to cluster 
similar samples, leaving large empty regions in the 2D space where 
𝑃−1 must extrapolate far away from known points [16]. Deep learning, 
originally in the form of autoencoders [32], has also been used for 
direct and inverse projections. More recently, for a given dataset 𝐷 and 
projection technique 𝑃 , supervised deep learning, using the training 
set (𝐷,𝑃 (𝐷)), was used to learn both 𝑃 [33–35] and 𝑃−1 [34,36]. Such 
methods are linear in the size of 𝐷, thus much faster than earlier inverse 
and/or direct projections, work well for any data dimensionality 𝑛, and 
are smooth by construction. Yet, it is hard for users to predict how 
deep-learned (inverse) projections actually work.

2.5. Inverse projection quality

The quality of inverse projections can be measured either directly by 
considering the inverse projection on points for which we have ground 
truth, i.e., on projected data samples; or indirectly by assessing other 
desirable properties such as smoothness, as follows.

An inverse projection should ideally yield 𝑃−1(𝑃 (𝑥)) = 𝑥 for all 
𝑥 ∈ 𝐷. For a single 𝑥𝑖 ∈ 𝐷, this can be evaluated by the mean-squared 
error (MSE) defined as 

MSE(𝑥𝑖) =
1
𝑛

𝑛
∑

𝑗=1
(𝑥𝑖𝑗 − 𝑃−1(𝑃 (𝑥𝑖𝑗 )))2

= 1
𝑛
‖𝑥𝑖 − 𝑃−1(𝑃 (𝑥𝑖))‖2.

(5)

For an entire dataset 𝐷, the average MSE can be computed as 

MSE(𝐷) = 1
|𝐷|

|𝐷|

∑

𝑖=1
MSE(𝑥𝑖)

= 1
|𝐷|

|𝐷|

∑

𝑖=1

1
𝑛
‖𝑥𝑖 − 𝑃−1(𝑃 (𝑥𝑖))‖2.

(6)

Note that Eq.  (6) can also be applied to subsets of 𝐷 [16,36]. This is 
useful when splitting data into train and test sets.

For points 𝑞 ∈ (R2 − 𝑃 (𝐷)), i.e., points ‘unseen’ by 𝑃 , we have 
no ‘ground truth’ in terms of samples in 𝐷 that project there. These 
points are exactly the ones where we want to practically use an inverse 
projection later on to create synthetic data samples. The gradient map
technique [16] can be used to evaluate the quality of an inverse projec-
tion for such unknown points by computing the total pseudo-derivative 
3 
of 𝑃−1. To this end, we need to quantize 𝑞 ∈ 𝑍2 to a pixel location on 
a discrete 2D grid, such that we can estimate the gradient magnitude 
of 𝑃−1 at 𝑞 via a symmetric finite difference filter in horizontal and 
vertical directions as

𝐺(𝑞) =
√

‖𝑃−1(𝑞𝑟) − 𝑃−1(𝑞𝑙)‖2 + ‖𝑃−1(𝑞𝑢) − 𝑃−1(𝑞𝑑 )‖2,

where 𝑞𝑟, 𝑞𝑙 , 𝑞𝑢, and 𝑞𝑑 are the right, left, up, and down 4-neighboring 
pixels of 𝑞. When 𝐺(𝑞) has nearly constant (and, ideally, low) values 
over a 2D area, one-pixel ‘moves’ of 𝑞 in that area cause only small 
changes to the inferred samples 𝑃−1(𝑞) ∈ R𝑛, i.e., 𝑃−1 is smooth at these 
locations, which is highly desirable. For instance, users interactively 
selecting points 𝑞 in such areas will get new data points in a confined, 
controlled area in R𝑛. Conversely, when 𝐺(𝑞) has high values, small 
changes in 2D, e.g., caused by a user interactively moving the point 
𝑞, can suddenly ‘throw away’ the generated samples 𝑃−1(𝑞) into far-
apart regions in R𝑛, in a way that is perceived as confusing and 
uncontrollable by the user. Applications such as projection-assisted 
interpolation or data synthesis then become hard to support [10–12].

2.6. Decision maps

Projections are designed to preserve similarities in the data space 
𝐷 in the scatterplots 𝑃 (𝐷) they create. Hence, such scatterplots can be 
used to judge the classification difficulty of a dataset: If a scatterplot, 
which has high projection quality metrics, fails to clearly separate 
points from different classes, this may indicate that a classifier will face 
challenges in achieving high accuracy for that dataset [37]. Decision 
maps extend the above idea of visually capturing the quality of a 
classification model to points outside a training or test set 𝐷 in a 
dense fashion. They are created using inverse projections as follows: 
Each pixel of a 2D image is mapped back to the data space via 𝑃−1, 
next classified by the model, and then colored to depict its corre-
sponding class. Regions in the map with the same color then show the 
decision zones, and neighboring pixels of different colors depict the 
decision boundary of the classifier. Some algorithms, like DBM[12], 
are projection-agnostic, i.e., they can be applied by combining any 
suitable direct and inverse projections 𝑃  and 𝑃−1. Other methods, like 
SDBM [14], jointly learn a projection and its inverse. Yet other methods 
leverage the inherent invertibility of some projection algorithms, as 
shown by Schulz et al. [13], who use a supervised version of UMAP 
to create decision maps.

The hard-to-predict nature of inverse projections – related to their 
limited smoothness discussed above in Section 2.5 – can lead to de-
cision maps showing fragmentation and jagged decision boundaries. 
Filtering poorly projected points has been used to alleviate this [12]. 
Yet, artifacts still remain, so users need ways to know if these are 
caused by the inverse projection or the actual ML model under ex-
amination. As such, fundamental issues concerning the interpretability 
of inverse projections remain. Recently, Wang et al. [18,19] explored 
the limitations of decision maps – and thus implicitly their under-
lying inverse projections – showing the limited interpretability and 
predictability of current inverse projection methods.

3. Method

We next present MultiInv, our multilateration-based inverse projec-
tion method as proposed by Blumberg et al. [20]. The main idea of 
this approach builds upon the goal of metric MDS, which aims to map 
distances ‖𝑥𝑖−𝑥𝑗‖, 𝑥𝑖, 𝑥𝑗 ∈ 𝐷 to distances ‖𝑃 (𝑥𝑖)−𝑃 (𝑥𝑗 )‖ up to a scaling 
factor [38]. This property, expressed as ‖𝑥𝑖−𝑥𝑗‖ ≈ ‖𝑃 (𝑥𝑖)−𝑃 (𝑥𝑗 )‖, is key 
to our approach. Further, we leverage geometrical relationships among 
the data samples by using multilateration. This principle, also known 
as trilateration in R2, aims to find a point’s position via its distances to 
other known points. Typically used for geopositioning, multilateration 
can be applied in any Euclidean space [39].
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Fig. 1. Through trilateration, the position of point 𝑝 ∈ R2 can be found given three 
reference points 𝑥1, 𝑥2, 𝑥3 ∈ R2 and their distances (i.e., the scalar values 𝑑1, 𝑑2, 𝑑3) 
to point 𝑝.

2D Example: We want to compute point 𝑝 = (𝑝1, 𝑝2)𝑇  given three 
known points 𝑥1 = (𝑥1,1, 𝑥1,2)𝑇 , 𝑥2 = (𝑥2,1, 𝑥2,2)𝑇 , and 𝑥3 = (𝑥3,1, 𝑥3,2)𝑇
in R2 and their distances 𝑑1, 𝑑2, and 𝑑3 to 𝑝 (see Fig.  1). We get that
(𝑥1,1 − 𝑝1)2 + (𝑥1,2 − 𝑝2)2 = 𝑑21
(𝑥2,1 − 𝑝1)2 + (𝑥2,2 − 𝑝2)2 = 𝑑22
(𝑥3,1 − 𝑝1)2 + (𝑥3,2 − 𝑝2)2 = 𝑑23 .

We subtract one equation (here the first) from the other two:
(𝑥2,1−𝑝1)2 + (𝑥2,2−𝑝2)2 − (𝑥1,1−𝑝1)2 − (𝑥1,2−𝑝2)2 = 𝑑22−𝑑

2
1

(𝑥3,1−𝑝1)2 + (𝑥3,2−𝑝2)2 − (𝑥1,1−𝑝1)2 − (𝑥1,2−𝑝2)2 = 𝑑23−𝑑
2
1 .

Rewriting and simplifying these equations to
− 2(𝑥2,1 − 𝑥1,1)𝑝1 − 2(𝑥2,2 − 𝑥1,2)𝑝2

= 𝑑22 − 𝑑21 − (𝑥22,1 − 𝑥21,1) − (𝑥22,2 − 𝑥21,2)

− 2(𝑥3,1 − 𝑥1,1)𝑝1 − 2(𝑥3,2 − 𝑥1,2)𝑝2
= 𝑑23 − 𝑑21 − (𝑥23,1 − 𝑥21,1) − (𝑥23,2 − 𝑥21,2)

eliminates the squares of our target variables 𝑝1 and 𝑝2. Solving the 
resulting linear equation system then gives us 𝑝.
Generalization to 𝐧 Dimensions: For any 𝑛-dimensional space with 
𝑛 < |𝐷|, take 𝑛 + 1 known samples 𝑥1,… , 𝑥𝑛+1 in R𝑛, where 𝑥𝑖 =
(𝑥𝑖,1,… , 𝑥𝑖,𝑛)𝑇 ∈ R𝑛, 𝑖 = 1,… , 𝑛 + 1. Consider also a point 𝑝 =
(𝑝1,… , 𝑝𝑛)𝑇 ∈ R𝑛 and its distances 𝑑𝑖 to each sample 𝑥𝑖. For each sample 
𝑥𝑖, we have ‖𝑥𝑖 − 𝑝‖ = 𝑑𝑖 ⇔ ‖𝑥𝑖 − 𝑝‖2 = (𝑑𝑖)2 ⇔

∑𝑛
𝑗=1(𝑥𝑖𝑗 − 𝑝𝑗 )2 = (𝑑𝑖)2. 

Assuming ideal distance preservation by the direct projection 𝑃 , the 
distances 𝑑𝑖 are equal to ‖𝑃 (𝑥𝑖) − 𝑃 (𝑝)‖. Next, if we have a given point 
𝑞 ∈ R2 – the one we want to inversely project to 𝑝 – then we have 
that 𝑃 (𝑝) = 𝑞 (since we want that 𝑃−1(𝑞) = 𝑝). Thus, we can compute 
‖𝑃 (𝑥𝑖)−𝑃 (𝑝)‖ directly as ‖𝑃 (𝑥𝑖)−𝑞‖. The above gives us 𝑛+1 equations 
with 𝑛 unknowns 𝑝1,… , 𝑝𝑛. As the unknowns are squared, we subtract 
the first equation (w.l.o.g.) from all others. This yields a linear equation 
system of the form 𝐴𝑝 = 𝑏 with

𝐴 =
⎡

⎢

⎢

⎣

−2(𝑥2,1 − 𝑥1,1) … −2(𝑥2,𝑛 − 𝑥1,𝑛)
⋮ ⋱ ⋮

−2(𝑥𝑛+1,1 − 𝑥1,1) … −2(𝑥𝑛+1,𝑛 − 𝑥1,𝑛)

⎤

⎥

⎥

⎦

and

𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝑑2)2 −
𝑛
∑

𝑗=1
(𝑥2,𝑗 )2 − ((𝑑1)2 −

𝑛
∑

𝑗=1
(𝑥1,𝑗 )2)

⋮

(𝑑𝑛+1)2 −
𝑛
∑

𝑗=1
(𝑥𝑛+1,𝑗 )2 − ((𝑑1)2 −

𝑛
∑

𝑗=1
(𝑥1,𝑗 )2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

To determine the position of a sample 𝑝 ∈ R𝑛, we need to know 
the positions of 𝑛 + 1 other samples and their distances to 𝑝. Hence, 
4 
Fig. 2. Reference point selection strategies for multilateration (a)–(c) using a fixed set 
of reference points and (d)–(f) using multiple randomized iterations. The target point 
to be inversely projected is marked in red. Reference points are indicated by a black 
border. (c), (f) Green hues encode local stress values; darker green shows low values, 
and yellow higher values, respectively.

we have the constraint that the dataset size |𝐷| must exceed the data 
dimensionality 𝑛, an assumption which holds for most datasets.

3.1. Choosing reference points for multilateration

Choosing the samples 𝑥𝑖 that are used as reference points in the 
multilateration computation is a crucial aspect of our approach. Using 
all samples in 𝐷 would yield a method similar to [11], which, as 
mentioned in Section 2.4, cannot capture local structures well – at a 
higher level, one can say that such an approach overfits the data. Also, 
our approach requires using precisely 𝑛 + 1 points for the equation 
system not to be over- or underdetermined. Ideally, we expect 𝐴𝑝 = 𝑏
to provide exactly one solution for the position of 𝑝. However, if some 
of the samples 𝑥𝑖 are collinear or coincident, the matrix 𝐴 is singular 
(its determinant is zero), i.e., the equation system becomes degenerate 
and does not yield a unique solution. Separately, a projection usually 
does not preserve distances equally well across all samples in 𝐷, so 
certain subsets of 𝑛+1 samples in 𝐷 taken as reference points may lead 
to more accurate inverse projections. We address this by evaluating 
several selection strategies for choosing the reference points that can be 
categorized into (1) strategies using a fixed subset of 𝑛+1 samples from 
𝐷 as reference points for a specific target point, or (2) strategies using 
multiple randomized iterations considering multiple potential subsets 
as reference points for the target point.
Fixed Set of Reference Points: Our first approaches use a fixed subset 
of 𝐷 as reference points for a specific target point 𝑞 ∈ R2. This means 
that, to inversely project a single 𝑞, we deterministically select exactly 
𝑛+ 1 samples. First, we considered using the samples corresponding to 
the 𝑛+1 furthest projected points, i.e., those having the largest distances 
𝑑𝑖 to 𝑞 (Fig.  2(a)). This approach could, in theory, work well for 
projections that aim to optimize global neighborhoods. Alternatively, 
we used the samples corresponding to the 𝑛 + 1 closest points to 𝑞 in 
2D (Fig.  2(b)). The inverse projection should then behave more like the 
local iLAMP approach [10] or, more generally, work for projections that 
focus on local neighborhoods.

While taking the furthest or closest points is simple to implement, 
we might consider poorly projected samples as reference points. If we 
think, for instance, of outliers being projected far from other points, 
the selection gets biased towards these points or vice versa for points 
being projected into the center of the 2D plot. When the distances of 
the corresponding data samples to the other samples in 𝐷 are not well 
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preserved by the projection, our inverse projection will not be accurate. 
To counteract choosing poorly projected points as references, we next 
propose to select a set of 𝑛 + 1 samples with minimal distortions (Fig. 
2(c)). For this, we calculate the average squared deviation of pairwise 
distances of a data sample to all other samples in 𝐷 compared to the 
distances of their projections, i.e., a local stress value as 

stress𝑖 =
1

|𝐷| − 1
∑

𝑗≠𝑖
(𝑑𝑖𝑗 − 𝑑𝑖𝑗 )2, (7)

where 𝑑𝑖𝑗 is the Euclidean distance between samples 𝑥𝑖 and 𝑥𝑗 in 𝐷; 
and 𝑑𝑖𝑗 is the Euclidean distance between 𝑃 (𝑥𝑖) and 𝑃 (𝑥𝑗 ). We then 
select the 𝑛 + 1 best-projected data points, i.e., those having minimal 
local stress values. The downside of this approach is that, apart from 
inversely projecting points that are among the best-projected ones and 
cannot be reference points for themselves, we now use exactly the same 
set of points as references independent of target point 𝑞. Moreover, 
the selected points may lie in close proximity or in an unfortunate 
arrangement, possibly restricting the information to a concealed area of 
the data, with reference points possibly being collinear or coincident.
Multiple Randomized Iterations: To address the limitations stemming 
from a fixed set of reference points, we propose several strategies based 
on the idea of majority voting. Specifically, for a given target point, 
we consider several subsets of 𝐷 as references, as follows. First, for a 
given 2D point 𝑞 to invert, we select 𝑛 + 1 samples from 𝐷 randomly 
and compute the resulting 𝑝 = 𝑃−1(𝑞) using these samples as reference 
points (Fig.  2(d)). We repeat this 𝑠 times and finally set 𝑝 to the medoid 
of all the generated values. Simply put, taking the medoid acts as a low-
pass filter that limits the potentially undesirable effects due to a poor 
(random) selection of samples from 𝐷. Further, we tested a stratified 
random approach incorporating clustering (Fig.  2(e)). We first cluster 𝐷
using 𝑘-means with 𝑘 = 𝑛 + 1 (our target number of samples to select) 
and then randomly select one point from each cluster. We repeat the 
selection 𝑠 times and take the medoid of the generated positions. Clus-
tering is expected to reduce cases where selected points are collinear or 
coincident. However, due to the restriction to select exactly one point 
from each cluster, we might always select some poorly projected points 
if they are assigned to the same cluster, e.g., outliers. Hence, we propose 
a third randomized approach that applies filtering to the data (Fig.  2(f)). 
Specifically, we filter out poorly projected data samples from the list of 
reference point candidates by computing the local stress values as in Eq. 
(7) and removing the 20% with the highest distortions. We then apply 
the simple randomized strategy with the remaining 80% as reference 
point candidates 𝑠 times and take the medoid of the generated values. 
Note that, when using filtering, 𝑠 is expected to be smaller compared 
to the other randomized strategies, as we already filtered out poorly 
projected samples. We evaluate and compare the performance of these 
different reference point selection strategies in Section 4.1.

4. Evaluation and results

We evaluate the quality of MultiInv using established quality mea-
sures for inverse projections (see Section 2). For known samples, we 
compute the per-sample mean-squared error (MSE) and provide the 
average MSE over all samples (Eq.  (6)) as a global quality metric for 
each projected dataset. To evaluate the inverse projection quality for 
unknown points, we show gradient maps [16] as a visual means of 
evaluation. As explained earlier, gradients should be overall constant 
and low-valued, so that neighboring points in 2D are mapped closely 
in the high-dimensional space by 𝑃−1.

We further used MultiInv to compute decision maps. As explained 
in Section 2.6, such maps show the behavior of a trained classification 
model as decision zones (i.e., data space areas where the same label 
is inferred) separated by decision boundaries (i.e., places where the 
model changes the inferred label) [12–14]. As classification models 
for the decision maps, we used a 𝑘 nearest neighbor classifier with 
5 
Table 1
Datasets used in our evaluation with dimensionality 𝑛, intrinsic dimensionality ratio 
𝜌𝑛, and number of samples |𝐷|.
 Dataset 𝑛 𝜌𝑛 |𝐷|  
 Plane 3 0.67 200  
 Rings 3 1 180  
 Blobs 10 0.6 1100 
 Iris [40] 4 0.5 150  
 Seismic [41] 24 0.29 646  
 Bank [42] 63 0.46 2059 

𝑘 = 5, a random forest classifier, and logistic regression. Such clas-
sifiers should produce relatively compact decision zones with smooth 
boundaries [19]. As such, we can evaluate the quality of our inverse 
projection by checking for these attributes in the created decision maps. 
For the generation of gradient and decision maps, we use a grid size of 
250 × 250 pixels.
Datasets: We applied our method on synthetic data with a known 
topology as well as on real-world datasets: (1) Plane is a simple syn-
thetic dataset of two same-sized clusters of points in 3D that lie approxi-
mately on a 2D plane, i.e., the data structure can be approximated well 
by only 2 dimensions. (2) Rings is a synthetic dataset containing 3D 
points arranged in two interlacing rings having 100 and 80 samples, 
respectively. Given the interlacing of rings, this represents a scenario 
where any projection to 2D induces a loss of information. (3) Blobs is a 
synthetic dataset of 1000 points generated from a Gaussian distribution 
with 5 clusters and 100 additional randomly distributed noise samples 
with a dimensionality of 𝑛 = 10. (4) Iris [40] serves as a simple real-
world application and represents three different flower species with 
four dimensions and 150 samples. (5) Seismic [41] shows a real-world 
scenario with more dimensions (𝑛 = 24) and includes data samples of 
seismic bumps in a coal mine. (6) Bank [42] involves data of a direct 
marketing campaign from a Portuguese bank used to predict whether 
a customer will subscribe to a banking product or not and represents 
the most high-dimensional included dataset with 𝑛 = 63. An overview 
of the datasets is given in Table  1. The intrinsic dimensionality ratio 
𝜌𝑛 [23] measures the percentage of principal components (computed 
by PCA) that are needed to explain 95% of the variance in the data. 
Thus, it indicates whether the projection may encounter difficulties 
when mapping the data to 2D.
Projections: As direct projection methods, we considered metric MDS, 
CCA, Sammon’s mapping, and PCA, as they all have a distance-preservin
objective (see Section 2.2). While MDS and PCA are global methods, 
CCA and Sammon’s mapping focus on local neighborhoods, enabling 
us to evaluate our 𝑃−1 for diverse types of projections. The quality 
of an inverse projection depends, by construction, on the quality of 
the direct projection 𝑃  one aims to invert. As such, we want to make 
sure that our direct projections we start with are of high quality in 
the first place. We measure this by the trustworthiness, continuity, 
neighborhood hit, and normalized stress metrics (see Section 2). For 
the first three, we set a value of 𝑘 = 7, following [8,23,43]. Table  2 
shows these measurements for all included datasets and projections. As 
visible, we get quite high quality, meaning our inputs are a viable basis 
for inversion through multilateration or, more generally, any other 
inverse projection method.

4.1. Comparison of reference point selection strategies for multilateration

We evaluated six different strategies for selecting the reference 
points (see Section 3). Table  3 provides the average MSE as quality met-
ric for inverting known points (i.e., projected data samples) for these 
different strategies on all included datasets and projection methods. 
Among the three strategies with a fixed set of reference points, the 
selection of points with minimum local stress values clearly outperforms 
the others, having consistently lower MSE values. The furthest and the
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Table 2
Projection quality measurements with established metrics (see Section 2) for different datasets and projection techniques. 
Arrows in brackets indicate good values for the respective metric. All values are rounded to the second decimal place.
 Dataset TW (↑) CT (↑) NH (↑) NS (↓)

 M
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 Plane 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0  
 Rings .99 .98 .98 .98 1 1 1 1 .96 .92 .92 .95 .01 .07 .06 .02 
 Blobs .93 .92 .92 .92 .94 .95 .97 .96 .99 .98 .97 .97 .02 .1 .09 .06 
 Iris .98 .97 .97 .97 .99 .99 .99 .99 .95 .94 .94 .94 0 0 0 0  
 Seismic .96 .96 .96 .97 .98 .98 .98 .99 .9 .9 .9 .9 .04 .23 .23 .1  
 Bank .88 .8 .8 .85 .9 .9 .9 .9 .85 .85 .85 .85 .13 .47 .47 .38 
Table 3
Average Mean-Squared-Error on whole dataset 𝐷 of MultiInv with different reference point selection strategies using six datasets and four 
projection methods. The values are rounded to the fourth decimal place. The best-performing strategy is highlighted for each dataset and direct 
projection.
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 MDS CCA

 Plane 2.2033 0.0842 0.0003 0.0005 0.0017 0.0003 0.0011 0.0087 0.0003 0.0002 0.0003 0.0002 
 Rings 6.1 × 1024 1.4 × 1024 0.014 0.0154 0.0145 0.0145 4.04 × 1022 9.67 × 1022 0.0398 0.0268 0.0228 0.024  
 Blobs 26.8795 39.9975 0.0541 0.0244 0.1012 0.028 3.6068 4994.72 0.0263 0.0252 0.0412 0.0213 
 Iris 828 7.3 × 1024 0.0179 0.0049 0.0064 0.0041 176.62 2.55 × 1055 0.0032 0.0033 0.0033 0.0033  
 Seismic 1.3 × 1014 1.9 × 1020 0.1889 7.2821 2.8 × 1014 8.3341 9.2 × 1012 1.2 × 1020 0.1814 4.6731 3.6 × 1012 4.6177  
 Bank 23873 340.51 58.2284 10.2324 50.0446 7.3672 1.2 × 105 77.6901 0.4611 0.8906 5.8215 0.8809  
 Sammon PCA

 Plane 0.0011 0.0087 0.0003 0.0002 0.0002 0.0002 0.0 0.0013 0.0 0.0 0.0 0.0  
 Rings 6.0 × 1026 4.7 × 1025 0.6165 0.0275 0.0232 0.025 9.8 × 1021 1.2 × 1022 0.3434 0.0131 0.0137 0.0126 
 Blobs 421.61 3314.46 6.3059 0.0274 0.1299 0.0234 0.2985 29.2552 0.0143 0.0206 0.0425 0.0163  
 Iris 120.28 3.1 × 1023 0.0032 0.0034 0.0035 0.0032 259.96 6.9 × 1024 0.003 0.0029 0.003 0.0029 
 Seismic 9.2 × 1012 1.2 × 1020 0.1814 4.3715 2.7 × 1012 4.7279 2 × 1014 2.3 × 1020 0.1852 7.3388 9.8 × 1012 4.5916  
 Bank 1.2 × 105 77.7166 0.4692 0.8896 5.8236 0.8721 87.9265 9.8 × 105 1.0846 1.0864 3.8416 0.8708 
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losest point selection strategies produce a few very high values for 
SE(𝑥𝑖), resulting in a high average MSE for multiple datasets and 
rojection techniques. This is most likely due to reference points being 
oorly chosen, i.e., being collinear, coincident, or having distances not 
ell preserved by the projection.
Fig.  4 visualizes the local stress values for all tested datasets and pro-

ection methods, showing that pairwise distances are indeed not equally 
ell preserved by the projections. For MDS, high-stress values tend to 
ppear especially for samples along the outer edge of projected data 
loser to the projection borders and are most prominent among outliers. 
he only exception is the Rings dataset, where high-stress values appear 
n the projected intersections of the rings. Since these intersections 
re not representative of the original 3D data, distances of these data 
oints towards the others are most distorted. Similar observations of 
ocal stress values can be made for the other projections as well, with 
he difference that high-stress values are not only prominent at the 
orders of the projection but tend to appear in the center as well. In 
eneral, however, points inside the same cluster tend to be equally well 
rojected with a smooth change of local stress values over close points. 
s the minimum stress strategy takes the points whose distances are best 
reserved as references, it does not as easily encounter high MSE(𝑥𝑖)
alues as the furthest and closest point selection strategies. However, as 
eference points are chosen independently of the target point, yielding 
n almost completely fixed set of reference points for a given dataset, 
his method works like a linear transformation of the space with respect 
o these points. This becomes evident when looking at the resulting 
radient and decision maps as exemplified by the Blobs dataset for the 
CA projection in Fig.  3. The technique produces perfectly smooth and 
imilarly low gradients for the whole plot. Most points in the decision 
s

6 
ig. 3. Gradient map (left) and decision map (middle) for the Blobs dataset when using 
CA as projection and MultiInv as inverse projection. Reference points (marked red on 
he right) for multilateration were selected based on the minimum local stress value 
right). The decision map was generated by training a 𝑘 nearest neighbor classifier with 
= 5 and coloring each pixel according to its assigned class when inversely projecting 
t to the data space.

ap are misclassified as belonging to the blue-colored cluster in the 
pper right corner, although they are closer to projected points of other 
lasses. This is due to the restricted fixed set of reference points, where 
ne is taken from the blue cluster and all remaining from the red 
luster.
To tackle the issues stemming from a fixed set of reference points, 

e used randomized approaches. Our previous evaluation [20] showed 
hat, for a sufficiently high number of selection steps 𝑠, the errors of in-
ersely projecting points from 𝐷 more or less stabilize beyond a certain 
umber of trials. Hence, we selected 𝑠 for each dataset individually, so 
hat the error does not fluctuate much, i.e., is representative for the 
trategy. In a stratified random approach, we incorporated clustering
ith the restriction to select exactly one point from each cluster as 
eference point. While clustering is expected to reduce cases where 
elected points are collinear or coincident, it seems that for some 
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Fig. 4. Local stress values for different datasets and projections. Low stress values are colored in dark green and high stress values in yellow. Points are ordered according to the 
stress values such that points with high values are plotted on top of the others.
datasets, we always select some poorly projected points, resulting in 
high errors. This is shown by the simple randomized approach (without 
clustering) outperforming the clustering one in terms of average MSE 
(see Table  3).

Filtering out the worst 20% of data samples and applying the ran-
domized strategy with the remaining 80% as reference point candidates 
is an alternative reference point selection strategy. When comparing 
the simple randomized with the filtering strategy, we can, however, see 
that no strategy strongly outperforms the other since the MSE values are 
more or less on the same level. When looking at the gradient ranges in 
Fig.  6, we can notice that they tend to be smaller for the filtered random 
approach than the simple random one. As the simple randomized and 
7 
the randomized with filtering strategies performed overall best among 
the reference point selections, we use them both for the remaining 
evaluation.

4.2. Comparison to existing inverse projection techniques

We next compare our MultiInv approach to the inverse projection 
methods iLAMP [31], iNN [16,36], and RBF [10], as these techniques 
are also usable in conjunction with a user-chosen projection technique. 
For each method, we use the same parameters as proposed in the 
respective paper. We left SSNP [34] and autoencoders [32] out from the 
comparison since these compute projection 𝑃  and inverse projection 
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Table 4
Average Mean-Squared-Error (MSE) on test data (20% of whole data) for the inverse projection techniques under evaluation 
using six datasets and four projection methods. Results are rounded to the fourth decimal place. The best-performing 
combination of direct and inverse projection is highlighted for each dataset. 
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 MDS CCA

 Plane .0003 .0002 .0006 .0002 .0002 .0002 .0002 .0007 .0001 .0001 
 Rings .0141 .0161 .0012 .0012 .0008 .0274 .0241 .0014 .0009 .001  
 Blobs .0244 .0286 .0057 .0053 .0059 .0255 .0221 .0056 .0059 .006  
 Iris .0039 .004 .0034 .0038 .0036 .0029 .0024 .004 .0031 .0029 
 Seismic 8.1972 7.6382 .009 .1601 .0086 3.9003 4.0219 .0071 .0074 .0069 
 Bank 10.1569 7.4881 .0616 .0641 .0651 .914 .8877 .078 .0735 .0809 
 Sammon PCA

 Plane .0002 .0002 .0007 .0001 .0001 .0 .0 .0007 .0001 .0001 
 Rings .0364 .0213 .0014 .0009 .0011 .0139 .0133 .0014 .0012 .0012 
 Blobs .028 .0226 .0061 .0059 .0063 .021 .0164 .0062 .0059 .0064 
 Iris .0025 .003 .0043 .0034 .0031 .0024 .0022 .0044 .0028 .0033 
 Seismic 3.8713 4.7056 .0071 .0081 .0069 6.8332 4.2455 .005 .1257 .0049 
 Bank .8905 .8854 .078 .0749 .081 1.101 .8767 .0705 .0657 .0736 
𝑃−1 jointly (see Section 2). As such, we cannot use these to invert a 
given projection, i.e., in our case MDS, CCA, Sammon’s mapping, and 
PCA.

Evaluation on known points: To assess the average MSE of un-
seen test samples, we split the data into training and testing subsets. 
Technically, our approach is a lazy learner [44], i.e., has no training 
phase and does not need a separate test set for evaluating its quality. 
Yet, to be able to fairly compare our 𝑃−1 with inverse projections 
that require training, we restrict multilateration to only use training 
samples as reference point candidates. Table  4 shows the average 
MSE of the test samples for each inverse projection technique when 
utilizing different projections, 80% of the data for training and the 
remaining 20% for testing. For the synthetic Plane and the real-world
Iris data, our method manages to achieve a low average MSE for all 
projections under evaluation, which is competitive towards the results 
of iLamp, iNN, and RBF. What these datasets have in common is that 
both have an intrinsic dimensionality 𝑛 ⋅ 𝜌𝑛 of 2 (see Table  1), meaning 
that two dimensions are already sufficient to represent 95% of the 
data variance. This indicates that under good projection conditions,
i.e., almost no loss of information induced by 𝑃 , multilateration is a 
valid and well-performing inverse projection technique. However, the 
average MSEs also show that our method encounters limitations when 
the projection induces significant information loss. For the higher-
dimensional datasets Seismic and Bank, the average MSE on the test 
data is much higher for MultiInv than for the other evaluated inverse 
projection techniques. However, the difference varies strongly across 
the four projection techniques with MDS tending to produce higher 
errors specifically for our 𝑃−1. This shows that different projections 
produce low-dimensional representations of the same dataset that vary 
strongly in quality, which in turn strongly influences the quality of the 
inverse projection techniques.

While Table  4 shows global indicators of the quality of inverse 
projections, it does not explain the location or sources of errors. Fig. 
5 covers this in greater detail for the Blobs dataset projected by MDS. 
For visual assessment of the MSEs, we show a 2D scatterplot of 𝑃 (𝐷)
and color-code its Voronoi diagram, where 𝑃 (𝑥𝑖) are the centroids of 
the cells, with values MSE(𝑥𝑖). We use a luminance colormap with 
dark mapping a high MSE and bright a low MSE, respectively. Tech-
nically, this approximates MSE(𝑥𝑖) over the entire image space using 
piecewise-constant interpolation and highlights regions of high and 
low distortions of the MDS projection and its inversion [24,26]. We 
see a notable difference in the MSE visualization of our method as 
compared to the other inverse projections in the distribution of errors. 
Our method spreads darker colors, i.e., higher MSE values, across
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multiple Voronoi cells, rather than having them concentrated in cells 
around the projected test samples. This shows the relative independence
of our approach from the choice of training and test data, unlike ML-
based methods. For our method, we also see that areas in the middle of 
the projection scatterplot (being surrounded by many data points) have 
a lower MSE than points at the projection borders. When comparing 
these patterns to the local stress values (Fig.  4), we can retrieve similar 
distributions. This shows (1) the strong dependency of our method on 
projection quality and (2) the applicability of multilateration as an 
indicator for projection distortions.
Evaluation on unknown points: Gradient map visualizations (see Fig. 
6 for MDS), which show the inverse projection’s behavior away from 
the known points in 𝑃 (𝐷), match the above findings. Despite having 
comparably high gradient ranges, these maps are quite smooth for 
our method, showing uniformly low values in the projection center 
surrounded by data samples in 𝑃 (𝐷). iLAMP yields high gradients 
visible as reticulated lines in gaps between projected point-clusters and 
in areas with no projected points. In contrast, our method shows low 
gradient values even in areas between clusters, where no data points 
exist, see e.g. the Iris and Plane datasets. Both our method and iLAMP 
show uniformly low gradient values near and around projected points. 
Conversely, RBF’s gradient maps show relatively high values between 
projected points and low values in regions with no projected points. 
The gradient map for iNN shows a mix of the above. Notably, for
Rings, RBF and iNN produce high gradients at the intersection of the 
rings in the projection, i.e., regions where the projection is misleading 
as the rings do not intersect or touch in the original 3D data space. 
Overall, RBF and iNN perform best among the inverse projections in 
terms of low gradient ranges. When the dataset dimensionality and 
complexity increase (see e.g. Seismic and Bank), our method reaches 
its limits, yielding high gradients, especially in the map corners. Yet, 
the gradients are relatively smooth in comparison to all other inverse 
projections. As mentioned in Section 2.5, low and constant gradients 
are essential for the practical usage of an inverse projection method. 
These general findings for MDS are mostly true for all projections 
under investigation. The respective gradient maps can be found in the 
Appendix.

Fig.  7 shows the decision maps computed by our method for a 𝑘 = 5-
nearest neighbor classifier and our six datasets projected by MDS. While 
these maps slightly differ from those produced by a random forest 
or logistic regression classifier (see Appendix) for the same projection 
technique, some patterns appear independently of the used classifier, 
indicating that they are caused by the inverse projection and not the 
classifier. The iLamp patterns for the decision map match the gradient 
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Fig. 5. Comparison of inverse projections showing the MSE for known points encoded in Voronoi cells associated with each projected sample of the Blobs datasets when applying 
MDS. The number at the bottom right corner indicates the average MSE for the test samples (20% of the dataset; colored in green).
Fig. 6. Gradient maps of inverse projections for six datasets projected using MDS. Darker colors indicate a low rate of change, and lighter areas show a high rate of change. The 
number at the bottom right shows the average gradient.
map results, i.e., decision boundaries are fragmented and jagged in 
areas where no data points are projected. For the Plane dataset, we 
argue that our inverse projection method produces the best map – with 
an almost linear boundary that separates the scatterplot into almost 
equally sized classes. For the other datasets, the boundaries appear 
more jagged with our approach than the others. This demonstrates 
uncertainties regarding the class in these regions. Otherwise, we can see 
a good separation of classes. For Rings and Blobs, we further see clear 
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differences between the decision maps when using MultiInv: For Rings, 
the map is incorrect close to the deceptive intersection of the two rings, 
which is a result of the loss of information induced by the projection. 
This shows again that our approach depends more on projection quality 
than other inverse projections. For Blobs, the main difference is that 
the decision zones of brown noise samples are far smaller in the maps 
created by our method. Yet, this is not the case when using the random 
forest classifier instead of the 𝑘 nearest neighbor classifier. The more 
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Fig. 7. Decision maps of inverse projections for six datasets projected using MDS and classified by a 𝑘-nearest neighbor classifier with 𝑘 = 5.
high-dimensional datasets Seismic and Bank demonstrate again the 
limitations of our approach. Yet, the classification is for those datasets 
not as easy as for the others since classes are not well separated by the 
projection. Similar results for all other projections and classifiers are 
given in the Appendix.

5. Discussion

We next discuss several key points of our approach:
Quality: Our results indicate that the effectiveness of MultiInv strongly 
depends on the quality of the direct projection 𝑃  we aim to invert 
and also on the dataset’s (intrinsic) dimensionality and configuration 
of data samples. We found that the quality of our approach diminishes 
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with increasing complexity and dimensionality of the dataset. There 
are several possible reasons for this: (1) sparse data, (2) high intrinsic 
dimensionality, (3) distortions in the direct projection, and (4) the curse 
of dimensionality [45].

The two points – distance-preserving nature of 𝑃  and dataset di-
mensionality – are subtly interconnected. Our key assumption is that 
𝑃  is able to preserve distances well, something that can be measured 
by low stress values. When this is the case, our method can yield 
accurate inverse projections. However, this constraint does not hold 
for (a) methods 𝑃  which were not designed with the goal of dis-
tance preservation, e.g., neighborhood-preserving methods like t-SNE 
or UMAP; or (b) datasets which, due to their intrinsic dimensionality, 
cannot be projected well while keeping distances preserved. As such, 
we summarize the application scope of our method to be for situations 
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when one knows to have a dataset that can be well projected while 
preserving distances. For other cases, we deem more general inverse 
projection methods, such as iNN, as more suitable – with the incurred 
constraints of such methods, i.e., the need for a training phase and the 
possibility of overfitting.
Simplicity: Our method is simple to implement, works for basically 
any 𝑛-dimensional unlabeled quantitative dataset, and requires only the 
number of selection steps 𝑠 as a free parameter. This contrasts with 
other inverse projection methods like SSNP (which needs labeled data) 
or any deep-learning method (which needs an architecture tailored to 
the input dataset apart from carefully tuned hyperparameter values).
Scalability: Solving linear equation systems has a runtime complexity 
of (𝑁3) (worst case) and (𝑁2) (best case) for 𝑁 equations, which 
corresponds to computing the inverse of a single target point. For us, 
𝑁 = 𝑛 + 1 for an 𝑛-dimensional dataset. Such costs can be decreased 
if one looks for an approximate solution – which should be fine in 
practice for visualization purposes. When using a randomized reference 
point selection strategy for multilateration, the cost is multiplied by 
the number of selection steps 𝑠. However, when using the random-
ized strategy with filtering, the required number of selection steps 
is expected to be lower. Additionally, our method does not require 
a training step, such as iNN [36], SSNP [34], or autoencoders [32]. 
Compared to these methods, our computing effort is limited only to the 
inference step. Separately, our technique can be used with progressive 
visualizations [46] since our randomized strategies improve in accuracy 
with each iteration – a feature that, to our knowledge, none of the 
existing inverse projection methods has.
Future Work: While inverse projections can enrich projection scatter-
plots [3,24,47], they must be interpretable to be practically effective. 
Algorithm-wise, we claim our technique meets this goal more than 
other existing techniques. Yet, improvements are possible. Despite our 
negative results partitioning the data by 𝑘-means for stratified sampling 
and the limitations of a fixed set of reference points, we believe that 
the reference point selection can be further optimized. Future work 
can explore alternative reference point selection strategies that work 
on a non-random basis. When incorporating filtering of data samples 
to select reference points, split proportions other than 0% and 20% 
could be further investigated. There is also a need to evaluate the 
limitations of our approach, including its runtime. Especially for the 
novel randomized reference point selection strategy incorporating fil-
tering based on local stress values, it can be interesting to investigate 
its influence on the required number of selection steps 𝑠 in comparison 
to the simple randomized approach. As explained, our method’s effec-
tiveness is tied to distance-preserving projections. Future work could 
explore adaptations or modifications that enable generalization to other 
popular techniques like t-SNE or UMAP, which do not explicitly opti-
mize for distance preservation. In general, inverting high-dimensional 
data by multilateration will require many samples to avoid problems 
stemming from sparsity. When comparing the quality of our method 
for reconstructing known data samples, we detected a match of MSE 
patterns to local stress values. Thus, the applicability of multilateration 
for evaluating projection methods could be exploited in greater detail.

6. Conclusion

We proposed MultiInv, an extended approach for the multilateration-
based inversion of MDS-class projections. Our technique is purely based 
on Euclidean geometry and the assumption of distance preservation. 
This avoids the need for more complex machine learning and deep-
learning based approaches, which are hard to fine-tune, understand, 
interpret, and predict. Algorithm-wise, our method is simple to im-
plement, efficient to compute, and can be applied to any generic 
high-dimensional dataset where the dataset size exceeds the dimension-
ality. We evaluate our inverse projection method by qualitatively and 
quantitatively comparing it to three key existing approaches for inverse 
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projections, using metric MDS, CCA, Sammon’s mapping, and PCA 
as direct projections. Quantitatively, our approach only yields similar 
errors in inversely projecting known points if the distances are well pre-
served by the projection, indicated by a low intrinsic dimensionality of 
the dataset. Qualitatively, our method produces smoother gradients be-
tween projected points (and clusters thereof), meaning that our method 
may be better suited for applications where users (interactively) change 
the position of a 2D point to infer a smoothly changing data value. 
Decision maps computed by our method strengthen these findings. 
Still, our approach reaches limitations when the dimensionality or 
complexity of the underlying data is high and projections induce a high 
loss of information.
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