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 A B S T R A C T

Hyperkinetic movement disorders are a group of conditions characterized by involuntary movements such 
as tremors, sudden/uncontrollable jerks, abnormal postures, and random movements, which may have major 
impacts on the quality of life of individuals. The diagnosis of these disorders is often dependent on subjective 
clinical assessments, and there is a need for automatic methods that can support this diagnosis. Established 
clinical neurophysiological approaches use motion sensors to collect motion data from patients performing 
postural, action, or resting tasks to analyze and classify the types of disorders that affect patients. However, 
making sense of the high-dimensional space formed by patients, tasks, sensors, and disorders is challenging 
and time-consuming. In this paper, we propose a workflow to explore this space to select appropriate subsets 
of its data, transform it, and analyze it using multidimensional projections. We show how our workflow can 
lead to insights into the design of automated pipelines that automatically separate individuals with disorders 
from healthy individuals.
1. Introduction

Movement disorders refer to illnesses related to either a reduc-
tion in motor activity or abnormal involuntary movements. Among 
these disorders, hyperkinetic movement disorders, including myoclonus, 
dystonia, tremor, chorea, and tics, manifest by excessive involuntary 
movements [1]. Accurate classification of movement disorder pheno-
types is crucial for guiding clinical decisions in subsequent diagnostic 
steps, such as conducting additional tests and determining appropriate 
treatment strategies. However, the clinical diagnosis of each movement 
disorder phenotype can be complex and may share overlapping clinical 
features of other disorders, such as ataxia, spasticity, and functional 
movement disorders [2]. In addition, the lack of evident anatomical 
brain abnormalities leads to a diagnosis based on a subjective visual 
assessment by experts. An additional challenge relates to the relatively 
high cost of traditional clinical diagnosis: medical specialists trained in 
movement disorder diagnosis typically study each patient individually 
as they perform several live tests. This costly procedure requires direct 
access to a small pool of trained specialists.
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To aid diagnosis, data collection from patients performing specific 
tasks using motion sensors (i.e., accelerometry, inertial measurement 
units), electromyography (EMG), and three-dimensional video has been 
recently proposed in the Next Move in Movement Disorders (NEMO) 
project [2] as a way to improve and automate the movement dis-
order classification problem. The project aims to develop a move-
ment disorder classification tool that uses the abovementioned data to 
aid specialists in posing diagnoses based on standard tasks taken by 
patients.

Developing such a classification tool is challenging for two reasons. 
First, having a large number of motion disorder patients who can 
undergo the aforementioned tests, have their data collected, and be 
labeled as having a given disorder by a specialist is difficult due to 
the relative rarity of these patients; the cost of the procedure; and 
the difficulty in posing unambiguous diagnoses. Secondly, and more 
importantly, the complexity of the generated data space from the afore-
mentioned testing procedure is extremely high. This complexity arises 
from multiple patients performing various test types, each monitored by 
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Fig. 1. Overview of the proposed workflow: Raw sensor data 𝑥𝑗𝑖 (𝑡) is collected from various locations on a patient’s body while performing specific tasks. The data undergoes 
preprocessing, including normalization, filtering, and standardization. Subsequently, spectrograms are generated using the Stationary Wavelet Transform (SWT). These spectrogram 
images are then concatenated and flattened to form a high-dimensional, time-dependent dataset. Finally, the dataset is projected onto a 2D space, where smooth trajectories 
representing patient behavior are constructed using Akima spline interpolation.
several sensors collecting multiple signals at different sampling rates, 
all subject to various types of noise. Consequently, identifying the most 
relevant data subset for predicting a given disorder is a highly non-
trivial task. Nevertheless, a proof-of-concept classification approach has 
surfaced recently [3].

In this paper, we propose a workflow to analyze and process the 
multidimensional data collected by the NEMO project to select a (small) 
subset that best predicts a given movement disorder. Fig.  1 illustrates 
the steps in the proposed workflow. We use dimensionality reduction 
(DR) methods to transform the high-dimensional data into lower di-
mensions. DR techniques are widely used to simplify the feature space 
while preserving the data’s essential structure and relevant features. 
However, although well-known in machine learning and information 
visualization, to our knowledge, DR methods have not been widely used 
to analyze dynamic (time-dependent) data.

In our work, we focus on two movement disorders: essential tremor 
(ET) and cortical myoclonus (CM), comparing them against health 
volunteers (HV). Distinguishing between these hyperkinetic movement 
disorders is clinically challenging due to their overlapping symptoms. 
This overlap leads to significant variability in diagnosis both between 
different observers and by the same observer at different times. Al-
though our goal does not directly address the clinical problem of 
phenotypic classification, our approach offers a step-by-step workflow 
for processing the available data to make it further amenable to analysis 
and selecting relevant data that can lead to a good separation of patient 
groups having different conditions. Our workflow (and its underlying 
methodology) can further reduce the effort of practitioners in the 
movement disorders field when designing tasks, deploying additional 
sensors, and collecting supplementary data towards constructing an 
automatic classification tool.

In summary, the main contributions of this work are:

• We propose a pipeline for exploring and evaluating non-stationary 
signals using dynamic projections;

• We validate our pipeline with a dataset collected from individ-
uals with hyperkinetic disorders performing specific tasks while 
wearing sensors at different body locations;

• We present experimental results that identify key factors for 
effectively distinguishing different types of conditions;

• We provide visual and clustering analysis results showing how 
projections aid in separating different conditions.

2. Related work

We next review previous work relevant to our research, focusing on 
four key areas. First, we discuss studies on the classification of hyperki-
netic disorders. Next, we examine signal analysis techniques applied to 
movement disorder data. We then explore multidimensional projection 
methods for analyzing time-dependent high-dimensional data. Finally, 
2 
we review techniques for visual clustering analysis, which can reveal 
patterns or anomalies in high-dimensional datasets.
2.1. Classification of hyperkinetic disorder studies

Hyperkinetic disorders are characterized by involuntary, uncontrol-
lable, and undesirable movements, standing in contrast to hypokinetic 
movement disorders, such as Parkinson’s Disease, characterized by the 
loss of voluntary and automatic movements, accompanied by slowness 
and an increase in muscular tone or stiffness. The NEMO dataset [2] 
was collected as part of a broader initiative to study sensor data 
to classify hyperkinetic disorders automatically. The study comprised 
participants with single and mixed phenotype movement disorders (ET 
and CM), as well as HV subjects. Participants performed distinct motor 
tasks in a movement registration setup, along with one motor task 
and three non-motor tasks in neuroimaging settings. Recent advances 
in the NEMO project [4] include the addition of neuroimaging data 
acquisition (such as fMRI and PET scans) to assess more complex 
and mixed movement disorders, such as functional and movement 
disorders.

The NEMO dataset was recently used in a proof of concept for classi-
fying movement disorders using explainable machine learning applied 
to power spectra from accelerometry recordings [3]. They applied Gen-
eralized Matrix Learning Vector Quantization (GMLVQ) to classify ET 
and CM disorders, demonstrating the potential of machine learning in 
aiding clinical diagnosis and improving the accuracy and efficiency of 
movement disorder classification. However, while classification results 
were good, this work used only a hand-picked subset of eight from the 
16 available accelerometry sensors; did not consider the 10 available 
gyroscope sensors; and did not consider the HV disorder (more details 
on the sensor data are given in Section 4.1. Considering all these 
variables creates a significantly larger data space to explore. How to 
identify good variable combinations that further assist in predicting 
conditions is precisely the focus of our work in this paper.

A related study [5] uses the NEMO dataset to examine differences 
in brain glucose metabolism among hyperkinetic movement disorders 
using PET scans. Significant metabolic differences were observed, with 
ET patients showing increased glucose uptake in the right cerebellum 
and reduced uptake in parietal areas. Comparisons across disorders re-
vealed distinct metabolic patterns, suggesting that glucose metabolism 
differences could aid in classifying hyperkinetic movement disorders. 
In contrast to this work, which aims to classify hyperkinetic movement 
disorders based on differences in brain metabolism, we aim to support 
the same classification using arguably simpler accelerometer sensor 
data.

2.2. Time–frequency analysis of movement disorders signals

In clinical practice, combined Electromyography (EMG) and ac-
celerometer are the main electrophysiological measurements to sup-
port patient diagnosis and movement analysis [6]. Typically, these 
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measurements are conducted during movement tasks or at rest and 
clinically assessed using the patient’s movement pattern characteris-
tics, such as muscle activation patterns, movement burst duration, 
and frequency [7]. Additionally, Inertial Measurement Units (IMUs) 
have gained increasing popularity in movement analysis due to their 
affordability and accuracy [8]; IMUs are characterized by their incor-
poration of tri-axial sensors, including accelerometers, gyroscopes, and 
magnetometers, which provide information about linear acceleration, 
angular velocity, and rotation [9].

Time-domain analysis of motion sensor signals provides insights 
into energy distribution over time but falls short in revealing the 
underlying physiological processes driving movement disorders. Better 
approaches involve decomposing signals into their constituent frequen-
cies. Yet, traditional methods like the Fourier Transform (FT) assume 
signal stationarity, making them unsuitable for capturing the dynamic 
nature of our data.

To address this, time–frequency representations describe signals 
in terms of time, frequency, and amplitude [10], which are more 
suitable for non-stationary data. The wavelet transform is a popular 
and effective alternative to FT, especially for extracting meaningful 
information from EMG signals [11].

Several studies have used time–frequency analysis to examine move-
ment disorders. Phinyomark et al. [11] explored EMG feature extrac-
tion through multi-level wavelet decomposition. Nijmeijer et al. [12] 
examined EMG coherence and spectral analysis to find dystonic muscles 
in cervical dystonia. Kramer et al. [13] used wavelet coherence anal-
ysis to differentiate between tremor types, focusing on distinguishing 
functional from organic tremors. Go et al. [14] used frequency domain 
analysis for the quantitative diagnosis of lower extremity dystonia. 
By quantifying the spectral content of these movement-related signals, 
characteristic frequency bands and their temporal variations have been 
found leading to a deeper understanding of the neurophysiological basis 
of each disorder.

In contrast to such studies, we focus on applying projection tech-
niques to motion data derived from movement disorders, diverging 
from the main focus in previous research on analyzing EMG and 
accelerometer signals using FT and wavelet transform methods. The 
use of dimensionality reduction to this problem has shown potential 
in [15] in a small subset of the NEMO data. We expand on this work and 
propose a workflow that can tackle the full complexity of the NEMO 
dataset.

Given the extensive data collected from movement registration, we 
focused our investigation only on the accelerometer and gyroscope 
data of the motion sensors. We decided not to include EMG and video 
data because of the additional complexity associated with non-standard 
preprocessing procedures.

2.3. Multidimensional projections

Data generation in medicine, business, biology, and social me-
dia [16] has led to datasets with millions of samples (also called obser-
vations) each with hundreds of dimensions (also called variables or at-
tributes). Such high-dimensional datasets present significant challenges 
for analysis and visualization.

Dimensionality Reduction (DR) techniques, also called projections, 
are an established solution for such analysis and exploration tasks [17]. 
DR techniques transform high-dimensional data into low-dimensional 
data while preserving intrinsic relationships among samples in the orig-
inal space [18]. This simplifies and accelerates analysis and exploration 
tasks. More formally, given a dataset 𝐷 = {𝐱𝑖}𝑛𝑖=0 with samples 𝐱𝑖 ∈ R𝑑 , 
a projection can be denoted as 
𝑃 ∶ R𝑑 → R𝑞 (1)

where 𝑞 ≪ 𝑑. For 𝑞 ∈ {2, 3}, the projection 𝑃 (𝐷) = {𝑃 (𝐱𝑖)|𝐱𝑖 ∈ 𝐷} is a 
scatterplot which can be directly visually explored.
3 
Tens of different projection techniques have been proposed for static 
(time-independent) data, most notably Principal Component Analysis 
(PCA) [19], t-distributed Stochastic Neighbor Embedding (t-SNE) [20], 
and UMAP [21]. Extensive studies have shown how projection methods 
compare in terms of quality and accuracy [22] and suitability for 
exploration tasks [23].

Projecting dynamic (time-dependent) high-dimensional data has 
been studied significantly less. Early applications include time se-
ries analysis and clustering [24–29]. Fujiwara et al. [30] proposed a 
PCA-based method for visualizing streaming multidimensional data, 
demonstrating its effectiveness in handling temporal data. Ali et al. [31] 
presented a visual analytics system that supports PCA, t-SNE, and 
UMAP to analyze multivariate time series, facilitating the identification 
of patterns, outliers, and trends in data from diverse sectors such as 
medicine, finance, and earth sciences. Abdullah et al. [32] proposed 
a visual analytics system that uses projections and cluster analysis to 
process high-dimensional data from electronic health records. More 
recently, Vernier et al. [33] surveyed the field of dynamic projections 
and highlighted how traditional projection techniques, designed for 
static data, fare when projecting dynamic data. Importantly, they 
observed that a trade-off seems to exist between accuracy (the ability 
of a projection to keep the data structure) and stability (the ability 
of a projection to change only when the underlying data changes). 
Following this observation, Vernier [15] next introduced two new 
dynamic projection algorithms called Landmark Dynamic t-SNE (LD-
tSNE) and Principal Component Dynamic t-SNE (PCD-tSNE). PCD-tSNE, 
in particular, represents a hybrid approach that combines the stability 
of PCA with the accuracy (measured by neighborhood preservation) of 
t-SNE. Munz-Körner and Weiskopf [34] addresses projection errors in 
multidimensional time series visualization, proposing quality metrics 
and uncertainty visualization techniques to mitigate misinterpretations 
caused by dimensionality reduction.

Our work applies dynamic DR techniques to the domain of move-
ment disorders analysis. Our workflow addresses the challenges of 
understanding the high dimensionality of data collected from patients, 
tasks, sensors, and disorders.

2.4. Visual clustering analysis

Comparing multiple clustering results is essential for evaluating dif-
ferent methods and parameter choices. Visual cluster analysis integrates 
clustering techniques with data visualization to enhance interpretabil-
ity and facilitate result assessment. Several approaches have been 
developed to address this challenge. Sawada et al. [35] introduced 
a technique for clustering multidimensional time series subsequences, 
enabling visual feature extraction from Blazar observation datasets. 
Their interactive framework supports dynamic exploration of clustering 
results, allowing users to identify patterns in high-dimensional astro-
nomical data. Similarly, Mohammed Ali et al. [31] proposed a system 
for visual analysis of temporal data, leveraging dimensionality reduc-
tion to cluster similar patterns while detecting and exploring outliers 
and repeated trends in large time-series datasets. Other visualization 
systems developed for clustering comparison include XCluSim [36], 
Clustervision [37], and Clustrophile 2 [38] provide interactive tools 
to visually compare clustering outcomes, helping users assess different 
approaches effectively. These techniques offer valuable insights in the 
development of a visual analytics tool for analyzing our clustering 
results, which we plan to explore as future work.

3. Proposed workflow

Our proposed pipeline for analyzing hyperkinetic movement disor-
ders using dynamic multidimensional projections is shown in Fig.  1. 
Our pipeline consists of three key stages: data preprocessing, transfor-
mation, and projection – described next.
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3.1. Data preprocessing

We next introduce the notations used to describe the dataset col-
lected in the NEMO project which we further explore. A sensor is a 
measurement device attached to a location on a subject’s body (Fig. 
1). A sensor measures several channels, e.g., the three 𝑥, 𝑦, and 𝑧
components for a 3D accelerometer. We denote by 𝑥𝑗𝑖 (𝑡) the signal, 
sampled over time 𝑡, produced by the 𝑗th channel of sensor 𝑖. For a 
task 𝑘, 1 ≤ 𝑘 ≤ 𝑇 , let 𝐷𝑘 = {(𝑥𝑗𝑖 (𝑡), 𝑡

𝑠𝑡𝑎𝑟𝑡
𝑘 , 𝑡𝑒𝑛𝑑𝑘 )} be the all measurements 

produced by all sensors. Here, 𝑡𝑠𝑡𝑎𝑟𝑡𝑘  and 𝑡𝑒𝑛𝑑𝑘  give the time interval over 
which 𝑥𝑗𝑖 (𝑡) were recorded, i.e., 𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡𝑘 , 𝑡𝑒𝑛𝑑𝑘 ]. For each patient 1 ≤ 𝑝 ≤
𝑃 , we have a dataset 𝑃𝑝 = {𝐷1,… , 𝐷𝑇 } containing all measurements 
performed by all sensors over all tasks.

The data recorded for all tasks and patients exhibits slight variations 
mainly in the duration of the recordings of movement execution, i.e., 
𝑡𝑠𝑡𝑎𝑟𝑡𝑘  and 𝑡𝑒𝑛𝑑𝑘  are not the same for all tasks 𝑘 and patients 𝑝. To further 
compare data over multiple tasks and patients, we normalize the data 
by (1) cropping the recorded sequences to uniform durations 𝑡𝑠𝑡𝑎𝑟𝑡𝑘
and 𝑡𝑒𝑛𝑑𝑘  and aligning the start and end movement executions across 
patients.

Next, we apply a signal processing filter to the signals 𝑥𝑗𝑖 (𝑡) to 
remove unwanted frequencies that might distort these signals. Specifi-
cally, we employ a 6th-order Butterworth bandpass filter with a cutoff 
frequency set at 1.0 Hz. The choice for Butterworth was based on 
its capability to maintain a maximally flat frequency response in the 
passband. This ‘‘maximally-flat’’ characteristic ensures a smooth and 
uniform frequency response within the specified range, without ripples 
or variations in amplitude, allowing for consistent signal integrity.

Finally, we scale the filtered signals to unit variance to achieve 
normal distributed data (Gaussian with a mean of 0 and a variance of 
1). A sample standard score 𝑧(𝑡) is computed as 𝑧(𝑡) = (𝑥(𝑡)−𝑢)∕𝑠, where 
𝑢 and 𝑠 represent the sample mean and standard deviation of signal 𝑥(𝑡), 
respectively.

3.2. Data transformation via wavelet transform

When exploring time-series data, capturing frequency components 
and understanding their temporal evolution becomes essential. Several 
methods can be considered for this task, as follows. Traditional methods 
like the FT operate under the foundational assumption of signal station-
arity, which is incompatible with the intrinsically dynamic nature of 
our experiments — that is, the fact that motions exhibited by patients 
when undergoing tests have a high variability over the time, as well as 
over different tests and/or different patients. The Short-Time FT (STFT) 
enables the division of the signal into shorter, equal-length segments, 
with the FT computed separately on each segment. However, using 
a fixed resolution is a limitation of STFT since a wide window gives 
better frequency resolution but poor time resolution (and vice-versa). 
This emphasizes the necessity for a method that can achieve a more bal-
anced resolution between frequency and time. The Continuous Wavelet 
Transform (CWT) introduced by Daubechies et al. [39] provides such a 
balance. Specifically, using wavelets of different scales and positions 
offers a flexible depiction of signal dynamics with improved time–
frequency resolution. Formally put, the CWT of a signal 𝑥(𝑡) at scale 
𝑠 and translation 𝑢 is given by 

𝐶𝑊 𝑇𝑥(𝑠, 𝑢) = ∫

∞

−∞
𝑥(𝑡)𝜓

( 𝑡 − 𝑢
𝑠

)

𝑑𝑡, (2)

where 𝜓 denotes the complex conjugate of the mother wavelet.
In this work, we used the Synchrosqueezing Wavelet Transform 

(SWT), a time–frequency reassignment (TFR) method for instantaneous 
frequency estimation [40]. SWT enhances the Continuous Wavelet 
Transform (CWT) by adjusting its coefficients based on instantaneous 
frequencies, producing a sharper, sparser, and more noise-robust time–
frequency representation. This reassignment technique concentrates 
signal energy into specific time–frequency regions, making the resulting 
4 
Fig. 2. Spectrogram of the accelerometer 𝑋-axis channel of a patient diagnosed with 
ET.

features clearer and easier to interpret. Fig.  2 shows a visual repre-
sentation of the SWT, also known as a spectrogram, where the 𝑥-axis 
represents time, the 𝑦-axis represents frequency, and colors indicate 
frequency magnitude (black = low, red = high).

3.3. Data concatenation and flattening

Spectrograms capture the dynamics of a sensor signal 𝑥𝑗𝑖 (𝑡) over 
a given time interval [𝑡𝑠𝑡𝑎𝑟𝑡𝑘 , 𝑡𝑒𝑛𝑑𝑘 ]. Analyzing such data in spectrogram 
form is difficult. Consider, for example, comparing two spectrograms,
e.g., from different patients. Small differences in the patients’ speeds 
of performing the (same) task can lead to complex stretching and 
compression of the time axis. Also, a patient’s behavior is described by
multiple sensors. We need a way to compare the aggregated measure-
ments over patients in terms of their dynamic patterns while allowing 
for (small) local differences.

We address the above issues as follows. First, we reduce a spectro-
gram to a set of measurements using a sliding window approach. Each 
window 𝑤𝑖 starts at time 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 + 𝑖 ⋅ 𝑡𝑠 and has a width of 𝑡𝑤 seconds. 
Low 𝑡𝑤 values yield a higher temporal resolution, thus allow detecting 
rapid signal changes; larger 𝑡𝑤 values highlight broader frequency 
components but may sacrifice small temporal details. The stride 𝑡𝑠 gives 
the overlap of successive windows, acting as a low-pass filter. We set 
𝑡𝑠 = 𝑡𝑤 = 1 second. We ‘flatten’ all values in a window 𝑤𝑖 to a vector 𝐯𝑖
with dimensions that vary according to the tasks and sensors selected. 
This way, the entire spectrogram is reduced to a set of (consecutive) 
high-dimensional vectors 𝐯𝑖, one per window 𝑤𝑖.

As our data has multiple signals 𝑥𝑗𝑖  (from various sensors and/or 
sensor channels), we concatenate the high-dimensional vectors 𝐯𝑗𝑖,𝑘
resulting from the sliding windows 𝑤𝑘 of each signal in a single output 
vector 𝐯𝑘 = (𝐯𝑗𝑖,𝑘). The vectors 𝐯𝑘 are the input of our projection-based 
analysis described next.

3.4. Projecting time-dependent data

We analyze the high-dimensional vectors 𝐯𝑘 resulting from the 
sliding-window spectrograms (Section 3.3) using dimensionality reduc-
tion. For this, we use PCA, which was shown to balance well visual 
quality and temporal stability [33]. In detail, given the sets 𝑃𝑝 contain-
ing all measurements done for a patient 𝑝 for a set of tasks (Section 3.1), 
we compute for each such set the projections of the vectors 𝐯𝑘 for all the 
measurements in 𝑃𝑝. Next, we connect these projections using Akima 
spline interpolation [41]. This way, the behavior of each patient 𝑝 yields 
a ‘trajectory’ in the 2D projection space. Comparing such trajectories 
across patients (or, if desired, tasks) allows further analysis of the 
factors differentiating disorders.

Fig.  3 shows the projected trajectories of a HV, an ET, and a CM 
patient, all performing the same task, color-coded by condition. We 
clearly see three different movement patterns: HV (black) has very low 
variability, essentially a dot — that is, there was almost no change over 
time of the monitored signals. In contrast, ET (red) and CM (blue) show 
more variability, in line with the small-scale involuntary movements 
associated with these disorders. Notably, the red and blue trajectories 
do not intersect. This means that the information captured by the 
projections can be used to discriminate between these two disorders. 
We show next that this discrimination is indeed present.
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Table 1
Task descriptions.
 Task ID Task description  
 1 Arms at rest, palms upward  
 2 Arms stretched in front, wrist straight, palms upward  
 5 Draw a spiral with dominant hand*  
 11 Arms stretched in front, wrist flexion, palms downward  
 12 Arms stretched in front, wrist straight, palms downward  
 15 Arms stretched in front, wrist straight, palms downward while counting backward  
 17 Arms stretched in front, wrist extension, palms downward  
 [19−20] Arms stretched in front, subsequently touching every finger with the thumb, palms downward*  
 21 Arms sideways, elbow flexion, hands pointing towards each other in front of the chest  
 [22−23] Arms stretched to the side, move fingertip to the nose (tip-to-nose test)*  
 [24−25] Holding one finger in front of the nose*  
 [30−31] Drinking from a cup*  
 [35−36] Arms stretched in front, wrist straight, palms downward, close and open a hand on frequency of metronome * 
 *Tasks performed with right and left hand.  
Fig. 3. Projection results for patients in the HV, ET, and CM classes.

4. Evaluating the proposed workflow

We used the NEMO dataset [2] to validate our proposed workflow. 
We next describe the dataset and experimental analysis, followed by 
visual and cluster analysis results.

4.1. The NEMO dataset

The NEMO dataset consists of data collected from subjects perform-
ing specific tasks while wearing sensors placed at multiple body loca-
tions. The selection of clinical tasks was curated with movement disor-
der specialists to identify movements where disorder-related symptoms 
are most likely to appear. The 18 most relevant tasks are detailed in 
Table  1.

Data acquisition included electromyography (EMG), accelerometry 
(ACC and IMU_ACC), gyroscope (IMU_ORR) and 2D/3D video record-
ing. Sensors were positioned bilaterally on the arms and neck to capture 
muscle activity and 3D accelerometry, recording EMG signals from 
specific muscles and accelerometry data from the forearm, hand, and 
jaw regions. For our analysis next, we excluded EMG and 2D/3D video 
data due to (a) inconsistent availability across subjects and tasks; and 
(b) the increased complexity associated with their analysis.

Our analyzed data consists of three types of sensors (IMU_ACC, 
IMU_ORR, and ACC), each with 10, 10, and 6 devices at different
placements on the subject (Table  2). Each sensor collects data along the 
𝑋, 𝑌 , and 𝑍 axes, leading to 7 combinations of axes (𝑋, 𝑌 , 𝑍, 𝑋𝑌 , 
𝑋𝑍, 𝑌 𝑍, and 𝑋𝑌𝑍).

The NEMO dataset covers 𝑃 = 46 participants (24 HV, 12 CM, 
and 12 ET) performing 𝑇 = 18 tasks. For a single task, we have a 
5 
Table 2
Device placements.
 Task ID Task description  
 [1−2] Triceps brachii*  
 [3−4] Biceps brachii*  
 [5−6] Extensors forearm*  
 [7−8] Flexors forearm*  
 [9−10] Proximal interphalangeal joint index finger* 
 [11−12] Inside of the forearm near the wrist*  
 [13−14] Back of the hand*  
 [15−16] Jaw*  
 *right and left respectively  

Table 3
Number of sensors and their combinations.
 Sensor Number of Axis Total  
 name devices combinations combinations 
 ACC 6 7 42  
 IMU_ACC 10 7 70  
 IMU_ORR 10 7 70  
 Grand total 182  

total of 182 combinations of data from different sensors and devices 
(see Table  3). Multiplying these 182 combinations by 18 tasks yields 
a total of 𝐶 = 3276 task-and-sensor combinations. Running each such 
combination over 𝑃  participants, we get a dataset 𝐷 having a total of 
𝑃𝐶 × 𝑃 = 150696 trajectories projected in 2D space.

4.2. Research questions and experimental analysis

Recall our aim to find which of our measurement combinations 
(tasks, sensor types, sensor axis combinations, and sensor placements) 
are most effective in discriminating the three conditions ET, CM, and 
HV. More specifically, we aim to answer the following research ques-
tions (RQs):

RQ1: Which task provides the most effective class separation?
RQ2: Which sensor type (IMU_ACC, IMU_ORR, and ACC) provides the 

most effective class separation across tasks?
RQ3: What combination of sensor axes (𝑋, 𝑌 , 𝑍, 𝑋𝑌 , 𝑋𝑍, 𝑌 𝑍 and 

𝑋𝑌𝑍) provides the most effective class separation?
RQ4: Which device placements provide the most effective class sep-

aration across tasks?

To answer these questions, we proceed as follows. We consider all 
three class pairs HV vs. ET, HV vs. CM, and ET vs. CM. We next denote 
such a pair as (𝐴,𝐵). For each pair, we consider the two trajectory sets 
𝑇𝐴 and 𝑇𝐵 from the full dataset 𝐷. These can be, in turn, split into 𝐶
subsets 𝑇 1

𝐴… 𝑇 𝐶𝐴  and 𝑇 1
𝐵 … 𝑇 𝐶𝐵  based on the above-mentioned task-and-

sensor combinations. For each pair (𝑇 𝑖 , 𝑇 𝑖 ), we measure how separable
𝐴 𝐵
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Table 4
Top 20 ARI results for the three class comparisons. 

HV vs. ET HV vs. CM ET vs. CM
Task Sensor Device_axes ARI Task Sensor Device_axes ARI Task Sensor Device_axes ARI

1 31 IMU_ACC [‘8_y’] 0.7823 2 IMU_ACC [‘4_z’] 1.0000 23 IMU_ACC [‘1_y’] 0.6529
2 31 ACC [‘12_x’] 0.6853 2 IMU_ORR [‘2_x’, ‘2_z’] 1.0000 2 IMU_ORR [‘4_x’, ‘4_y’, ‘4_z’] 0.5072
3 24 IMU_ORR [‘7_x’, ‘7_z’] 0.6800 2 IMU_ACC [‘4_x’] 0.8889 2 IMU_ORR [‘4_x’, ‘4_z’] 0.5072
4 24 ACC [‘11_x’] 0.6800 2 IMU_ACC [‘3_x’, ‘3_z’] 0.8889 2 IMU_ORR [‘4_y’, ‘4_z’] 0.5072
5 24 IMU_ORR [‘7_x’] 0.6800 2 IMU_ORR [‘2_y’, ‘2_z’] 0.8889 2 IMU_ORR [‘6_y’, ‘6_z’] 0.5072
6 31 IMU_ORR [‘8_y’, ‘8_z’] 0.6800 2 IMU_ORR [‘2_x’] 0.8889 2 IMU_ORR [‘8_x’, ‘8_y’, ‘8_z’] 0.5072
7 31 IMU_ACC [‘8_x’] 0.6800 11 IMU_ACC [‘3_x’, ‘3_y’, ‘3_z’] 0.8889 2 IMU_ORR [‘8_y’, ‘8_z’] 0.5072
8 35 IMU_ACC [‘3_z’] 0.6000 2 IMU_ACC [‘2_x’, ‘2_y’] 0.7855 23 ACC [‘16_x’] 0.5056
9 30 IMU_ACC [‘1_z’] 0.6000 2 IMU_ACC [‘2_y’] 0.7855 36 IMU_ACC [‘10_x’, ‘10_y’, ‘10_z’] 0.3793
10 30 IMU_ACC [‘3_y’, ‘3_z’] 0.5895 11 IMU_ACC [‘4_z’] 0.7823 2 IMU_ORR [‘10_x’, ‘10_y’, ‘10_z’] 0.3793
11 2 IMU_ACC [‘3_y’, ‘3_z’] 0.5895 11 IMU_ORR [‘4_x’] 0.7823 2 IMU_ORR [‘10_x’, ‘10_y’] 0.3793
12 31 IMU_ACC [‘6_x’] 0.5895 11 IMU_ACC [‘6_x’] 0.7823 2 IMU_ORR [‘10_y’, ‘10_z’] 0.3793
13 36 IMU_ORR [‘5_x’, ‘5_z’] 0.5818 11 IMU_ACC [‘4_y’, ‘4_z’] 0.7823 2 IMU_ORR [‘10_y’] 0.3793
14 31 IMU_ACC [‘4_x’, ‘4_z’] 0.5818 11 IMU_ACC [‘2_x’, ‘2_y’, ‘2_z’] 0.7823 2 ACC [‘12_x’, ‘12_z’] 0.3793
15 24 IMU_ORR [‘1_x’, ‘1_z’] 0.5818 11 IMU_ORR [‘4_x’, ‘4_y’, ‘4_z’] 0.7823 2 ACC [‘12_z’] 0.3793
16 31 IMU_ACC [‘8_z’] 0.5818 11 IMU_ORR [‘4_x’, ‘4_z’] 0.7823 22 IMU_ORR [‘2_x’, ‘2_y’, ‘2_z’] 0.3793
17 24 IMU_ORR [‘5_z’] 0.5818 2 IMU_ORR [‘5_y’] 0.7823 22 IMU_ORR [‘2_x’, ‘2_y’] 0.3793
18 31 IMU_ACC [‘4_x’, ‘4_y’, ‘4_z’] 0.5818 11 IMU_ORR [‘4_x’, ‘4_y’] 0.7823 22 IMU_ACC [‘2_y’, ‘2_z’] 0.3793
19 31 IMU_ORR [‘8_y’] 0.5818 11 IMU_ORR [‘4_y’, ‘4_z’] 0.7823 2 IMU_ORR [‘4_x’, ‘4_y’] 0.3793
20 31 IMU_ACC [‘4_y’, ‘4_z’] 0.5818 24 IMU_ACC [‘2_x’, ‘2_y’] 0.7823 2 IMU_ORR [‘4_y’] 0.3793
Table 5
Quantitative results for the proposed pipeline. We examine several clustering metrics to assess 
projection quality. For all metrics, higher values indicate better results. Overall best results 
are highlighted.
Data dimensions ARI Silhouette Homogeneity Completeness V-measure

Experiment 1: Gyroscope, CM VS. HV, Task 2
{𝑋, 𝑌 ,𝑍} 0.78 0.61 0.68 0.74 0.71
{𝑋, 𝑌 } 0.78 0.58 0.68 0.74 0.71
{𝑋,𝑍} 1.00 0.61 1.00 1.00 1.00
{𝑌 ,𝑍} 0.88 0.64 0.81 0.84 0.82

Experiment 2: Gyroscope, CM VS. HV, Task 11
{𝑋, 𝑌 ,𝑍} 0.78 0.59 0.68 0.74 0.71
{𝑋, 𝑌 } 0.78 0.58 0.68 0.74 0.71
{𝑋,𝑍} 0.78 0.59 0.68 0.74 0.71
{𝑌 ,𝑍} 0.78 0.57 0.68 0.74 0.71

Experiment 3: Gyroscope, ET VS. HV, Task 2
{𝑋, 𝑌 ,𝑍} 0.39 0.57 0.31 0.48 0.38
{𝑋, 𝑌 } 0.22 0.56 0.17 0.38 0.24
{𝑋,𝑍} 0.67 0.58 0.57 0.66 0.61
{𝑌 ,𝑍} 0.39 0.56 0.31 0.48 0.38
the trajectories 𝑇 𝑖𝐴 are from the trajectories 𝑇 𝑖𝐵 if we do not know the 
actual labels 𝐴 and 𝐵, i.e., using only the projected trajectory data. 
If separability is high, the tasks-and-sensor combination 𝑖 provides an 
effective way to discriminate condition 𝐴 from 𝐵.

We measure this separability by K-means clustering (K = 2) the
joint set of trajectories 𝑇 𝑖𝐴 ∪ 𝑇 𝑖𝐵 – that is, only the measured trajectories 
without any labels 𝐴 or 𝐵 – and comparing the obtained two clusters 
with the ground truth cluster pair (𝑇 𝑖𝐴, 𝑇 𝑖𝐵) via the Adjusted Rand Index 
(ARI) metric [42]. ARI measures how similar two clusterings are by 
comparing how sample pairs are grouped in both predicted and true 
clusterings. ARI ranges from −1 to 1, where 1 means perfect agreement, 
while values near 0 or negative suggest random or poor clustering. 
In other words, if ARI is close to 1, the set 𝑇 𝑖𝐴 ∪ 𝑇 𝑖𝐵 can be easily
separated into the sets 𝑇 𝑖𝐴 and 𝑇 𝑖𝐵 , i.e., the respective trajectories can 
be used to discriminate condition 𝐴 from condition 𝐵. In general, 
ARI does not have a universal threshold for defining ‘‘good’’ cluster 
assignments because it depends on the data, but values above 0.25, 
0.5, 0.65, and 0.8, respectively, suggest weak, moderate, good, and 
excellent clustering.

We compute all 𝐶 = 3276 ARI values for all task-and-sensor combi-
nations. We present in Fig.  4 a series of 12 violin plots that illustrate 
the statistical distribution for all combinations with ARI above 0.25. 
We divide the plots into three parts using the class comparisons (HV
vs. ET, HV vs. CM, and ET vs. CM). Each group displays statistical 
distributions for task, sensor, axis, and device, sorted from left to right 
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by the mean ARI. From the total of 3276 combinations analyzed, the 
pairwise comparisons yielded 357 (HV vs. ET), 1273 (HV vs. CM), and 
72 (ET vs. CM) combinations with ARI above 0.25.

We next focus on only the highest 20 ones since these are the
best options (from all existing combinations) to predict underlying 
conditions based on the separability of the measured trajectories. Im-
portantly, we note that a poor trajectory separability does not formally 
imply that the underlying measurements cannot be used, in some other 
way, to predict said conditions, e.g. by more complex manipulations 
such as machine learning methods [3]. Yet, the key hypothesis we aim 
to study in this paper is that such predictions can be given only by 
trajectories computed by dimensionality reduction – as such, we focus 
solely on using just trajectory data.

Fig.  5 shows histograms highlighting the 20 top-scoring tasks, sen-
sors, devices, and axes for each comparison (HV vs. ET, HV vs. CM, 
and ET vs. CM). Each row corresponds to one of these three different 
comparison pairs. Columns show the tasks, sensors, devices, and axes 
combinations (from left to right). To complement the analysis, we detail 
the top 20 highest ARI results for each of the three class comparisons 
in Table  4 using the same color mapping as in Fig.  5. We analyze these 
results next.

Fig.  5 (first column) highlights the most effective tasks for distin-
guishing between classes (RQ2). These are tasks 31 and 24 for HV
vs. ET, tasks 11 and 2 for HV vs. CM, and tasks 2, 22, and 23 for ET vs.
CM. A closer examination of Table  4 reveals that task 2 (arms stretched 
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Fig. 4. Statistical distributions of all combinations with ARI above 0.25 were analyzed, organized by task, sensor, device, and axis for each class comparison. Each plot is sorted 
from left to right by mean ARI value. Out of the initial 3276 combinations, the comparisons HV vs. ET, HV vs. CM, and ET vs. CM yielded 357, 1273, and 72 combinations with 
ARI exceeding 0.25, respectively.
in front, wrists straight, palms upward) ranks highest for both HV-CM 
and ET-CM, indicating its strong relevance in distinguishing CM from 
the other two classes. Separately, task 23 appears twice in the top 10 
for ET-CM, suggesting it may be more significant than task 22, which 
occurs three times but in lower-ranking positions.

Fig.  5 (second column) shows that the IMU_ACC sensor better 
separates HV from other classes, achieving the top results across all 
three comparisons with 11 out of the 20 best outcomes. In contrast, 
the gyroscope (IMU_ORR) has 14 out of 20 top results in the ET vs.
CM discrimination. These findings answer our RQ3. Interestingly, the 
gyroscope was not used in earlier work [3] that aimed to construct a 
machine learning model for predicting ET vs. CM. Our analysis shows 
the added value of this additional sensor.

Fig.  5 (third column) shows the top-scoring device placements
and answers RQ5. Device 4 (positioned on the left biceps brachii) 
ranks highest in HV-CM and ET-CM comparisons and ties for second 
7 
in HV-ET, highlighting its significance in distinguishing CM from other 
classes. Similarly, device 2 (placed on the left triceps brachii) is also 
important in separating CM from other groups. Meanwhile, device 8 
(located on the left flexor forearm) ranks highest in separating ET 
from other classes (first in HV-ET and second in ET-CM). The most 
informative devices are on the left side of the subject — an interesting 
finding which may warrant further investigation.

Finally, Fig.  5 (fourth column) shows the top-scoring axes combi-
nations and thereby answers RQ4. There is no clear winner here — 
there is no sensor axis combination that consistently achieves better 
separation of the trajectories of the studied classes (HV-ET, HV-CM, and 
ET-CM). Yet, we observe that the 𝑦𝑧 axes are the most informative in 
separating the ET-CM classes, having 𝑦𝑧, 𝑥𝑦𝑧, 𝑦, and 𝑧 at the top four 
locations in the histogram. Looking at Table  4, we observe that these 
combinations also correspond to using the IMU_ORR gyroscope sensor.
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Fig. 5. Histograms for the top 20 tasks, sensors, devices, and axes using the ARI results for each class comparison.
4.3. Visual analysis

The results of our analysis in Section 4.2 effectively narrow down 
the space of task-and-sensor combinations to evaluate from an initial 
set of 𝐶 = 3276 combinations to the handful of settings shown in Fig. 
5. We next select a subset of these combinations to visually analyze the 
corresponding projected trajectories. The goal of these visual analyses is 
to refine the aggregated findings based on ARI scores presented so far to 
better understand how trajectories given by top-scoring task-and-sensor 
combinations actually differ between conditions.
Case 1: CM vs. HV, acceleration sensor: Our first analysis focuses on 
CM, a disorder characterized by recurrent, often non-rhythmic, abrupt 
jerks resembling short shock-like movements resulting from involun-
tary muscle contractions or relaxations [43]. We consider task 2 (arms 
stretched in front, wrist straight, palms upward) and the readings from 
the 𝑍-axis accelerometer sensor on the subject’s left biceps brachii. Fig. 
6 shows the behavioral patterns of 12 individuals diagnosed with CM 
compared to 24 HV for the above task and sensor. Two distinct clusters 
appear in the projection:

• HV subjects (black) show very similar trajectories with low vari-
ability — see the cluster left in the projection.

• CM patients (blue) show a broader spread to the right of the 
projection. Their trajectories have a wider dispersion, indicating 
a diverse range of behaviors compared to HVs.

Case 2: CM vs. HV, sensor combinations: Fig.  7 performs a similar 
analysis, but this time using four different combinations of the X, Y, and 
Z axes from the IMU_ORR on the subject’s left triceps during the execu-
tion of tasks 2 and 11. On top of Fig.  7 (task 2), all sensor combinations 
show the HV subjects (black) tightly grouped, indicating a consistent 
and controlled motion. In contrast, the CM patient trajectories (blue) 
are wider, indicating more erratic and varied movements.

The bottom row of Fig.  7 repeats this analysis but now using task 
11 (arms stretched in front, wrist flexion, palms downward) and a 
gyroscope sensor on the subject’s left biceps brachii. We now see that 
the trajectories of HV subjects are more dispersed and occasionally 
overlap with those of CM patients. Still, CM patients continue to dis-
play a broader dispersion, highlighting the distinct movement patterns 
8 
Fig. 6. Projection results for 12 CM, 24 HV, 𝑍-axis accelerometer, task 2 (arms 
stretched in front, wrist straight, palms upward).

associated with this disorder. As a result, we infer that task 2 and the 
left triceps gyroscope sensor perform better in separating CM from HV 
than task 11 and the left biceps gyroscope sensor.

Case 3: ET vs. HV, gyroscope: ET manifests as involuntary, rhythmic 
oscillations within a body region around a joint axis [43]. Here, we 
consider the same 24 HV and 12 ET patients as before, as well as task 
24 (holding one finger in front of the nose, right hand). We use readings 
from the 𝑍-axis gyroscope sensor on the subject’s right flexor forearm. 
The projected data (Fig.  8) shows two separated clusters, much like Fig. 
6:

• Most HV subjects exhibit closely aligned movements, with their 
trajectories near other HV subjects. Yet, a few subjects show 
trajectories that are close to ET trajectories.

• ET patients show a broader spread across the projection, indicat-
ing a more varied range of trajectories than HV.
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Fig. 7. HV vs. MC comparison: projection results for different combinations of gyroscope sensor data for task 2 (above) and task 11 (below).
Fig. 8. Projection results for 12 ET and 24 HV, 𝑍-axis gyroscope for task 24 (holding 
one finger in front of the nose, right hand).

Case 4: ET vs. HV, sensor combinations: Fig.  9 studies different 𝑋, 
𝑌 , and 𝑍 channel combinations of the gyroscope sensor used earlier in 
Fig.  8. As in our earlier analysis of sensor combinations (Fig.  7), we see 
that all the studied combinations lead to HV subjects maintain closely 
aligned trajectories, while ET patient trajectories exhibit more spread 
over the projection.
Case 5: ET vs. HV, acceleration sensor: Fig.  10 compares the HV and 
ET subjects using the 𝑍-axis accelerometer sensor for task 12 (arms 
stretched in front, wrist straight, palms downward). As in the other 
examples so far, HV subject trajectories cluster well and are largely sep-
arated from the ET patient trajectories. An initial overlap in movement 
trajectories between ET patients and HV individuals is noted. As the 
movement progresses, ET patients exhibit a more comprehensive range 
of movement trajectories. This pattern suggests that although the initial 
movements appear similar in both groups, patients with ETs present 
more significant variability and dispersion.
Case 6: CM vs. ET: Our final example considers the more challenging 
separation of the two disorders. Fig.  11 shows the projection computed 
using the gyroscope sensor data (all X, Y, and Z axes) from the left 
9 
biceps brachii of 11 patients with each condition. CM patients (blue) 
show a greater diversity of movement patterns, suggesting higher vari-
ability. In contrast, ET patients show more similar behavior. Despite 
some overlap, the trajectories for both classes still show noticeable 
differences.

Task and sensor suitability for disorder prediction: The NEMO 
dataset considers a wide set of tasks designed to assess the severity and 
characteristics of different motor disorders. Yet, as the above examples 
show, not all tasks and sensors are identical in how well they separate 
trajectories of subjects having different conditions.

After having analyzed all tasks, we conclude that static tasks – that 
ask subjects to place hands in a given fixed position – can identify 
CM patients better than tasks involving dynamic movements – that 
ask subjects to perform a specific motion. More precisely, tasks 2 and 
11 yielded better results when using the gyroscope sensor placed on 
subjects’ left triceps, left biceps, left extensors forearm, and left flexors 
forearm along the Z, X, and combined X-Z axes. This refines our current 
answers to questions RQ1-4 in the context of CM vs. HV.

The better separation of CM patients observed for static tasks can be 
attributed to several factors. Firstly, static tasks minimize confounding 
variables associated with dynamic movements, such as speed, ampli-
tude, and coordination variations. By focusing on maintaining a specific 
posture or position, static tasks provide a controlled environment for 
assessing subtle differences in motor function and coordination. More-
over, static tasks have the potential to accentuate underlying motor ab-
normalities and impairments, particularly in individuals who struggle 
to maintain the prescribed posture or exhibit involuntary movements. 
The sustained nature of static tasks allows for prolonged observation 
of motor behavior, facilitating the identification of subtle nuances and 
abnormalities that may not be apparent during dynamic movements.

For ET patients, our findings showed that the dynamic tasks 24, 
31 (drinking with left hand), and 20 (finger tapping with right hand) 
yielded better results when using both gyroscope and accelerometer 
sensors placed on subjects’ flexors forearm right, triceps brachii right, 
extensors forearm right, flexors forearm left, and biceps brachii left 
along the Z, X, and combined X-Z axes. This refined our current answers 
to questions RQ1-4 in the context of ET vs. HV.

Our findings align with the known fact that ET primarily affects the 
forearms and hands, becoming more pronounced during movement. 
This consistency with the symptomatic profile of ET supports the 
relevance of our approach.
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Fig. 9. Projection results for different combinations of gyroscope sensor data for the task 24 (‘‘holding one finger in front of the nose, right hand’’). All visualizations use the 
same subset of subjects (11 Essential Tremor, 24 Healthy control).
Fig. 10. Projection results for 12 ET, 24 HV, 𝑍-axis accelerometer, task 12 (‘‘pronated 
outstretched arms and hands’’).

Fig. 11. Projection results for {𝑋, 𝑌 ,𝑍}- axes gyroscope, 12 ET and 12 CM patients, 
task 2 (‘‘pronated outstretched arms and extended wrists’’).

4.4. Cluster analysis

The visual analysis presented in Section 4.3 showed how we can 
use projections to methodically examine tasks and sensor combinations 
and find the best ones for visually separating subjects having a specific 
condition. While this helps in ‘culling down’ the large amount of 
available data to a smaller, more manageable subset, it does not answer 
whether information present in the projections can be used to directly
classify subjects according to their condition.

A first step towards such an automatic classification is to study 
the characteristics of trajectories of a given class in the projection. If 
10 
we can find objective metrics that separate classes, we have evidence 
that projections contain the needed information to perform automatic 
classification further. To study this, we clustered the trajectories in a 
projection using K-means (with 𝐾 = 2) and next computed, in addition 
to the ARI index, the following quality metrics of the resulting clusters:

• Silhouette Coefficient [44]: Measures how similar an object is to 
its cluster compared to others. This metric has a [−1, 1] range, 
with values near 1 indicating dense, well-separated clusters.

• Homogeneity, completeness, and V-measure [45]: Homogeneity 
evaluates if a cluster exclusively contains members of a single 
class. In contrast, completeness assesses if all class members 
are assigned to the same cluster. The V-measure represents the 
harmonic mean of homogeneity and completeness. Scores range 
from [0, 1], with 1 indicating optimal clustering performance.

We next present our cluster quality results in the same order as the 
visual analyses described in Section 4.3 – see Figs.  6–11.
Case 1: CM vs. HV: Fig.  6 already showed two distinct clusters con-
taining the CM (blue) and HV (black) subjects. The clustering metrics 
confirm this: A Silhouette score of 0.59 indicates a strong cluster sepa-
ration. The ARI, homogeneity, completeness, and V-measure achieved 
a perfect score of 1.0. This performance across metrics tells that each 
computed cluster corresponds uniquely to a single class, with all class 
members accurately grouped without errors or misplacements.
Case 2: CM vs. HV, sensor combinations: Table  5 (Experiment 1) 
summarizes the clustering quality metrics for the different sensor data 
combinations shown in Fig.  7. These results demonstrate that the com-
bination of dimensions X and Z achieved the best results, with perfect 
scores in ARI, Homogeneity, Completeness, and V-measure, reinforcing 
the initial visual observations noted in the projection.

Fig.  7 (bottom row) shows good class separation but also some over-
laps between the trajectories of HV and CM subjects. This highlights 
the intricate challenge of distinguishing their movement patterns effec-
tively. The presence of overlap accentuates the importance of choosing 
optimal sensor data combinations. These findings are confirmed by the 
clustering metrics in Table  5 (Experiment 2).
Case 3: ET vs. HV: Fig.  8 shows a clear visual separation of these 
two classes. Yet, a few HV trajectories are close to ET ones, suggesting 
less perfect separation. Clustering analysis confirms these findings, with 
a Silhouette score of 0.58 telling a good separation between clusters. 
The ARI of 0.68 implies a high consistency level between the formed 
clusters and ground-truth ones. A homogeneity score of 0.57 indicates 
relatively pure clusters, mainly containing data points from a single 
class. In contrast, the completeness score of 0.66 reveals that most 
data points from a single true class are assigned to the same cluster. 
A V-measure of 0.61 reflects a well-balanced trade-off between homo-
geneity and completeness, emphasizing the discernibility of movement 
data between HV and ET patients, although with some overlap observed 
during visual inspection.
Case 4: ET vs. HV, sensor combinations: Table  5 (Experiment 3) 
shows the clustering metrics for the sensor combinations presented 
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earlier in Fig.  9. The values indicate that it is harder to separate ET 
from HV as compared to CM from HV.
Case 5: CM vs. ET: The projection in Fig.  11 yielded a Silhouette 
score of 0.36, telling moderate separation between clusters. This is 
further evidenced by an ARI of approximately 0.51, and moderate 
scores for homogeneity (0.52) and completeness (0.55), which suggest 
that clusters, although relatively uniform, do not perfectly represent 
all instances within a class. A V-measure of about 0.54 reinforces these 
observations.

General findings: Our analysis used accelerometer and gyroscope 
data from motion sensors across various tasks. We observed that the 
gyroscope outperforms the accelerometer in terms of clustering quality 
– a finding which goes beyond state-of-the-art work in the same area 
using only accelerometer data [3]. Within both sensor types, the 𝑍 and 
𝑋 axes improved clustering quality. Combining data from these axes 
increased differentiation between classes. We conclude that using both 
these sensor channels in the analysis adds clear value.

Separately, we observed that K-means clustering struggled to effec-
tively group trajectories with varying sizes, densities, and outliers. This 
difficulty becomes more pronounced when clusters share overlapping 
characteristics. In our case, this issue may stem from trajectory overlaps 
between different classes, particularly during early stages of certain 
tasks.

5. Conclusion

We presented a workflow for analyzing and exploring hyperkinetic 
movement disorders based on the application of dimensionality reduc-
tion methods on multidimensional sensor data obtained from the NEMO 
study. Our findings highlight the effectiveness of projection methods in 
facilitating motion data analysis, providing valuable insights into the 
complexity of these conditions. In particular, our workflow showed how 
analysts could methodically go through the large space of combinations 
of sensors, sensor channels, and tasks to select subsets thereof that 
perform best in terms of separating subjects having one of the three 
analyzed conditions (CM, ET, and HV).

While our results show that the available motion data shows sig-
nificant separation of the studied conditions, our current results also 
indicate that performing a fully automatic classification is still hard. 
Our findings indicate areas requiring further refinement, particularly in 
distinguishing between patients with distinct diagnoses, where achiev-
ing clear separation remains challenging. For this purpose, in future 
work, we intend to explore other dynamic projection techniques, other 
extractors from the trajectories, and add EMG data in the workflow.

Another point of future work is to develop a visual analytics in-
terface that supports interactive exploration of the analysis results 
we developed. The current limitation to this approach lies on the 
confidentiality requirements of the NEMO dataset that pose limitations 
to the deployment of such tool. Once these issues are resolved, we plan 
to conduct a user study with medical experts to further validate our 
proposal.

CRediT authorship contribution statement

Andressa Silva da Silva: Writing – review & editing, Writing – orig-
inal draft, Software, Methodology, Investigation, Conceptualization. 
Eduardo F. Ribeiro: Software, Methodology, Investigation, Conceptu-
alization. Jelle R. Dalenberg: Writing – review & editing, Writing – 
original draft, Methodology, Investigation, Conceptualization. Alexan-
dru C. Telea: Writing – review & editing, Writing – original draft, Su-
pervision, Methodology, Investigation, Conceptualization. Marina A.J. 
Tijssen: Supervision, Methodology, Investigation, Conceptualization. 
João Luiz Dihl Comba: Writing – review & editing, Writing – original 
draft, Supervision, Project administration, Methodology, Investigation, 
Conceptualization.
11 
Declaration of Generative AI and AI-assisted technologies in the 
writing process

During the preparation of this work the author(s) used ChatGPT 
in order to check for grammar mistakes. After using this tool/service, 
the authors reviewed and edited the content as needed and take full 
responsibility for the content of the publication.

Declaration of competing interest

The authors report no declarations of interest.

Acknowledgments

This work was partially financed by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 
and CNPq.

Data availability

The data that has been used is confidential.

References

[1] Gershanik OS. Movement disorders. In: Della Sala S, editor. Encyclopedia of 
behavioral neuroscience (second edition). second ed.. Oxford: Elsevier; 2022, p. 
148–59.

[2] van der Stouwe AM, Tuitert I, Giotis I, Calon J, Gannamani R, Dalenberg JR, 
van der Veen S, Klamer MR, Telea AC, Tijssen MA. Next move in movement dis-
orders (NEMO): Developing a computer-aided classification tool for hyperkinetic 
movement disorders. BMJ Open 2021;11(10):e055068.

[3] van den Brandhof EL, Tuitert I, Madelein van der Stouwe A, Elting JW, 
Dalenberg JR, Svorenova T, Klamer MR, Marapin RS, Biehl M, Tijssen MA. 
Explainable machine learning for movement disorders - classification of tremor 
and myoclonus. Comput Biol Med 2025;192:110180.

[4] Dalenberg JR, Peretti DE, Marapin LR, van der Stouwe AMM, Renken RJ, 
Tijssen MAJ. Next move in movement disorders: Neuroimaging protocols for 
hyperkinetic movement disorders. Front Hum Neurosci 2024;18.

[5] Dalenberg J, Peretti D, Marapin L, Jonker S, Timmers E, Stouwe AV, 
Tijssen M. The next move in movement disorders: Differentiating 
between hyperkinetic movement disorders using [18F] FDG PET. 2024, 
https://www.mdsabstracts.org/abstract/the-next-move-in-movement-disorders-
differentiating-between-hyperkinetic-movement-disorders-using-18f-fdg-pet/. 
(Accessed 27 February 2025).

[6] Chen K-HS, Chen R. Principles of electrophysiological assessments for movement 
disorders. J Mov Disord 2020;13(1):27.

[7] van der Veen S, Klamer M, Elting J, Koelman J, Van der Stouwe A, Tijssen M. The 
diagnostic value of clinical neurophysiology in hyperkinetic movement disorders: 
A systematic review. Parkinsonism Rel Disord 2021;89:176–85.

[8] Ahmad N, Ghazilla RAR, Khairi NM, Kasi V. Reviews on various iner-
tial measurement unit (IMU) sensor applications. Int J Signal Process Syst 
2013;1(2):256–62.

[9] Timmer J, Lauk M, Deuschl G. Quantitative analysis of tremor time 
series. Electroencephalogr Clin Neurophysiol/ Electromyogr Mot Control 
1996;101(5):461–8.

[10] Issartel J, Marin L, Gaillot P, Bardainne T, Cadopi M. A practical guide to time—
frequency analysis in the study of human motor behavior: The contribution of 
wavelet transform. J Mot Behav 2006;38(2):139–59.

[11] Phinyomark A, Limsakul C, Phukpattaranont P. Application of wavelet anal-
ysis in EMG feature extraction for pattern classification. Meas Sci Rev 
2011;11(2):45–52.

[12] Nijmeijer S, De Bruijn E, Forbes P, Kamphuis D, Happee R, Koelman J, Tijssen M. 
EMG coherence and spectral analysis in cervical dystonia: discriminative tools 
to identify dystonic muscles? J Neurol Sci 2014;347(1–2):167–73.

[13] Kramer G, Van der Stouwe A, Maurits N, Tijssen M, Elting J. Wavelet coherence 
analysis: A new approach to distinguish organic and functional tremor types. 
Clin Neurophysiol 2018;129(1):13–20.

[14] Go SA, Coleman-Wood K, Kaufman KR. Frequency analysis of lower extrem-
ity electromyography signals for the quantitative diagnosis of dystonia. J 
Electromyography Kinesiol 2014;24(1):31–6.

[15] Vernier EF. visualization of dynamic multidimensional and hierarchical datasets 
[Ph.D. thesis], Double Doctorate (University of Groningen and Universidade 
Federal do Rio Grande do Sul); 2022.

[16] Gao L, Song J, Liu X, Shao J, Liu J, Shao J. Learning in high-dimensional 
multimedia data: The state of the art. Multimedia Syst 2017;23:303–13.

http://refhub.elsevier.com/S0097-8493(25)00117-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb4
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb4
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb4
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb4
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb4
https://www.mdsabstracts.org/abstract/the-next-move-in-movement-disorders-differentiating-between-hyperkinetic-movement-disorders-using-18f-fdg-pet/
https://www.mdsabstracts.org/abstract/the-next-move-in-movement-disorders-differentiating-between-hyperkinetic-movement-disorders-using-18f-fdg-pet/
https://www.mdsabstracts.org/abstract/the-next-move-in-movement-disorders-differentiating-between-hyperkinetic-movement-disorders-using-18f-fdg-pet/
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb6
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb6
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb6
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb7
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb7
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb7
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb7
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb7
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb8
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb8
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb8
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb8
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb8
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb9
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb9
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb9
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb9
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb9
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb10
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb10
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb10
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb10
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb10
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb11
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb11
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb11
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb11
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb11
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb12
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb12
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb12
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb12
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb12
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb13
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb13
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb13
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb13
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb13
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb14
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb14
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb14
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb14
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb14
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb15
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb15
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb15
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb15
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb15
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb16
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb16
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb16


A. Silva da Silva et al. Computers & Graphics 131 (2025) 104276 
[17] Liu S, Maljovec D, Wang B, Bremer P-T, Pascucci V. Visualizing high-dimensional 
data: Advances in the past decade. IEEE TVCG 2016;23(3):1249–68.

[18] Marcilio-Jr WE, Eler DM. Explaining dimensionality reduction results using 
Shapley values. Expert Syst Appl 2021;178:115020.

[19] Jolliffe IT. Principal component analysis and factor analysis. In: Principal 
component analysis. Springer; 1986, p. 115–28.

[20] Maaten Lvd, Hinton G. Visualizing data using t-SNE. JMLR 2008;9:2579–605.
[21] McInnes L, Healy J. UMAP: Uniform manifold approximation and projection for 

dimension reduction. 2018, arXiv:1802.03426.
[22] Espadoto M, Martins RM, Kerren A, Hirata NS, Telea AC. Towards a quantitative 

survey of dimension reduction techniques. IEEE TVCG 2019.
[23] Nonato L, Aupetit M. Multidimensional projection for visual analytics: Linking 

techniques with distortions, tasks, and layout enrichment. IEEE TVCG 2018.
[24] Singhal A, Seborg DE. Clustering multivariate time-series data. J Chemom: A J 

Chemom Soc 2005;19(8):427–38.
[25] Lewandowski M. Advanced non linear dimensionality reduction methods for 

multidimensional time series : applications to human motion analysis [Ph.D. 
thesis], Kingston Universit; 2011, Available at https://eprints.kingston.ac.uk/id/
eprint/20313/.

[26] Ali M, Alqahtani A, Jones MW, Xie X. Clustering and classification for time series 
data in visual analytics: A survey. IEEE Access 2019;7:181314–38.

[27] Pealat C, Bouleux G, Cheutet V. Improved time-series clustering with UMAP 
dimension reduction method. In: 2020 25th international conference on pattern 
recognition. ICPR, 2021, p. 5658–65.

[28] Brich N, Schulz C, Peter J, Klingert W, Schenk M, Weiskopf D, Krone M. Visual 
analytics of multivariate intensive care time series data. Comput Graph Forum 
2022;41(6):273–86.

[29] Rodriguez-Fernandez V, Montalvo-Garcia D, Piccialli F, Nalepa GJ, Cama-
cho D. DeepVATS: Deep visual analytics for time series. Knowl-Based Syst 
2023;277:110793.

[30] Fujiwara T, Chou J-K, Shilpika S, Xu P, Ren L, Ma K-L. An incremental 
dimensionality reduction method for visualizing streaming multidimensional 
data. IEEE TVCG 2019;26(1):418–28.

[31] Ali M, Jones MW, Xie X, Williams M. TimeCluster: Dimension reduction applied 
to temporal data for visual analytics. Vis Comput 2019;35(6–8):1013–26.
12 
[32] Abdullah SS, Rostamzadeh N, Sedig K, Garg AX, McArthur E. Visual analytics for 
dimension reduction and cluster analysis of high dimensional electronic health 
records. In: Informatics. vol. 7, MDPI; 2020, p. 17, 2.

[33] Vernier E, Garcia R, Silva Id, Comba J, Telea A. Quantitative evaluation of 
time-dependent multidimensional projection techniques. In: Proc. euroVis. 2020.

[34] Munz-Körner T, Weiskopf D. Exploring visual quality of multidimensional time 
series projections. Vis Inform 2024;8(2):27–42.

[35] Sawada N, Uemura M, Fujishiro I. Multi-dimensional time-series subsequence 
clustering for visual feature analysis of blazar observation datasets. Astron 
Comput 2022;41:100663.

[36] L’Yi S, Ko B, Shin D, Cho Y-J, Lee J, Kim B, Seo J. XCluSim: A visual analytics 
tool for interactively comparing multiple clustering results of bioinformatics data. 
BMC Bioinformatics 2015;16(11):S5.

[37] Kwon BC, Eysenbach B, Verma J, Ng K, De Filippi C, Stewart WF, 
Perer A. Clustervision: Visual supervision of unsupervised clustering. IEEE TVCG 
2018;24(1):142–51.

[38] Cavallo M, Demiralp C. Clustrophile 2: Guided visual clustering analysis. IEEE 
Trans Vis Comput Graphics 2019;25(1):267–76.

[39] Daubechies I. The wavelet transform, time-frequency localization and signal 
analysis. IEEE Trans Inform Theory 1990;36(5):961–1005.

[40] Thakur G, Brevdo E, Fučkar NS, Wu H-T. The synchrosqueezing algorithm 
for time-varying spectral analysis: Robustness properties and new paleoclimate 
applications. Signal Process 2013;93(5):1079–94.

[41] Akima H. A new method of interpolation and smooth curve fitting based on local 
procedures. J ACM 1970;17(4):589–602.

[42] Milligan GW, Cooper MC. A study of the comparability of external criteria for 
hierarchical cluster analysis. Multivar Behav Res 1986;21(4):441–58.

[43] Sanger TD, Chen D, Fehlings DL, Hallett M, Lang AE, Mink JW, Singer HS, 
Alter K, Ben-Pazi H, Butler EE, et al. Definition and classification of hyperkinetic 
movements in childhood. Mov Disorders 2010;25(11):1538–49.

[44] Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation 
of cluster analysis. J Comput Appl Math 1987;20:53–65.

[45] Rosenberg A, Hirschberg J. V-measure: A conditional entropy-based external 
cluster evaluation measure. In: Proceedings of EMNLP-coNLL. 2007, p. 410–20.

http://refhub.elsevier.com/S0097-8493(25)00117-7/sb17
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb17
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb17
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb18
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb18
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb18
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb19
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb19
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb19
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb20
http://arxiv.org/abs/1802.03426
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb22
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb22
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb22
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb23
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb23
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb23
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb24
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb24
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb24
https://eprints.kingston.ac.uk/id/eprint/20313/
https://eprints.kingston.ac.uk/id/eprint/20313/
https://eprints.kingston.ac.uk/id/eprint/20313/
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb26
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb26
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb26
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb27
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb27
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb27
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb27
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb27
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb28
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb28
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb28
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb28
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb28
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb29
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb29
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb29
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb29
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb29
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb30
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb30
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb30
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb30
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb30
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb31
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb31
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb31
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb33
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb33
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb33
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb34
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb34
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb34
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb35
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb35
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb35
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb35
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb35
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb36
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb36
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb36
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb36
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb36
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb37
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb37
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb37
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb37
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb37
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb38
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb38
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb38
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb39
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb39
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb39
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb40
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb40
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb40
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb40
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb40
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb41
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb41
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb41
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb42
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb42
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb42
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb43
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb43
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb43
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb43
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb43
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb44
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb44
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb44
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb45
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb45
http://refhub.elsevier.com/S0097-8493(25)00117-7/sb45

	Hyperkinetic movement disorder analysis using multidimensional projections
	Introduction
	Related work
	Classification of hyperkinetic disorder studies
	Time–frequency analysis of movement disorders signals
	Multidimensional projections
	Visual clustering analysis

	Proposed workflow
	Data preprocessing
	Data transformation via wavelet transform
	Data concatenation and flattening
	Projecting time-dependent data 

	Evaluating the Proposed Workflow
	The NEMO Dataset
	Research Questions and Experimental Analysis
	Visual Analysis
	Cluster Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


