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Abstract. Understanding how data separation (DS), visual separation (VS), and
classifier performance (CP) are related to each other is important for applications
in both machine learning and information visualization. A recent study showed
that, for a specific machine learning pipeline using a given multidimensional pro-
jection technique, high DS leads to high VS and next high CP. However, whether
such correlations would stay the same (or not) when using other projection tech-
niques was left open. We fill this gap by evaluating ten projection techniques in
a pipeline that uses three contrastive learning methods (SimCLR, SupCon, and
their combination) to produce latent spaces and next train and test classifiers for
five image datasets of real-world application with human intestinal parasites. Our
work identifies two classes of projection techniques – one leading to poor VS
and next poor CS regardless of the available DS, and the other showing a good
DS-VS-CP correlation. We argue that this last group of projections is a useful
instrument in classifier engineering tasks.

Keywords: Data separation · Visual separation · Semi-supervised learning ·
Dimensionality reduction algorithms · Embedded pseudolabeling · Contrastive
learning · Image classification

1 Introduction

Data separation (DS), visual separation (VS), and classifier performance (CP) are
important concepts at the crossroads of machine learning (ML) and information visual-
ization (infovis). DS relates to how well data samples of a high-dimensional dataset are
separated in the respective space. Similarly, VS tells how well points of a 2D or 3D scat-
terplot, constructed from the high-dimensional data using dimensionality reduction, are
separated. Finally, CP tells howwell a classifier, constructed using the high-dimensional
data and/or its mapping by a 2D or 3D scatterplot, succeeds in performing the task for
which it was designed.
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While DS, VS, and CP are well-defined concepts, the way they relate to each
other is less well understood. Certain combinations of these characteristics have been
studied: VS to assess DS (VS→DS) [27]; increasing DS to get easier-to-interpret VS
(DS→VS) [23]; VS to find misclassified samples (VS→CP) [30]; VS to assess classifi-
cation difficulty (VS→CP) [35,36]; and VS to build better classifiers (VS→CP) [5,6].
In all these connections, projections, or dimensionality-reduction methods, play a key
role. These techniques reduce a high-dimensional dataset to a 2D or 3D scatterplot. If
the scatterplot preserves well the data structure, such as separation of samples into dis-
tinct groups, it can be used as a ‘proxy’ to assess this structure in a cheaper way [12,30].

However, the end-to-end relationships between DS, VS, and CP – especially when
using different projection techniques – are still not fully studied. Closest to this goal,
we explored in earlier work [8] the links of DS, VS, and CP in the context of using
pseudolabeling. For this, we created high DS from a given high-dimensional dataset
using contrastive learning approaches. Those techniques have surpassed results of
known semi-supervised and supervised losses functions [10] and become state-of-the-
art [10,13,14,21]. We compared two contrastive learning models (SimCLR [10] and
SupCon [21]) and proposed an approach that combines both. We evaluated DS by mea-
suring the performance of a classifier trained with only 1% supervised samples. We
measured VS on a 2D scatterplot created from the input data using t-SNE [26] by the
pseudolabeling performance of a semi-supervised connectivity-based method (OPF-
Semi [1]). Finally, we used our pseudolabeling to train a deep neural network and mea-
sured the network’s CP. We performed all our experiments in the context of a challeng-
ing medical application (classifying human intestinal parasites in microscopy images).

Our earlier work outlined above has a key limitation. We used a single projection
technique, t-SNE [26], which gave good VS results. This thus only shows that, if DS
and VS are both high, then CP is also high. This does not explain the full link between
DS, VS, and CP. For instance: Does a high DS always imply a high VS? Does a high
VS always imply a high CP? What are these correlations when one uses a different
projection technique than t-SNE?

To answer such questions, we extend our work in [8] to evaluate 10 projection tech-
niques which produce a wide range of VS values. Our contributions are as follows:

C1: We explored contrastive learning to achieve high DS for several challenging
datasets
C2: We identify projection techniques for which DS strongly correlates with VS and
also techniques for which this does not happen;
C3: We show that good-VS projections are essential for training classifiers that reach
a high CP.

Our work brings evidence that DS, VS, and CP are strongly correlated for a spe-
cific class of projection techniques. For these projections, one can use our proposed
pipeline to design high-CP classifiers, specially for training sets with very few super-
vised (labeled) points. We also identify a class of projection techniques which lead to
poor VS regardless of the available DS. We argue that these projections are less useful
instruments in classifier design tasks and, more broadly, any infovis task where assess-
ing DS via VS is important.
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2 Related Work

2.1 Self-supervised Learning

Self-supervised contrastive methods in representation learning have been the choice for
learning representations without using any labels [10,13,14,21]. Such methods aim to
pull similar pairs of samples closer while pushing apart dissimilar pairs through using a
contrastive loss. Data image transformations generate similar and dissimilar synthetic
samples without using true label information – known as data views. For image data,
SimCLR [10] used transformations such as cropping, Gaussian blur, color jittering, and
grayscale bias. MoCo [14] explored a momentum contrast approach to learn a represen-
tation from a progressing encoder while increasing the number of dissimilar samples.
BYOL [13] used only augmentations from similar examples. SimCLR has shown sig-
nificant advances in (self-and-semi-) supervised alearning and achieved a new record
for image classification with few labeled data. Supervised contrastive learning (Sup-
Con) [21] generalized both SimCLR and N-pair losses and was proven to be closely
related to triplet loss. SupCon surpasses cross-entropy, margin classifiers, and other
self-supervised contrastive learning techniques.

2.2 Pseudolabeling

When lacking large supervised training sets to design accurate classifers, creating
pseudo-labels by propagating labels from a few supervised samples to a large set of
unsupervised ones is a well-kown possibility. Pseudolabeling, also called self-training,
takes a training set with few supervised and many unsupervised samples and assigns
pseudo-labels to the latter samples – a process known as data annotation – and re-trains
the model with all (pseudo)labeled samples. [24] trained a neural network with 100 to
3000 supervised images and then assigned the class with maximum predicted probabil-
ity to the remaining unsupervised ones. The network is then fine-tuned using both true
and pseudo-labels to yield the final model. Yet, as the name suggests, pseudo-labels are
not perfect, as they are extrapolated from actual labels, which can affect training per-
formance [3,5]. Also, pseudolabeling methods still require training and validation sets
with thousands of supervised samples per class to yield reasonable results [18,29,34].

2.3 Structure in (Embedded) Data

Although Data structure is a common term inML literature, there is not an agreement in
its formally definition. Here, we specify Data structure as data separability (DS). Sim-
ply put, for a dataset D = {xi | xi ∈ R

n}, DS refers to the presence of groups of points
which are similar and also separated from other point groups. DS is essential in ML,
especially classification. Obviously, the stronger DS is, the easier is to build a classifier
that separates points belonging to the various groups with high classifier performance
(CP). CP can be measured by many metrics, e.g., accuracy, F1 score, or AUROC [16].
Indeed, if different-class points are not separated via their features (coordinates in Rn),
then no (or poor) classification (CP) is possible.
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Projections, or Dimensionality Reduction (DR) methods, take a dataset D and cre-
ate a scatterplot, or embedding of D, P (D) = {yi = P (xi)|yi ∈ R

q}, where
typically q ∈ {2, 3}. One of the aims of projections is that the visual structure of
P (D) mimics the data structure of D. To test this, several so-called projection quality
metrics have been proposed, such as trustworthiness [43], continuity [43], normalized
stress [19], neighborhood hit [33], and Shepard correlation [19]. Extensive evaluations
have proposed rankings of projection techniques based on these metrics [12]. However,
such metrics are not precisely aiming at measuring the DS-VS structure preservation,
but rather more general desirable properties of a projection (as discussed later on in
Sect. 7.3.

2.4 VS, DS, and CP

The relationship among possible combinations of VS, DS, and CP have not been fully
explored. Rauber et al. [36] used the VS of a t-SNE [25] projection to gauge the diffi-
culty of a classification task (CP). They found that VS and CS are positively correlated
when VS is medium to high but could not infer actionable insights for low-VS projec-
tions. Also, they did not address the task of building higher-CP classifiers using t-SNE,
nor did they test other projection methods. In a related vein, Rodrigues et al. [37] used
the VS in projections to construct so-called decision boundary maps to interpret clas-
sification performance (CP) but did not actually use these to improve classifiers. Kim
et al. [22,23] showed that one can improve VS by increasing DS, the latter being done
by mean shift [11]. However, their main goal differs when projections was not uses to
build higher-CP classifiers but to achieve an easier comprehension by the user. More-
over, their approach actually changed the input data in ways not easy to control, which
raises question as to the interpretability of the resulting projections. Benato et al. [5,9]
used the VS of t-SNE projections to create pseudo-labels and train higher-CP classi-
fiers from them. They showed that label propagation in the 2D projection space can
lead to higher-CP classifiers than when propagating labels in the data space. Yet, they
did not study how correlations between DS and VS can affect CP, nor did they test other
projection methods than t-SNE.

2.5 Embedded Pseudolabeling (EPL)

The abovementioned topics of pseudolabeling and VS-CP correlation were connected
recently by Embedded Pseudolabeling (EPL) [5], a method proposed to increase the
number of labeled samples from only dozens of supervised samples, without needing
validation sets with more supervised samples. To do this, EPL projects to 2D the latent
feature space extracted from a deep neural network (DNN) using autoencoders [9] and
pre-trained architectures [6]. Pseudo-labels are next propagated in the 2D projection
from supervised to unsupervised samples using the OPFSemi [1] method. However, the
success of EPL strongly depends on the VS in the projection space. Moreover, EPL was
tested for a single projection technique (t-SNE), and it remains unclear how it would
perform for other such techniques.
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3 Pipeline Description

As mentioned earlier, our main intention is to evaluate DS when two contrastive learn-
ing models – SimCLR [10], SupCon [21], and a further combination of both – are used
to learn an initial feature space. The encoder’s output from contrastive learning mod-
els are used as input to EPL. Figure 1 illustrates the three main steps to investigate our
claims (Sect. 1) using this process: DS has improved by contrastive learning (C1); EPL
using a set of projetction techniques on this DS has led to an improved VS (C2); and
pseudo-labels generated by EPL can be used to train a classifier with high CP (C3). In
the same time, we aim to study how VS depends on DS and, next, how CP depends
on VS. For this, we evaluate our end-to-end pipeline for 10 different projection tech-
niques, record the obtained VS and CP values, and compute the DS-VS and VS-CP
correlations. We next depict each step of our method.
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Fig. 1. Some image transformations are applied to the original data to generate synthetic exam-
ples. The model is trained over this enlarged image set using a contrastive learning loss. Encoder’s
output features are projected into 2D for pseudo labeling the unlabeled data. Next, original images
and their assigned pseudo labels are used to train a classifier. Elements in blue indicate extensions
of this paper vs [8], namely testing 10 different DR techniques and studying the obtained DS-VS
and VS-CP correlations. (Color figure online)

3.1 Contrastive Learning

The latent space to be used by EPL (Fig. 1, top gray box) is learned in three different
ways: (a) from the many unsupervised samples available by using SimCLR [10]; (b)
using our 1% supervised samples with SupCon [21]; and (c) by combining the SimCLR
and SupCon methods. All these approaches produce different amounts of DS which we
study next.
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3.2 Pseudolabeling by EPL

We use ResNet-18 [15] as bottleneck for both SimCLR and SupCon strategies. The
encoder’s output of ResNet-18 (hundreds of dimensions) is projected in a lower dimen-
sional space (2D) using different projection techniques (Fig. 1, middle gray box). Prop-
agating pseudo-labels in a 2D space was first observed to lead to high-CP classifiers
particularly using t-SNE by EPL in [6,7]. Here, we explore the same EPL’s function of
exploring 2D points to propagate the (few) true labels to all unsupervised points for cho-
sen projection techniques. This propagation is performed by OPFSemi [1] as long as it
maps (un)supervised samples to nodes of a complete graph. Edges are weighted by the
Euclidean distance between samples. Maximal weight of an edge in a path connecting
two nodes is set as the cost of that path. The algorithm computes an optimum-path forest
of minimum-cost paths rooted in the supervised samples on top of this graph. Super-
vised samples assign their labels to their most closely connected unsupervised nodes.
OPFSemi was shown to perfom better for pseudo-label propagation than earlier semi-
supervised methods [1,2,5]. Finally, we measure the VS of the 2D scatterplots created
by the tested projection techniques by measuring the success of pseudolabeling.

3.3 Classifier Training with Pseudo-Labels

With the purpose of evaluating the quality of proposed pipeline, a deep neural network
with ImageNet pre-trained weights – in this case, VGG-16 – is trained and tested on
our parasite datasets (Fig. 1, bottom gray box). Earlier studies showed best results for
our datasets using VGG-16 architecture [31].

4 Experimental Setup

4.1 Datasets

We use five image datasets (see Table 1) of color microscopy images of 200 × 200
pixels of Brazil’s most common species of human intestinal parasites. Infection by these
parasites in most tropical countries is a public health problem and can lead to death of
infants and immunodeficient individuals [40]. Datasets are mainly the following three:
(i) Helminth larvae (H.larvae, 2 classes, 3, 514 images); (ii) Helminth eggs (H.eggs,
9 classes, 5, 112 images, see examples in Fig. 2); and (iii) Protozoan cysts (P.cysts, 7
classes, 9, 568 images). These datasets are challenging since their unbalancing among
distinct classes and also due to the impurity (adversarial) class, a class that is similar to
other parasites classes. To evaluate different difficulty levels, we also explore (ii) and
(iii) without the impurity class, which form our last two datasets. We refer to these last
two datasets as H.eggs* and P.cysts* in our experiments.

4.2 Projection Methods

As outlined in Sect. 1, we want to evaluate the impact of different projection techniques
on the measured DS-VS-CP correlations. For this, we chose the 10 most accessible
and easy-to-implement projection techniques from the projection-quality benchmark
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Fig. 2. Parasites dataset: H.eggs. On the left, eight classes of parasites’ images in this dataset.
On the right, corresponding impurity class for each class on the left – which jointly form class 9
(impurities). Reproduced from [8].

Table 1. Parasites datasets. The class names, number of classes, and number of samples per class
are presented. Reproduced from [8].

dataset classes # samples

(i) H.larvae (2 classes) S.stercoralis 446

impurities 3068

total 3,514

(ii) H.eggs (9 classes) H.nana 348

H.diminuta 80

Ancilostomideo 148

E.vermicularis 122

A.lumbricoides 337

T.trichiura 375

S.mansoni 122

Taenia 236

impurities 3,444

total 5,112

(iii) P.cysts (7 classes) E.coli 719

E.histolytica 78

E.nana 724

Giardia 641

I.butschlii 1,501

B.hominis 189

impurities 5,716

total 9,568

proposed in [12]. Table 2 shows our selection, with all techniques available in scikit-
learn, except UMAP which has a separate Python implementation. Our selection covers
linear vs nonlinear, and global vs local, projections; and also projections taking samples
vs sample-distances as input. For all techniques, we fixed their parameters to the default
values proposed by each author in scikit-learn.
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Table 2. Projection techniques chosen for our evaluation. For each one, we list the linearity, type
of input, and whether the technique is local or global.

projection linearity input local or global

FA [20] linear samples global

FICA [17] linear distances global

ISO [41] nonlinear distances local

KPCA [39] nonlinear samples global

LLE [38] nonlinear samples local

MDS [42] nonlinear samples global

MLLE [44] nonlinear samples local

PCA [20] linear samples global

t-SNE [26] nonlinear samples local

UMAP [28] nonlinear distances local

4.3 Data Layout for Validation

As outlined in Sect. 1, our main goal it to build a classifier for the chosen datasets
exploring only a small set of supervised samples. For this, we split each of the five con-
sidered datasets D (Sect. 4.1) into a supervised training-set S containing 1% supervised
samples from D, an unsupervised training-set U with 69% of the samples in D, and a
test set T with 30% of the samples in D (hence, D = S ∪ U ∪ T ). We repeat the above
division randomly and in a stratified manner to create three distinct splits of D in order
to gain statistical relevance when evaluating results next. Table 3 shows the sizes |S|
and |U | for each dataset.

Table 3. Number of samples in S and U for each dataset. Reproduced from [8].

sample set H.eggs* P. cysts* H. larvae H. eggs P. cysts

S 17 38 35 51 95

U 1220 2658 2424 3527 6602

4.4 Quality Measure

To measure quality, we compute accuracy (number of correct classified or labeled sam-
ples over all the samples in a set) and Cohen’s κ (since our datasets are unbalanced).
κ gives the agreement level between two distinct predictions in a range [−1, 1], where
κ ≤ 0 means no possibility, and κ = 1 means full possibility, of agreement.
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4.5 Implementation Details

We next outline our end-to-end implementation.

Contrastive Learning: We implemented both SimCLR and SupCon using Pytorch in
Python. We generate two augmented images (views) for each original image by random
horizontal flip, resized crop (96 × 96), color jitter (brightness= 0.5, contrast= 0.5,
saturation= 0.5, hue= 0.1) with probability of 0.8, gray-scale with probability of 0.2,
Gaussian blur (9 × 9), and a normalization of 0.5.

Latent Space Generation: We replace ResNet-18’s decision layer by a linear layer
with 4, 096 neurons, a ReLU activation layer, and a linear layer with 1, 024 neurons
respectively. We train the model by backpropagating errors of NT-Xent and SupCon
losses for SimCLR and SupCon, respectively, with a fixed temperature of 0.07. We
use the AdamW optimizer with a learning rate of 0.0005, weight decay of 0.0001, and
a learning rate scheduler using cosine annealing, with a maximum temperature equal
to the epochs and minimum learning rate of 0.0005/50. We use 50 epochs and select
the best model through a checkpoint obtained from the lowest validation loss during
training. Finally, we use the 512 features of the ResNet-18’s encoder to obtain our
latent space. This setup is maintained for SimCLR+SupCon for each strategy.

Classifier Using Pseudo-Labels: We replace the original VGG-16 classifier with two
linear layers with 4, 096 neurons followed by ReLU activations and a softmax decision
layer. We train the model with the last four layers unfixed by backpropagating errors
using categorical cross-entropy. We use stochastic gradient descent with a linear decay
learning rate initialized at 0.1 and momentum of 0.9 over 15 epochs.

Parameter Setting: We used OPFSup and OPFSemi for pseudolabeling (Sect. 3.2),
and they do not have any parameters. For Linear SVM (Sect. 5.1), we use the default
parameters provided by scikit-learn. For the tested projection methods, see Sect. 4.2.

All our code and results are made openly available [4] for replication purposes.

5 Proposed Experiments

We next introduce a few notations to better describe our experiments. S, U , and T
are the supervised (known labels), unsupervised (to be pseudo labeled), and test sets,
respectively (see Sect. 4.3). Let I be the images in a given dataset having true labels
L and pseudo-labels P . Let F be the latent features obtained by the three contrastive
learning methods; and let F ′ be the features’ projection to 2D via P . We use subscripts
to denote on which subset I , L, P , and F are computed, e.g. FS are the latent features
for samples in S. Finally, let A be the initialization strategy for training a classifier C.

Figure 3 shows the several experiments we performed to explore the claims C1-C3
listed in Sect. 1. We next detail these experiments.

5.1 Experiments for Testing C1

Our first claim C1 is the following: contrastive learning methods produce high sepa-
rability of classes (i.e., DS) in the learned feature space. Also, we noticed that using
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contrastive learning increased the propagation accuracy in up to 20% vs using a simpler
feature learning method, i.e., generating the latent space via autoencoders [5]. Since the
concept of data separability is not uniquely and formally defined (see Sect. 2), directly
measuring DS is a difficult task. As such, we assess DS by a ‘proxy’ method: We train
two distinct classifiers C, both using 1% supervised samples. For this, we use Linear
SVM, a simple linear classifier used to check the linear separability of classes in the
latent space; and OPFSup [32], an Euclidean distance-based classifier. Our assumption
is if these classifiers yield high quality, then DS is high, and conversely. We measure
classifiers’ quality by accuracy and κ over correctly classified samples in T .

With the above, we conduct three experiments – one per method of latent space
generation (see Sect. 3.1):

a) SimCLR: Train with A on IS∪U ; extract features FS and FT ; train C on FS and LS ;
test on FT and LT .

b) SupCon: Train with A on IS and LS ; extract features FS and FT ; train and test as
above.

c) SimCLR+SupCon: Train SimCLR with A on IS∪U ; fine-tune with SupCon on IS
and LS ; extract features FS and FT ; train and test as above.

5.2 Experiments for Testing C2

For testing C2, many strategies could be used to evaluate the VS of projections since
visual separation of clusters in a 2D scatterplot is a broad concept. Several metrics have
been proposed for this task in DR literature – see surveys [12,30]. However, existing
metrics are usually used to gauge the projection quality when explored by a human.
Rather, in our context, we use projections automatically to drive pseudo labeling and
improve classification (Sect. 3.2) – and, in this process, we aim to find which projection
techniques are best for this task. In this way, evaluating our projections’ VS by how well
they can do this label propagation is a good assessment for this purpose. We compare
the computed pseudo labels with the true, supervised, labels by computing accuracy and
κ for the correctly computed pseudo-labels over U . This comparison is performed using
distinct projection techniques P (Sect. 4.2) to understand how P is directly related to
the different VS resulted from each projection. We proposed three experiments aim to
achieve precisely this:

a) SimCLR: Train with A on IS∪U ; extract features FS∪U ; compute 2D features F ′

with P from FS∪U ; propagate labels LS with OPFSemi from F ′
S to F ′

U ;
b) SupCon: Train with A on IS and LS ; extract features FS∪U ; compute 2D features

F ′ with P from FS∪U ; propagate labels as above;
c) SimCLR+SupCon: Train SimCLR with A on IS∪U ; fine-tune with SupCon on IS

and LS ; extract features IS∪U ; compute 2D features F ′ with P from FS∪U ; propa-
gate labels as above.
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Fig. 3. Summary of the proposed experiments for testing our claims C1, C2, and C3. We added
C1.c) to complement the experimental setup first proposed in [8].

5.3 Experiments for Testing C3

Finally, the computed pseudo labels are used to train and test a DNN classifier, in this
case VGG-16, to test how CS is correlated (or not) with VS and DS. For this, we do the
following experiments:

a) baseline: train with IS and LS ; test on IT and LT ;
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b) SimCLR: train with IS∪U and LS∪PU
, with pseudo-labels PU from (Sect. 5.2,a); test

as above;
c) SupCon: train with IS∪U and LS∪PU

, with pseudo-labels PU from (Sect. 5.2,b); test
as above;

d) SimCLR+SupCon: train with IS∪U and LS∪PU
, with pseudo-labels PU from

(Sect. 5.2,c); test as above.

6 Experiments and Results

We next show the results of the experiments in Sect. 5 along our claims C1-C3.

6.1 C1: Contrastive Learning Yields High DS

Table 4 shows the classification results for the experiments in Sect. 5.1 in terms of accu-
racy and κ (mean and standard deviation) for the trained Linear SVM and OPFSup
classifiers. To ease interpretation, we next summarize these results by averaging classi-
fication values using a heatmap in Fig. 4.

Table 4. C1: DS assessment of SimCLR’s, SupCon’s, and SimCLR+SupCon’s latent spaces using
Linear SVM and OPFSup on T . The three methods are compared trained from scratch and with
pre-trained weights during 50 epochs. Best values per dataset and model initialization are in bold.

datasets metrics from scratch

SimCLR SupCon SimCLR+SupCon

LinearSVM OPFSemi LinearSVM OPFSemi LinearSVM OPFSemi

H.eggs* acc 0.842436 ± 0.047 0.861268 ± 0.019 0.811048 ± 0.048 0.752668 ± 0.058 0.890144 ± 0.015 0.902072 ± 0.006

κ 0.810976 ± 0.057 0.835316 ± 0.023 0.770732 ± 0.058 0.705686 ± 0.067 0.868792 ± 0.018 0.883541 ± 0.007

P.cysts* acc 0.722607 ± 0.034 0.678489 ± 0.025 0.668973 ± 0.094 0.660611 ± 0.016 0.719723 ± 0.010 0.673876 ± 0.032

κ 0.616310 ± 0.047 0.569074 ± 0.031 0.559129 ± 0.121 0.553795 ± 0.019 0.616431 ± 0.011 0.562813 ± 0.039

H.larvae acc 0.935545 ± 0.003 0.905213 ± 0.003 0.929858 ± 0.009 0.901422 ± 0.037 0.934913 ± 0.015 0.932070 ± 0.017

κ 0.710109 ± 0.040 0.564216 ± 0.050 0.673113 ± 0.020 0.554242 ± 0.165 0.708803 ± 0.064 0.683580 ± 0.094

H.eggs acc 0.772056 ± 0.005 0.710778 ± 0.012 0.657975 ± 0.004 0.561930 ± 0.037 0.783572 ± 0.022 0.730335 ± 0.025

κ 0.565300 ± 0.041 0.524010 ± 0.017 0.122930 ± 0.116 0.259556 ± 0.045 0.595363 ± 0.062 0.543848 ± 0.038

P.cysts acc 0.733078 ± 0.028 0.627772 ± 0.009 0.628701 ± 0.017 0.527342 ± 0.015 0.766284 ± 0.018 0.677464 ± 0.026

κ 0.561195 ± 0.025 0.409251 ± 0.010 0.254190 ± 0.056 0.260470 ± 0.017 0.600513 ± 0.037 0.482015 ± 0.033

datasets metrics pre-trained

SimCLR SupCon SimCLR+SupCon

LinearSVM OPFSemi LinearSVM OPFSemi LinearSVM OPFSemi

H.eggs* acc 0.809793 ± 0.031 0.834903 ± 0.032 0.854990 ± 0.017 0.842436 ± 0.018 0.839297 ± 0.013 0.880728 ± 0.020

κ 0.773903 ± 0.037 0.803842 ± 0.038 0.825372 ± 0.021 0.811695 ± 0.023 0.809970 ± 0.015 0.858649 ± 0.024

P.cysts* acc 0.685410 ± 0.039 0.580450 ± 0.012 0.742215 ± 0.012 0.697232 ± 0.005 0.690312 ± 0.030 0.614764 ± 0.011

κ 0.579214 ± 0.048 0.444268 ± 0.019 0.652441 ± 0.012 0.595298 ± 0.006 0.571982 ± 0.039 0.483336 ± 0.013

H.larvae acc 0.949447 ± 0.007 0.947551 ± 0.016 0.950079 ± 0.008 0.949447 ± 0.010 0.952607 ± 0.007 0.951343 ± 0.005

κ 0.779016 ± 0.039 0.767287 ± 0.080 0.755562 ± 0.061 0.748063 ± 0.072 0.777646 ± 0.049 0.775075 ± 0.045

H.eggs acc 0.772490 ± 0.022 0.755976 ± 0.040 0.780965 ± 0.053 0.703390 ± 0.065 0.765971 ± 0.038 0.782051 ± 0.017

κ 0.606751 ± 0.031 0.586526 ± 0.055 0.566952 ± 0.146 0.469467 ± 0.108 0.591410 ± 0.056 0.617267 ± 0.022

P.cysts acc 0.616278 ± 0.083 0.615117 ± 0.020 0.721932 ± 0.013 0.635551 ± 0.007 0.709857 ± 0.043 0.681528 ± 0.024

κ 0.378195 ± 0.125 0.370532 ± 0.043 0.505566 ± 0.043 0.419729 ± 0.011 0.526674 ± 0.052 0.486552 ± 0.030
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Fig. 4. C1: Values from Table 4 averaged per contrastive learning technique.

We first discuss the contrastive learning methods trained from scratch vs using Ima-
geNet pre-trained weights. The best accuracy and κ for all datasets exceed 0.70 and
0.59, respectively. Linear SVM obtained the best results for most datasets, showing
that these latent spaces have a reasonable linear separation between classes even when
classified with only 1% supervised samples. In contrast, OPFSup seems to suffer from
the dimensionality curse as it uses Euclidean distances in the latent space. This further
motivates the latent space’s dimensionality reduction when using an OPF classifier. In
cases where OPFSemi values are higher than LinearSVM, both are relatively close, i.e.,
for H.eggs* using SimCLR+SupCon. Separately, we see that the ImageNet pre-trained
weights helped the three compared methods for most methods and datasets, while the
best values for H.eggs* and P.cysts are obtained when trained from scratch. SimCLR
had an increase of around 0.10 in κ for H.larvae with pre-trained weights. SupCon
also had an extra 0.10 accuracy and κ for all datasets with pre-trained weights. Sim-
CLR+SupCon achieved its best results compared to SimCLR and SupCon for most
datasets with pre-trained weights. We also see this in Fig. 4 – for the κ plot, brighter
cells are mainly in the SimCLR+SupCon columns. We also see that higher accuracy
values do not always reflect higher κ values, e.g., for the H.larvae dataset. This can
be justified by the unbalancing of classes presented in such datasets, as discussed in
Sect. 4.1.

Although contrastive learning yields quite high DS values, we see both in Table 4
and Fig. 4 that there exists quite some DS variation across datasets. This will help us
next explore how different projection methods map these values to visual separation
(VS).
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6.2 C2: Correlation Between Different Projections and VS

Table 5 shows the results for the experiments in Sect. 5.2, i.e., the mean propagation
accuracy and κ in pseudolabeling for the correctly assigned labels in U for EPL
run using the selected P on latent spaces created by SimCLR, SupCon, and Sim-
CLR+SupCon. Figure 5(left) shows the same data using a heat map for easier inter-
pretation.

We got the best results using the ImageNet pre-trained weights – see the lightgreen-
yellow cells in the three rightmost columns marked pre-trained in Fig. 5(left). This
shows that such pre-trained weights favor the pseudolabeling on the contrastive latent
space. Additionally, SimCLR+SupCon obtained the best results among compared the
compared projections – see the brighter colors in the rightmost column in the same
figure.

More interestingly, we see a clear pattern of similar horizontal colors in Fig. 5(left).
For κ, these ‘color bands’ match very well the projection techniques. For instance, the
dark-blue block of cells in the figure tells that FICA, ISO, KPCA, LLE, and MLLE
score very poor values, i.e., create a poor VS. In contrast, t-SNE, UMAP, FA, and MDS
have brighter cells, so, they create better VS. We will explore this further in Sect. 7.

6.3 C3: Classifiers Trained by Pseudo-Labels Obtained from High-VS
Projections Have a High CP

Table 6 shows the results of classification for VGG-16 trained from the pseudola-
beling performed on latent spaces from SimCLR, SupCon, and SimCLR+SupCon.
Figure 5(right) shows the same data as a heatmap plot for interpretation ease. We see
that the “C2: Propagation results” (left) and “C3: Classification results” (right) sub-
figures in Fig. 5 are very similar – hence, CP is indeed highly correlated with VS.

We got the best CP results by the methods using the ImageNet pre-trained weights
– see the three rightmost columns in Fig. 5(right) which have brighter cells. Also, Sim-
CLR+SupCon obtained the best results for most datasets, as shown by the lighter color
in the last column. Projection-wise, we see again that t-SNE, UMAP, and MDS lead
to the highest overall CP values. Separately, κ shows a bigger gap between projection
techniques with high values (lighter/yellow cells) and low values (darker/purple cells).
These results show that VGG-16 can learn from the pseudo-labels since it provided
good classification accuracies and κ – higher than 0.80 and 0.70, respectively – among
the studied datasets and projections.
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Table 5. C2: Propagation results for pseudo-labeling U on the projected SimCLR’s and SupCon’s
latent spaces, from scratch and using ImageNet pre-trained weights. Best values per dataset are
in bold.

techniques datasets metric from scratch pre-trained

SimCLR SupCon SimCLR+SupCon SimCLR SupCon SimCLR+SupCon

FA H.eggs* acc 0.747777 ± 0.068 0.560496 ± 0.050 0.791431 ± 0.040 0.807060 ± 0.026 0.641337 ± 0.071 0.766370 ± 0.065

κ 0.697796 ± 0.082 0.473382 ± 0.062 0.750259 ± 0.047 0.767607 ± 0.032 0.566708 ± 0.086 0.721839 ± 0.077

P.cysts* acc 0.539688 ± 0.073 0.644288 ± 0.054 0.552300 ± 0.022 0.576286 ± 0.039 0.537092 ± 0.038 0.576781 ± 0.038

κ 0.389467 ± 0.085 0.530016 ± 0.059 0.427268 ± 0.046 0.428285 ± 0.047 0.383229 ± 0.065 0.428245 ± 0.059

H.larvae acc 0.920835 ± 0.021 0.889115 ± 0.015 0.947540 ± 0.012 0.882201 ± 0.056 0.950386 ± 0.005 0.955809 ± 0.008

κ 0.649369 ± 0.093 0.455761 ± 0.078 0.726970 ± 0.092 0.599440 ± 0.164 0.751991 ± 0.044 0.785414 ± 0.053

H.eggs acc 0.659959 ± 0.030 0.518726 ± 0.016 0.607322 ± 0.040 0.693032 ± 0.014 0.618129 ± 0.078 0.768586 ± 0.049

κ 0.445596 ± 0.026 0.187524 ± 0.014 0.368271 ± 0.066 0.480564 ± 0.027 0.319189 ± 0.101 0.587166 ± 0.078

P.cysts acc 0.596337 ± 0.031 0.513513 ± 0.018 0.649445 ± 0.038 0.573540 ± 0.004 0.550197 ± 0.029 0.675427 ± 0.018

κ 0.305130 ± 0.020 0.219125 ± 0.034 0.399547 ± 0.084 0.331404 ± 0.048 0.271909 ± 0.046 0.482847 ± 0.007

FICA H.eggs* acc 0.191054 ± 0.003 0.174616 ± 0.034 0.191592 ± 0.017 0.167071 ± 0.005 0.164915 ± 0.028 0.180005 ± 0.001

κ 0.015913 ± 0.004 0.015189 ± 0.009 0.036693 ± 0.009 0.011312 ± 0.021 0.015913 ± 0.008 0.020143 ± 0.009

P.cysts* acc 0.245920 ± 0.032 0.295128 ± 0.008 0.269288 ± 0.017 0.301681 ± 0.043 0.248393 ± 0.043 0.247404 ± 0.045

κ 0.013333 ± 0.009 0.017266 ± 0.010 0.012307 ± 0.005 0.018144 ± 0.009 0.004888 ± 0.005 0.009506 ± 0.009

H.larvae acc 0.818219 ± 0.030 0.814152 ± 0.027 0.688762 ± 0.132 0.839637 ± 0.026 0.711265 ± 0.153 0.829606 ± 0.017

κ 0.001788 ± 0.003 0.009610 ± 0.012 0.013793 ± 0.026 0.014248 ± 0.006 0.017165 ± 0.013 0.003038 ± 0.022

H.eggs acc 0.518539 ± 0.048 0.452674 ± 0.064 0.456307 ± 0.046 0.433016 ± 0.026 0.343767 ± 0.100 0.472331 ± 0.077

κ 0.016130 ± 0.002 0.015664 ± 0.006 0.013574 ± 0.005 0.018069 ± 0.001 0.010873 ± 0.002 0.016699 ± 0.001

P.cysts acc 0.450948 ± 0.031 0.367179 ± 0.079 0.395749 ± 0.031 0.429745 ± 0.072 0.380469 ± 0.129 0.330695 ± 0.070

κ 0.018332 ± 0.004 0.013987 ± 0.007 0.020642 ± 0.008 0.014538 ± 0.008 0.014562 ± 0.003 0.007237 ± 0.003

ISO H.eggs* acc 0.194826 ± 0.011 0.182700 ± 0.014 0.172460 ± 0.017 0.176772 ± 0.028 0.162220 ± 0.028 0.164915 ± 0.032

κ 0.019858 ± 0.007 0.028010 ± 0.004 0.009387 ± 0.003 0.021445 ± 0.006 0.034176 ± 0.008 0.023816 ± 0.006

P.cysts* acc 0.235534 ± 0.020 0.268917 ± 0.056 0.260880 ± 0.024 0.224901 ± 0.008 0.211795 ± 0.035 0.219955 ± 0.010

κ 0.011823 ± 0.004 0.013657 ± 0.005 0.013012 ± 0.001 0.008791 ± 0.003 0.010802 ± 0.006 0.002970 ± 0.003

H.larvae acc 0.844923 ± 0.015 0.698116 ± 0.224 0.724278 ± 0.156 0.774976 ± 0.041 0.717365 ± 0.188 0.722380 ± 0.168

κ 0.022980 ± 0.016 0.023176 ± 0.015 0.009617 ± 0.008 0.010355 ± 0.018 0.017956 ± 0.010 0.009347 ± 0.011

H.eggs acc 0.486398 ± 0.067 0.489379 ± 0.125 0.399665 ± 0.023 0.364263 ± 0.079 0.503168 ± 0.112 0.505496 ± 0.012

κ 0.014483 ± 0.013 0.020610 ± 0.005 0.010909 ± 0.007 0.004325 ± 0.007 0.013514 ± 0.004 0.019615 ± 0.003

P.cysts acc 0.359365 ± 0.008 0.223732 ± 0.014 0.419790 ± 0.027 0.435717 ± 0.016 0.463541 ± 0.022 0.406202 ± 0.034

κ 0.015452 ± 0.008 0.009035 ± 0.001 0.014798 ± 0.002 0.016392 ± 0.006 0.019200 ± 0.012 0.017231 ± 0.004

KPCA H.eggs* acc 0.190245 ± 0.009 0.143088 ± 0.018 0.188898 ± 0.007 0.158717 ± 0.041 0.155753 ± 0.023 0.163837 ± 0.023

κ 0.022804 ± 0.011 0.017998 ± 0.006 0.020763 ± 0.004 0.009970 ± 0.008 0.016143 ± 0.015 0.016003 ± 0.003

P.cysts* acc 0.252596 ± 0.046 0.304772 ± 0.056 0.243571 ± 0.047 0.222552 ± 0.008 0.302423 ± 0.049 0.164565 ± 0.012

κ 0.020874 ± 0.015 0.010778 ± 0.007 0.008015 ± 0.008 0.007448 ± 0.007 0.021246 ± 0.002 0.002761 ± 0.003

H.larvae acc 0.838824 ± 0.006 0.709231 ± 0.179 0.741223 ± 0.126 0.837332 ± 0.029 0.697438 ± 0.162 0.709773 ± 0.181

κ 0.010105 ± 0.017 0.023394 ± 0.012 0.034326 ± 0.015 0.025248 ± 0.005 0.003343 ± 0.009 0.007443 ± 0.004

H.eggs acc 0.550307 ± 0.052 0.452022 ± 0.185 0.421837 ± 0.030 0.499348 ± 0.054 0.574064 ± 0.022 0.490963 ± 0.064

κ 0.014382 ± 0.005 0.019979 ± 0.009 0.020720 ± 0.008 0.007635 ± 0.006 0.019011 ± 0.006 0.019884 ± 0.007

P.cysts acc 0.441292 ± 0.024 0.367080 ± 0.125 0.417849 ± 0.047 0.323727 ± 0.088 0.490817 ± 0.017 0.371310 ± 0.053

κ 0.008013 ± 0.009 0.013086 ± 0.006 0.012913 ± 0.001 0.014376 ± 0.008 0.011941 ± 0.007 0.008518 ± 0.004

LLE H.eggs* acc 0.177580 ± 0.009 0.163029 ± 0.034 0.194557 ± 0.003 0.165185 ± 0.011 0.189976 ± 0.014 0.153058 ± 0.026

κ 0.012537 ± 0.006 0.010076 ± 0.003 0.024128 ± 0.006 0.016414 ± 0.006 0.033328 ± 0.010 0.000560 ± 0.012

P.cysts* acc 0.217483 ± 0.016 0.260633 ± 0.039 0.252967 ± 0.020 0.238501 ± 0.070 0.244931 ± 0.047 0.220450 ± 0.002

κ 0.005612 ± 0.002 0.009387 ± 0.002 0.011296 ± 0.008 0.011855 ± 0.013 0.007083 ± 0.005 0.006551 ± 0.003

H.larvae acc 0.833401 ± 0.006 0.677918 ± 0.162 0.712214 ± 0.188 0.817812 ± 0.038 0.688762 ± 0.160 0.847499 ± 0.029

κ 0.013540 ± 0.026 0.018801 ± 0.010 0.018322 ± 0.004 0.016302 ± 0.005 -0.004704 ± 0.009 0.006490 ± 0.016

H.eggs acc 0.457798 ± 0.129 0.485374 ± 0.075 0.430501 ± 0.116 0.379356 ± 0.110 0.468604 ± 0.138 0.492920 ± 0.072

κ 0.017533 ± 0.002 0.022688 ± 0.005 0.012804 ± 0.007 0.010157 ± 0.005 0.018747 ± 0.003 0.015604 ± 0.008

P.cysts acc 0.431039 ± 0.069 0.408242 ± 0.118 0.408541 ± 0.081 0.526106 ± 0.011 0.375890 ± 0.077 0.418446 ± 0.102

κ 0.013445 ± 0.006 0.009230 ± 0.004 0.014226 ± 0.008 0.018359 ± 0.007 0.012149 ± 0.006 0.015147 ± 0.004

continued
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Table 5. continued

techniques datasets metric from scratch pre-trained

SimCLR SupCon SimCLR+SupCon SimCLR SupCon SimCLR+SupCon

MDS H.eggs* acc 0.831851 ± 0.010 0.679332 ± 0.055 0.825923 ± 0.028 0.852331 ± 0.047 0.710051 ± 0.024 0.863110 ± 0.016

κ 0.797733 ± 0.012 0.614286 ± 0.068 0.789018 ± 0.035 0.823455 ± 0.056 0.647216 ± 0.028 0.835812 ± 0.019

P.cysts* acc 0.627473 ± 0.040 0.699060 ± 0.014 0.629204 ± 0.028 0.550198 ± 0.050 0.639343 ± 0.017 0.563922 ± 0.031

κ 0.494613 ± 0.061 0.595492 ± 0.015 0.490610 ± 0.043 0.408429 ± 0.058 0.514499 ± 0.022 0.416427 ± 0.040

H.larvae acc 0.896570 ± 0.008 0.907279 ± 0.021 0.938728 ± 0.012 0.952691 ± 0.010 0.949573 ± 0.006 0.944286 ± 0.014

κ 0.530915 ± 0.025 0.532948 ± 0.100 0.670950 ± 0.103 0.799463 ± 0.039 0.746419 ± 0.050 0.716183 ± 0.115

H.eggs acc 0.677008 ± 0.002 0.510062 ± 0.035 0.699273 ± 0.032 0.711384 ± 0.042 0.620179 ± 0.041 0.774734 ± 0.035

κ 0.455775 ± 0.042 0.223363 ± 0.025 0.480271 ± 0.045 0.501590 ± 0.055 0.325114 ± 0.050 0.584801 ± 0.064

P.cysts acc 0.577920 ± 0.018 0.508685 ± 0.010 0.606142 ± 0.063 0.615699 ± 0.013 0.616694 ± 0.016 0.677517 ± 0.043

κ 0.318017 ± 0.034 0.241293 ± 0.016 0.383062 ± 0.068 0.382044 ± 0.036 0.359747 ± 0.024 0.489937 ± 0.053

MLLE H.eggs* acc 0.154136 ± 0.039 0.164915 ± 0.022 0.155753 ± 0.036 0.173269 ± 0.005 0.168418 ± 0.026 0.158717 ± 0.028

κ 0.004386 ± 0.008 0.024440 ± 0.004 0.019636 ± 0.003 0.012537 ± 0.004 0.030116 ± 0.005 0.018084 ± 0.001

P.cysts* acc 0.261746 ± 0.027 0.244313 ± 0.039 0.258902 ± 0.006 0.225766 ± 0.023 0.250495 ± 0.057 0.228116 ± 0.005

κ 0.012912 ± 0.008 0.013391 ± 0.002 0.007871 ± 0.006 0.004547 ± 0.003 0.015660 ± 0.006 0.010145 ± 0.005

H.larvae acc 0.836248 ± 0.009 0.764810 ± 0.062 0.790159 ± 0.048 0.728074 ± 0.064 0.862003 ± 0.011 0.621933 ± 0.135

κ 0.012424 ± 0.011 0.014140 ± 0.029 0.025816 ± 0.018 0.016783 ± 0.015 0.027929 ± 0.008 0.005776 ± 0.008

H.eggs acc 0.379635 ± 0.038 0.539035 ± 0.034 0.449972 ± 0.049 0.389510 ± 0.077 0.531582 ± 0.065 0.520682 ± 0.031

κ 0.013558 ± 0.010 0.023266 ± 0.003 0.016370 ± 0.005 0.013985 ± 0.012 0.008897 ± 0.006 0.014190 ± 0.003

P.cysts acc 0.331492 ± 0.042 0.400080 ± 0.050 0.429994 ± 0.023 0.427356 ± 0.085 0.362152 ± 0.077 0.377731 ± 0.022

κ 0.012621 ± 0.003 0.014195 ± 0.002 0.019642 ± 0.003 0.017896 ± 0.004 0.007093 ± 0.002 0.009973 ± 0.004

PCA H.eggs* acc 0.776341 ± 0.022 0.575047 ± 0.072 0.801132 ± 0.043 0.855026 ± 0.052 0.565616 ± 0.061 0.838857 ± 0.030

κ 0.730955 ± 0.027 0.485557 ± 0.093 0.760041 ± 0.053 0.826294 ± 0.063 0.485068 ± 0.065 0.808110 ± 0.035

P.cysts* acc 0.572700 ± 0.042 0.696588 ± 0.023 0.615356 ± 0.055 0.585188 ± 0.019 0.573318 ± 0.033 0.590999 ± 0.040

κ 0.438663 ± 0.050 0.597055 ± 0.026 0.483103 ± 0.066 0.442557 ± 0.022 0.420640 ± 0.051 0.440307 ± 0.057

H.larvae acc 0.910804 ± 0.005 0.910804 ± 0.026 0.931951 ± 0.017 0.915006 ± 0.033 0.950522 ± 0.007 0.958520 ± 0.001

κ 0.587131 ± 0.050 0.563387 ± 0.151 0.668527 ± 0.105 0.676664 ± 0.116 0.751620 ± 0.053 0.811768 ± 0.001

H.eggs acc 0.587572 ± 0.038 0.545929 ± 0.022 0.612167 ± 0.033 0.703186 ± 0.041 0.612540 ± 0.088 0.777809 ± 0.042

κ 0.340487 ± 0.048 0.201855 ± 0.015 0.351600 ± 0.053 0.493198 ± 0.055 0.302314 ± 0.122 0.596395 ± 0.072

P.cysts acc 0.530536 ± 0.034 0.508536 ± 0.005 0.615599 ± 0.039 0.544124 ± 0.031 0.584092 ± 0.007 0.669653 ± 0.048

κ 0.245823 ± 0.084 0.241375 ± 0.011 0.361185 ± 0.080 0.273647 ± 0.076 0.314512 ± 0.030 0.475270 ± 0.058

t-SNE H.eggs* acc 0.904069 ± 0.022 0.836163 ± 0.026 0.931016 ± 0.025 0.824306 ± 0.027 0.933980 ± 0.015 0.901374 ± 0.015

κ 0.885518 ± 0.026 0.804574 ± 0.031 0.918209 ± 0.030 0.791693 ± 0.031 0.921045 ± 0.018 0.882814 ± 0.017

P.cysts* acc 0.726014 ± 0.060 0.674085 ± 0.025 0.691642 ± 0.027 0.537834 ± 0.030 0.710064 ± 0.007 0.572082 ± 0.028

κ 0.631292 ± 0.078 0.564841 ± 0.040 0.583401 ± 0.043 0.397794 ± 0.033 0.608087 ± 0.016 0.441656 ± 0.026

H.larvae acc 0.906059 ± 0.013 0.892233 ± 0.039 0.925037 ± 0.022 0.957299 ± 0.008 0.955537 ± 0.002 0.955537 ± 0.005

κ 0.572966 ± 0.086 0.556742 ± 0.151 0.670628 ± 0.099 0.809426 ± 0.042 0.795117 ± 0.014 0.801494 ± 0.016

H.eggs acc 0.703279 ± 0.032 0.570989 ± 0.040 0.731787 ± 0.013 0.772592 ± 0.009 0.669648 ± 0.085 0.783492 ± 0.030

κ 0.524161 ± 0.043 0.248194 ± 0.041 0.558122 ± 0.030 0.608138 ± 0.021 0.436442 ± 0.124 0.636986 ± 0.046

P.cysts acc 0.630481 ± 0.012 0.538948 ± 0.013 0.678413 ± 0.011 0.644368 ± 0.035 0.616644 ± 0.019 0.667214 ± 0.028

κ 0.393737 ± 0.002 0.263230 ± 0.010 0.478606 ± 0.032 0.389898 ± 0.062 0.366433 ± 0.047 0.460750 ± 0.030

UMAP H.eggs* acc 0.880625 ± 0.020 0.811372 ± 0.056 0.907033 ± 0.026 0.823767 ± 0.070 0.926435 ± 0.018 0.908919 ± 0.011

κ 0.857432 ± 0.024 0.777552 ± 0.066 0.889462 ± 0.032 0.790407 ± 0.084 0.911833 ± 0.022 0.891483 ± 0.013

P.cysts* acc 0.679896 ± 0.045 0.661597 ± 0.023 0.640826 ± 0.034 0.527201 ± 0.042 0.678783 ± 0.012 0.564293 ± 0.028

κ 0.566764 ± 0.059 0.554236 ± 0.022 0.518054 ± 0.051 0.382443 ± 0.048 0.562840 ± 0.029 0.414946 ± 0.045

H.larvae acc 0.907957 ± 0.011 0.877999 ± 0.043 0.931815 ± 0.017 0.961095 ± 0.004 0.949980 ± 0.006 0.958113 ± 0.001

κ 0.584348 ± 0.059 0.499324 ± 0.130 0.710935 ± 0.049 0.830896 ± 0.019 0.763058 ± 0.053 0.803964 ± 0.011

H.eggs acc 0.695640 ± 0.021 0.578349 ± 0.006 0.743432 ± 0.051 0.742035 ± 0.044 0.660145 ± 0.061 0.784796 ± 0.037

κ 0.488702 ± 0.012 0.217511 ± 0.009 0.563820 ± 0.081 0.567092 ± 0.056 0.410992 ± 0.121 0.637002 ± 0.051

P.cysts acc 0.635707 ± 0.011 0.518342 ± 0.024 0.677318 ± 0.041 0.634214 ± 0.024 0.623264 ± 0.008 0.687223 ± 0.031

κ 0.368501 ± 0.023 0.215635 ± 0.010 0.470794 ± 0.064 0.388012 ± 0.058 0.387465 ± 0.006 0.491069 ± 0.035
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Fig. 5. “C2: Propagation results” and “C3: Classification results”. For the proposed experi-
ments, results of accuracy and κ are shown for pseudolabeling using 10 projection techniques
P on SimCLR’s, SupCon’s, and SimCLR+SupCon’s latent spaces trained from scratch or with
pre-trained weights for five datasets.

7 Discussion

We next discuss the main findings emerging from our results.
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Table 6. C3: VGG-16’s classification results on T when using pseudo labels from SimCLR’s,
SupCon and SimCLR+SupCon latent spaces, from scratch and with ImageNet pre-trained
weights. Best values per dataset are in bold.

techniques datasets metric baseline from scratch pre-trained

SimCLR SupCon SimCLR+SupCon SimCLR SupCon SimCLR+SupCon

FA H.eggs* acc 0.812932 ± 0.059 0.791588 ± 0.071 0.569994 ± 0.077 0.816070 ± 0.037 0.826114 ± 0.043 0.660389 ± 0.087 0.797238 ± 0.074

κ 0.775954 ± 0.073 0.750532 ± 0.086 0.481551 ± 0.096 0.780221 ± 0.044 0.790394 ± 0.052 0.589562 ± 0.106 0.758894 ± 0.088

P.cysts* acc 0.757209 ± 0.015 0.574395 ± 0.132 0.684544 ± 0.056 0.590542 ± 0.015 0.663783 ± 0.037 0.586217 ± 0.049 0.648212 ± 0.033

κ 0.651933 ± 0.023 0.435072 ± 0.157 0.585071 ± 0.064 0.482646 ± 0.019 0.533400 ± 0.052 0.426891 ± 0.093 0.516758 ± 0.055

H.larvae acc 0.930806 ± 0.026 0.917535 ± 0.033 0.889099 ± 0.015 0.948183 ± 0.018 0.891627 ± 0.057 0.947551 ± 0.010 0.951343 ± 0.014

κ 0.613432 ± 0.230 0.645066 ± 0.129 0.441950 ± 0.135 0.723843 ± 0.126 0.624029 ± 0.171 0.731107 ± 0.071 0.758448 ± 0.094

H.eggs acc 0.862234 ± 0.010 0.708822 ± 0.015 0.582790 ± 0.047 0.655367 ± 0.035 0.730552 ± 0.010 0.667753 ± 0.058 0.782269 ± 0.057

κ 0.740861 ± 0.028 0.500625 ± 0.016 0.230899 ± 0.071 0.415120 ± 0.056 0.525028 ± 0.024 0.358934 ± 0.112 0.602154 ± 0.095

P.cysts acc 0.850691 ± 0.018 0.650528 ± 0.010 0.569604 ± 0.016 0.698595 ± 0.039 0.638221 ± 0.013 0.646697 ± 0.024 0.736445 ± 0.012

κ 0.751667 ± 0.028 0.312113 ± 0.026 0.241764 ± 0.048 0.430761 ± 0.136 0.380899 ± 0.060 0.345129 ± 0.061 0.556038 ± 0.038

FICA H.eggs* acc 0.812932 ± 0.059 0.209040 ± 0.010 0.165725 ± 0.075 0.271186 ± 0.088 0.161331 ± 0.008 0.161958 ± 0.058 0.259887 ± 0.056

κ 0.775954 ± 0.073 0.002840 ± 0.004 0.009936 ± 0.022 0.092821 ± 0.104 0.002707 ± 0.037 -0.001412 ± 0.005 0.077978 ± 0.066

P.cysts* acc 0.757209 ± 0.015 0.315744 ± 0.106 0.390138 ± 0.000 0.388408 ± 0.002 0.333045 ± 0.081 0.247981 ± 0.101 0.299884 ± 0.085

κ 0.651933 ± 0.023 0.000569 ± 0.001 0.000000 ± 0.000 0.002938 ± 0.004 -0.008047 ± 0.011 -0.000579 ± 0.001 -0.010702 ± 0.015

H.larvae acc 0.930806 ± 0.026 0.871722 ± 0.002 0.872986 ± 0.000 0.769668 ± 0.141 0.872670 ± 0.000 0.841706 ± 0.039 0.872670 ± 0.001

κ 0.613432 ± 0.230 0.001145 ± 0.002 0.000000 ± 0.000 0.024169 ± 0.009 0.003042 ± 0.006 0.080839 ± 0.073 0.006713 ± 0.005

H.eggs acc 0.862234 ± 0.010 0.649935 ± 0.005 0.647762 ± 0.004 0.644937 ± 0.009 0.646893 ± 0.005 0.467623 ± 0.257 0.651456 ± 0.003

κ 0.740861 ± 0.028 -0.004383 ± 0.005 -0.005765 ± 0.003 -0.007738 ± 0.012 -0.005335 ± 0.004 0.000909 ± 0.006 -0.001991 ± 0.002

P.cysts acc 0.850691 ± 0.018 0.595147 ± 0.003 0.584814 ± 0.015 0.597353 ± 0.000 0.592825 ± 0.006 0.408452 ± 0.267 0.462441 ± 0.191

κ 0.751667 ± 0.028 -0.001485 ± 0.002 0.003837 ± 0.010 0.000000 ± 0.000 -0.005944 ± 0.008 -0.002462 ± 0.003 -0.008557 ± 0.012

ISO H.eggs* acc 0.812932 ± 0.059 0.248588 ± 0.062 0.173886 ± 0.028 0.173258 ± 0.033 0.164470 ± 0.058 0.118644 ± 0.051 0.137477 ± 0.050

κ 0.775954 ± 0.073 0.057848 ± 0.080 0.003443 ± 0.003 0.010141 ± 0.012 0.009016 ± 0.013 -0.000439 ± 0.000 0.018088 ± 0.012

P.cysts* acc 0.757209 ± 0.015 0.326701 ± 0.098 0.247981 ± 0.101 0.315455 ± 0.106 0.173299 ± 0.010 0.141003 ± 0.065 0.180219 ± 0.010

κ 0.651933 ± 0.023 0.008227 ± 0.007 0.000000 ± 0.000 0.000000 ± 0.000 0.000000 ± 0.000 -0.000103 ± 0.000 0.000000 ± 0.000

H.larvae acc 0.930806 ± 0.026 0.872986 ± 0.000 0.662243 ± 0.298 0.822117 ± 0.072 0.872670 ± 0.001 0.740916 ± 0.189 0.822749 ± 0.072

κ 0.613432 ± 0.230 0.014444 ± 0.013 -0.015757 ± 0.030 0.031433 ± 0.044 0.031303 ± 0.015 0.016744 ± 0.020 0.048051 ± 0.059

H.eggs acc 0.862234 ± 0.010 0.649283 ± 0.006 0.577357 ± 0.107 0.642329 ± 0.009 0.621252 ± 0.044 0.643850 ± 0.013 0.650152 ± 0.004

κ 0.740861 ± 0.028 0.003225 ± 0.005 0.020891 ± 0.030 -0.006907 ± 0.003 0.001426 ± 0.003 -0.006799 ± 0.010 -0.003234 ± 0.004

P.cysts acc 0.850691 ± 0.018 0.580634 ± 0.023 0.099036 ± 0.006 0.596424 ± 0.001 0.596424 ± 0.001 0.597237 ± 0.000 0.596308 ± 0.001

κ 0.751667 ± 0.028 -0.003610 ± 0.005 0.009051 ± 0.002 -0.001265 ± 0.001 -0.001084 ± 0.002 -0.000161 ± 0.000 -0.001397 ± 0.001

KPCA H.eggs* acc 0.812932 ± 0.059 0.193974 ± 0.003 0.112994 ± 0.031 0.209040 ± 0.010 0.131199 ± 0.054 0.157564 ± 0.063 0.163214 ± 0.059

κ 0.775954 ± 0.073 0.000112 ± 0.000 0.000674 ± 0.001 0.012136 ± 0.016 -0.018456 ± 0.013 -0.000097 ± 0.000 0.027955 ± 0.052

P.cysts* acc 0.757209 ± 0.015 0.305651 ± 0.119 0.390138 ± 0.000 0.249423 ± 0.100 0.187139 ± 0.000 0.322376 ± 0.096 0.051038 ± 0.002

κ 0.651933 ± 0.023 -0.025975 ± 0.037 0.000000 ± 0.000 0.003966 ± 0.005 0.000000 ± 0.000 0.000000 ± 0.000 -0.002450 ± 0.003

H.larvae acc 0.930806 ± 0.026 0.872670 ± 0.001 0.780411 ± 0.132 0.848657 ± 0.036 0.872354 ± 0.002 0.825908 ± 0.070 0.807899 ± 0.091

κ 0.613432 ± 0.230 0.003063 ± 0.007 0.037027 ± 0.027 0.104310 ± 0.066 0.013242 ± 0.010 0.066086 ± 0.022 0.040867 ± 0.052

H.eggs acc 0.862234 ± 0.010 0.650804 ± 0.004 0.500217 ± 0.217 0.644285 ± 0.007 0.651021 ± 0.002 0.651890 ± 0.002 0.652977 ± 0.001

κ 0.740861 ± 0.028 -0.003327 ± 0.004 0.006654 ± 0.010 -0.008322 ± 0.006 -0.001763 ± 0.002 -0.001528 ± 0.001 -0.001004 ± 0.001

P.cysts acc 0.850691 ± 0.018 0.596772 ± 0.001 0.427029 ± 0.240 0.596773 ± 0.001 0.411471 ± 0.260 0.597237 ± 0.000 0.597005 ± 0.000

κ 0.751667 ± 0.028 -0.000805 ± 0.001 0.001823 ± 0.003 -0.000298 ± 0.000 -0.000119 ± 0.002 -0.000161 ± 0.000 -0.000483 ± 0.001

LLE H.eggs* acc 0.812932 ± 0.059 0.192090 ± 0.003 0.152542 ± 0.075 0.199623 ± 0.010 0.185185 ± 0.028 0.227872 ± 0.045 0.151287 ± 0.075

κ 0.775954 ± 0.073 0.000017 ± 0.000 0.002360 ± 0.002 0.000179 ± 0.000 0.018815 ± 0.017 0.054332 ± 0.071 0.000028 ± 0.000

P.cysts* acc 0.757209 ± 0.015 0.173299 ± 0.010 0.262976 ± 0.090 0.355824 ± 0.126 0.209054 ± 0.140 0.247981 ± 0.101 0.180219 ± 0.010

κ 0.651933 ± 0.023 0.000000 ± 0.000 0.006750 ± 0.010 0.080931 ± 0.115 0.000000 ± 0.000 0.000000 ± 0.000 0.000000 ± 0.000

H.larvae acc 0.930806 ± 0.026 0.872354 ± 0.002 0.763349 ± 0.154 0.774723 ± 0.141 0.870774 ± 0.006 0.806319 ± 0.093 0.872986 ± 0.000

κ 0.613432 ± 0.230 0.009639 ± 0.007 0.034258 ± 0.030 0.027194 ± 0.019 0.027385 ± 0.021 0.035078 ± 0.027 0.000000 ± 0.000

H.eggs acc 0.862234 ± 0.010 0.533681 ± 0.165 0.645589 ± 0.009 0.621903 ± 0.041 0.478705 ± 0.225 0.617557 ± 0.051 0.650804 ± 0.002

κ 0.740861 ± 0.028 0.005994 ± 0.013 0.019156 ± 0.029 -0.006981 ± 0.005 0.008658 ± 0.022 0.001140 ± 0.002 -0.002347 ± 0.002

P.cysts acc 0.850691 ± 0.018 0.597353 ± 0.000 0.427145 ± 0.240 0.589690 ± 0.011 0.597353 ± 0.000 0.577383 ± 0.016 0.473006 ± 0.176

κ 0.751667 ± 0.028 0.000000 ± 0.000 0.000985 ± 0.002 -0.008861 ± 0.012 0.000303 ± 0.001 0.054789 ± 0.067 0.014402 ± 0.019

MDS H.eggs* acc 0.812932 ± 0.059 0.870057 ± 0.007 0.698054 ± 0.053 0.839924 ± 0.030 0.868801 ± 0.056 0.750785 ± 0.044 0.889517 ± 0.009

κ 0.775954 ± 0.073 0.844017 ± 0.009 0.635306 ± 0.066 0.806060 ± 0.038 0.843305 ± 0.067 0.696556 ± 0.054 0.867837 ± 0.011

P.cysts* acc 0.757209 ± 0.015 0.660035 ± 0.042 0.729815 ± 0.018 0.679642 ± 0.008 0.675026 ± 0.019 0.688004 ± 0.049 0.623414 ± 0.047

κ 0.651933 ± 0.023 0.535152 ± 0.066 0.636650 ± 0.017 0.558141 ± 0.010 0.452008 ± 0.046 0.574029 ± 0.067 0.485190 ± 0.040

H.larvae acc 0.930806 ± 0.026 0.896366 ± 0.010 0.907425 ± 0.021 0.941864 ± 0.022 0.961137 ± 0.003 0.948183 ± 0.014 0.944392 ± 0.020

κ 0.613432 ± 0.230 0.527845 ± 0.047 0.512390 ± 0.132 0.670216 ± 0.171 0.828970 ± 0.016 0.732767 ± 0.094 0.702961 ± 0.166

H.eggs acc 0.862234 ± 0.010 0.735767 ± 0.006 0.556280 ± 0.010 0.755324 ± 0.023 0.736636 ± 0.040 0.649283 ± 0.049 0.787701 ± 0.039

κ 0.740861 ± 0.028 0.527193 ± 0.052 0.250879 ± 0.023 0.552969 ± 0.033 0.529298 ± 0.057 0.342224 ± 0.071 0.598315 ± 0.075

P.cysts acc 0.850691 ± 0.018 0.640660 ± 0.022 0.541159 ± 0.012 0.672820 ± 0.066 0.639273 ± 0.041 0.684663 ± 0.022 0.742947 ± 0.021

κ 0.751667 ± 0.028 0.360158 ± 0.031 0.293691 ± 0.017 0.460289 ± 0.091 0.516147 ± 0.048 0.437128 ± 0.046 0.572537 ± 0.027

continued
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Table 6. continued

techniques datasets metric baseline from scratch pre-trained

SimCLR SupCon SimCLR+SupCon SimCLR SupCon SimCLR+SupCon

MLLE H.eggs* acc 0.812932 ± 0.059 0.176397 ± 0.069 0.186440 ± 0.007 0.149404 ± 0.053 0.231638 ± 0.028 0.133710 ± 0.051 0.172630 ± 0.061

κ 0.775954 ± 0.073 0.029830 ± 0.024 0.030248 ± 0.055 0.003127 ± 0.004 0.038996 ± 0.038 0.000489 ± 0.001 0.039277 ± 0.051

P.cysts* acc 0.757209 ± 0.015 0.322664 ± 0.095 0.254902 ± 0.096 0.394175 ± 0.005 0.198673 ± 0.015 0.240773 ± 0.106 0.187139 ± 0.000

κ 0.651933 ± 0.023 0.000096 ± 0.000 0.000000 ± 0.000 0.009169 ± 0.009 0.001291 ± 0.006 0.000000 ± 0.000 0.000000 ± 0.000

H.larvae acc 0.930806 ± 0.026 0.873618 ± 0.001 0.872670 ± 0.003 0.870774 ± 0.002 0.854029 ± 0.032 0.872986 ± 0.000 0.870774 ± 0.007

κ 0.613432 ± 0.230 0.008591 ± 0.012 0.080602 ± 0.071 0.027161 ± 0.028 0.121338 ± 0.009 0.000000 ± 0.000 0.236101 ± 0.148

H.eggs acc 0.862234 ± 0.010 0.619513 ± 0.024 0.651456 ± 0.002 0.638418 ± 0.007 0.636679 ± 0.012 0.653629 ± 0.000 0.651456 ± 0.001

κ 0.740861 ± 0.028 -0.019102 ± 0.011 -0.002446 ± 0.003 -0.010811 ± 0.001 0.006862 ± 0.024 -0.000263 ± 0.000 -0.001735 ± 0.000

P.cysts acc 0.850691 ± 0.018 0.583769 ± 0.015 0.585743 ± 0.016 0.596889 ± 0.000 0.592128 ± 0.007 0.528387 ± 0.095 0.596076 ± 0.001

κ 0.751667 ± 0.028 -0.013466 ± 0.014 -0.008483 ± 0.012 -0.000645 ± 0.001 -0.003423 ± 0.005 0.019087 ± 0.030 -0.001528 ± 0.001

PCA H.eggs* acc 0.812932 ± 0.059 0.782800 ± 0.022 0.575644 ± 0.086 0.827997 ± 0.033 0.865035 ± 0.065 0.593220 ± 0.072 0.868801 ± 0.027

κ 0.775954 ± 0.073 0.739026 ± 0.028 0.483446 ± 0.110 0.792577 ± 0.041 0.837979 ± 0.079 0.518984 ± 0.080 0.844098 ± 0.031

P.cysts* acc 0.757209 ± 0.015 0.619666 ± 0.083 0.719147 ± 0.025 0.641580 ± 0.059 0.677047 ± 0.019 0.626586 ± 0.027 0.679354 ± 0.048

κ 0.651933 ± 0.023 0.496203 ± 0.104 0.632033 ± 0.030 0.520132 ± 0.069 0.556229 ± 0.027 0.474462 ± 0.041 0.551953 ± 0.072

H.larvae acc 0.930806 ± 0.026 0.906793 ± 0.005 0.912480 ± 0.029 0.931438 ± 0.019 0.923539 ± 0.026 0.949447 ± 0.014 0.957662 ± 0.002

κ 0.613432 ± 0.230 0.567678 ± 0.037 0.557973 ± 0.171 0.644459 ± 0.162 0.696070 ± 0.105 0.737386 ± 0.095 0.807875 ± 0.003

H.eggs acc 0.862234 ± 0.010 0.668622 ± 0.046 0.618644 ± 0.054 0.664711 ± 0.029 0.744242 ± 0.027 0.647327 ± 0.066 0.812690 ± 0.032

κ 0.740861 ± 0.028 0.433312 ± 0.065 0.260372 ± 0.051 0.411077 ± 0.062 0.543626 ± 0.048 0.321544 ± 0.130 0.647622 ± 0.057

P.cysts acc 0.850691 ± 0.018 0.615000 ± 0.017 0.531638 ± 0.005 0.666899 ± 0.031 0.658307 ± 0.032 0.664229 ± 0.001 0.720771 ± 0.027

κ 0.751667 ± 0.028 0.284629 ± 0.104 0.263112 ± 0.026 0.395488 ± 0.115 0.344865 ± 0.153 0.403226 ± 0.034 0.535129 ± 0.032

t-SNE H.eggs* acc 0.812932 ± 0.059 0.932831 ± 0.032 0.846202 ± 0.025 0.964846 ± 0.022 0.850596 ± 0.051 0.954802 ± 0.023 0.938481 ± 0.017

κ 0.775954 ± 0.073 0.919898 ± 0.038 0.816217 ± 0.030 0.958337 ± 0.026 0.822694 ± 0.059 0.946002 ± 0.027 0.927126 ± 0.020

P.cysts* acc 0.757209 ± 0.015 0.771626 ± 0.050 0.697232 ± 0.020 0.732122 ± 0.023 0.644464 ± 0.047 0.756920 ± 0.012 0.658881 ± 0.028

κ 0.651933 ± 0.023 0.688570 ± 0.066 0.594524 ± 0.035 0.633941 ± 0.042 0.534253 ± 0.057 0.665824 ± 0.024 0.544564 ± 0.034

H.larvae acc 0.930806 ± 0.026 0.910901 ± 0.013 0.902685 ± 0.029 0.933965 ± 0.017 0.956714 ± 0.003 0.953871 ± 0.003 0.952291 ± 0.004

κ 0.613432 ± 0.230 0.599203 ± 0.111 0.595899 ± 0.123 0.705463 ± 0.079 0.810965 ± 0.018 0.785615 ± 0.022 0.787406 ± 0.014

H.eggs acc 0.862234 ± 0.010 0.761191 ± 0.027 0.636028 ± 0.025 0.777705 ± 0.013 0.824641 ± 0.003 0.725772 ± 0.070 0.819426 ± 0.024

κ 0.740861 ± 0.028 0.599112 ± 0.036 0.299141 ± 0.077 0.621008 ± 0.032 0.685570 ± 0.014 0.500910 ± 0.118 0.686552 ± 0.042

P.cysts acc 0.850691 ± 0.018 0.698711 ± 0.003 0.592476 ± 0.025 0.735748 ± 0.019 0.719378 ± 0.007 0.701614 ± 0.011 0.719959 ± 0.032

κ 0.751667 ± 0.028 0.484463 ± 0.017 0.313296 ± 0.022 0.559176 ± 0.038 0.483280 ± 0.034 0.460516 ± 0.054 0.527912 ± 0.030

UMAP H.eggs* acc 0.812932 ± 0.059 0.913999 ± 0.039 0.846202 ± 0.055 0.937225 ± 0.033 0.849341 ± 0.088 0.950408 ± 0.024 0.945386 ± 0.004

κ 0.775954 ± 0.073 0.897254 ± 0.047 0.817901 ± 0.065 0.925412 ± 0.039 0.820393 ± 0.105 0.940671 ± 0.028 0.935039 ± 0.005

P.cysts* acc 0.757209 ± 0.015 0.728662 ± 0.044 0.686851 ± 0.023 0.666667 ± 0.040 0.601499 ± 0.098 0.702422 ± 0.022 0.636678 ± 0.004

κ 0.651933 ± 0.023 0.621347 ± 0.063 0.590353 ± 0.021 0.547625 ± 0.062 0.480729 ± 0.113 0.590077 ± 0.043 0.500455 ± 0.014

H.larvae acc 0.930806 ± 0.026 0.911848 ± 0.010 0.883096 ± 0.034 0.935861 ± 0.015 0.959242 ± 0.006 0.947867 ± 0.013 0.958610 ± 0.005

κ 0.613432 ± 0.230 0.601489 ± 0.075 0.503848 ± 0.098 0.718764 ± 0.056 0.826163 ± 0.025 0.739471 ± 0.099 0.805239 ± 0.026

H.eggs acc 0.862234 ± 0.010 0.755107 ± 0.009 0.644285 ± 0.019 0.781399 ± 0.045 0.790960 ± 0.025 0.707084 ± 0.063 0.814863 ± 0.036

κ 0.740861 ± 0.028 0.563245 ± 0.010 0.261623 ± 0.039 0.616187 ± 0.079 0.635362 ± 0.039 0.449519 ± 0.148 0.680416 ± 0.051

P.cysts acc 0.850691 ± 0.018 0.684547 ± 0.012 0.575061 ± 0.010 0.743295 ± 0.036 0.691165 ± 0.025 0.703819 ± 0.017 0.741089 ± 0.014

κ 0.751667 ± 0.028 0.408555 ± 0.082 0.251174 ± 0.026 0.565152 ± 0.073 0.445321 ± 0.084 0.500526 ± 0.021 0.566037 ± 0.016

7.1 Data Separation vs Visual Separation Depends on the Projection Technique

Figures 4 and 5(left) give us two main insights.
First, we see a similar pattern in κ (lighter/yellow or darker/purple colors) for dis-

tinct datasets. DS and VS are correlated for some projections P , e.g., MDS, t-SNE, and
UMAP; and somewhat less for FA and PCA. For other projections, e.g., FICA, ISO,
KPCA, LLE, and MLLE, this correlation is absent. For these last projections, while
there is some variation in κ for distinct datasets in DS, VS is close to 0 for all datasets.
This tells that some projections can map DS to VS quite well, whereas others cannot
and tend to create a low VS no matter how high DS is. In short, VS strongly depends
on the projection technique P .

Secondly, we see a distinct pattern for those projections that capture well DS in their
VS. Datasets with medium-high DS (accuracy in [0.8, 1], κ in [0.7, 1.00]) tends to yield
also medium-high VS accuracy and κ (compare Figs. 4 and 5). H.eggs* and H.larvae
are examples of these datasets. We see a similar pattern for low-medium accuracy and κ:
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For DS accuracy in [0, 0.5] and κ in [0, 0.4], we get medium-high accuracy and κ for VS
(see Fig. 5 for P.cysts*, P.cysts, or H.eggs). This tells that some projection techniques
can not only correlate VS with DS, but also keep differences for distinct datasets, while
others do not.

7.2 Assessing the Quality of Visual Separation

As explained earlier, we use κ as a measure of visual separation of (same-labeled) points
in a projection. While this is arguably intuitive – one can propagate labels easier when
surrounding points are unlabeled or have the same label than when surrounding points
would have many different labels – we would like to directly test how κ and VS as
perceived by humans agree.

To assess the correlation between κ and perceived VS, we ranked our results as
follows. We computed the average accuracy and κ for each P (over all contrastive
learning methods, initialization strategies, and datasets). Next, we sorted the projections
P over accuracy and κ (see Table 7). Finally, we show in Fig. 6 the actual projection
results for the best, medium, and worst projection following the above ranking.

The best-ranked projection in Fig. 6 is t-SNE. In line with this ranking, we indeed
see a quite good separation of points having a label from those having different labels
(or gray, i.e., unlabeled). For H.eggs*, all three latent space projections (SimCLR, Sup-
Con, and SimCLR+SupCon) show a clear VS, and we see that this leads to almost no
color mixing in the propagated pseudo-labels. For P.cysts*, there is a clearly separated
group (red) in all three projections which also has a single color (label). The remain-
ing projections, which have no clear VS in terms of distinct groups, show a mix of
different colors. For H.larvae, the larvae class (red) is better separated from the big
group of impurities (gray), and this correlates with the larvae samples being all located
in a tail-like periphery of the projection – thus, better visually separated from the rest.
For H.eggs, we see how the visually separated groups show almost no color mixing,
whereas the parts of the projection where no VS is present show color mixing. For
P.cysts, the projections have even less VS, and we see how labels get even more mixed
– for instance, the impurity class (gray) is spread all over the projection.

The medium-ranked projection technique in Fig. 6 is FA. Its scatterplots show a less
clear correlation between VS and lack of label mixing in distinct groups. For H.eggs*,
we notice some VS for SimCLR and SupCon. Some groups are better clustered (red and
yellow) than others (brown and gray), but with few whitespace among those groups. No
clear VS can be seen for all other datasets and contrastive learning approaches – the
points are condensed in a single group with similar colors close to each other in this
group.

Finally, LLE scored as the worst method in our ranking. Figure 6 shows, indeed, no
clear separation of points into groups having the same color – not only are colors inter-
mixed all over the projection, bit it is often hard to even visually ‘split’ the projection
into distinct point groups.

All above results show, first of all, that the κ ranking of projections is indeed in
line with our perception of visual separation. This empirically validates our decision to
measure the latter by computing the former. Also, our results show that a good VS leads
to a low mixing of the propagated labels, and conversely. In turn, a low mixing leads to a
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Fig. 6. 2D projections of the best (t-SNE), medium (FA), and worst (LLE) P for the three
contrastive latent spaces (SimCLR, SupCon, SimCLR+SupCon) and the six studied datasets
(columns). Colored points show the computed pseudo-labels for distinct classes. Outlined points
in red represent the supervised points. (Color figure online)
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high classification performance (CP), and conversely, i.e., our claim C3. Table 7 shows
this by ranking the average results of each projection by each metric for the baseline
and VGG-16 trained with the generated pseudo-labels. We see the best κ value for t-
SNE with a clear VS and little label mixing in the projections. Conversely, we see the
medium-low κ values [0, 0.6] for FA and LLE with poor VS and color-mixing in their
projections.

7.3 Data Separation vs Visual Separation vs Classifier Performance

Section 7.1 discussed how a good projection P can map high DS to high VS. Section 7.2
showed that VS can be measured by κ. Section 6.3 showed that CP is correlated with
VS. Let us now put together all these observations.

Figure 7 shows plots of the correlation between (i) DS and VS and (ii) VS and CP,
using both accuracy or κ. To simplify the plot, we averaged over initialization strategies
(pre-trained, scratch) per contrastive learning method. As such, every point in a plot is
a (dataset, contrastive learning method, projection technique) combination. Points are
colored to indicate projection techniques. For all same-projection points (15 of them),
we also plot a trend line showing their correlation.

Fig. 7. Correlation plots DS-VS and VS-CP for accuracy and κ. In each plot, a point corresponds
to the average of initialization strategies (scratch or pre-trained) for each dataset and contrastive
learning method projected by a distinct P (in different colors). Each line represents the trend of
same-P (same-color) points. Projections P are grouped into those which (a) map well DS to VS
and (b) create poor VS regardless of DS.
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Figure 7 gives several insights. The DS-VS correlation plots confirm our findings
in Sect. 7.1. For accuracy, all trend lines have an increasing slope which tells a positive
DS-VS correlation, i.e., good DS leads to good VS. We notice two main groups of
trend lines: one for (a) UMAP, t-SNE, MDS, PCA, and FA, and another for (b) all other
projection techniques. Indeed, Fig. 5(left) showed a pattern of darker/blue points for
(b) (see e.g. the H.eggs*’s row). For κ, we see an increasing slope for trend lines only
for (a), and horizontal lines for (b). This says that only projections in group (a) have a
positive DS-VS correlation. Figure 5(left) confirms this by showing a stronger pattern
of darker/blue cells, i.e., low κ, for all datasets in (b). We conclude that projection
techniques in group (a) yield a strong DS-VS correlation, whereas projections in group
(b) do not do that but rather generate poor-VS results for any DS value.

The VS-CP correlation plots strengthens our earlier findings from Fig. 5 in Sect. 6.3.
For accuracy, all trend lines show an increasing slope and thus a positive VS-CP, with a
slight difference between projections in group (a) and group (b). For κ, we also see the
positive VS-CP correlation except for ISO which has an almost flat line. Additionally,
we see that the trend lines in the middle of the plot correspond for projections in group
(a). For these projections, both VS and CP spread widely over the [0, 1] range. In con-
trast, lines for projections in group (b) have values lower than 0.05 for VS and CP. This
is the same pattern found in our earlier analysis for DS vs. VS, i.e., the presence of two
groups of projection techniques with distinct correlation values. The existence of these
groups highlights the importance of the chosen projection technique in supporting the
DS, VS, and CP links. In detail, for UMAP, t-SNE, MDS, PCA, and FA (group (a)), we
confirm a strong DS-VS and VS-CP, thus DS-VS-CP, correlation. In contrast, for FICA,
ISO, KPCA, LLE, and MLLE (group (b)), we find a VS-CP relation in the sense that
both these values are low. However, we did not find any DS-VS correlation since these
projections map any DS values in [0, 1] to very poor VS values (close to zero).

Table 7. Average values of propagation results (C2) for accuracy and κ and studied P . P is
ordered in increasing order for the respective metrics.

metrics techniques ordered by metric

acc ISO M-LLE LLE FICA K-PCA FA PCA MDS UMAP t-SNE

0.400488 0.406233 0.411292 0.413671 0.414182 0.690367 0.697184 0.721874 0.752606 0.761406

κ LLE FICA M-LLE K-PCA ISO FA PCA MDS UMAP t-SNE

0.013256 0.014352 0.014943 0.014971 0.015558 0.497711 0.505837 0.538983 0.583886 0.600066

The above insights connect to our qualitative and ranked analysis of the scatter-
plots in Fig. 6 and Table 7. The presence of two groups in the correlation plots is also
connected to the quality of the perceived projection scatterplots. Scatterplots with a
clear VS among groups of different classes/colors separated by whitespace come from
t-SNE, a projection in the group (a). Conversely, scatterplots with no VS among groups
of different classes/colors and without any whitespace separation come from LLE, a
projection in group (b). Our key finding – that projections split in two groups – (a) and
(b), with good, respectively poor, DS-VS correlation – complements and extends the
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largest former quantitative comparison of projection techniques [12]. Our set (a), i.e.,
projections which best preserve DS-VS and are best for building high-CP classifiers,
matches quite closely the projections found best in [12]. However, our quality criteria
– VS measured by pseudolabeling performance and CP measured by classifier perfor-
mance are completely different than the criteria used in [12] to measure projection qual-
ity. The latter criteria include metrics such as trustworthiness, continuity, normalized
stress, neighborhood hit, and Shepard correlation. As outlined in Sect. 2, such metrics
only measure how a projection preserves local data structure. This is typically done
by using small-sized neighborhoods of under 10 points in both the data and projection
space. Visual separation (VS), however, occurs at much larger scales in a scatterplot.
Moreover, we measure VS in a completely different way, namely, as the performace of
a ML algorithm (pseudolabeling) that handles all the scatterplot points globally rather
than in terms of small-scale, independent, neighborhoods. As such, the fact that we
‘rank’ projections quite similarly to [12], but using completely different metrics, has
several potentially far-reaching implications (all to be tested by future work):

– Projections assessed by local quality metrics [12] can be used to predict classifier
performance;

– Higher-level properties like visual separation (VS) can be predicted by lower-level
metrics [12];

– the VS of a projection, measured by κ or accuracy during pseudolabeling, can be an
additional quality metric for generic projection assessment. Apart from their abil-
ity to gauge a projection more globally, such metrics are also much faster to com-
pute than neighborhood-based metrics such as trustworthiness, continuity, normal-
ized stress, or Shepard correlation.

7.4 Contrastive Learning from Few Supervised Samples

Our experiments with ImageNet pre-trained weights and higher results show that Sim-
CLR – even trained with thousands of unsupervised samples (69%) – and having
more information on the data distribution of the original space – did not surpass Sup-
Con which used only dozens of supervised samples (1%). Our explanation for this is
that the latent space generated when SupCon was used to fine-tune SimCLR (Sup-
Con+SimCLR) had a better DS than the one created by SimCLR – this is by Table 4.
This shows the benefit of using SupCon with supervised data restriction as compared to
SimCLR, a finding that up to our knowledge is novel. Separately, the fact that a higher
DS lead to a higher CP further supports our claim C3.

8 Conclusion

We presented a detailed study of the link between data separation (DS) in a high-
dimensional partially-labeled dataset, the visual separation (VS) in a 2D projection of
that dataset, and the performance of a classifier (CP) constructed by pseudolabeling the
abovementioned projection.

In our work, we used two contrastive learning approaches (SimCLR and SupCon) as
well as their combination. We projected the latent spaces produced by these methods to
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2D using ten projection techniques (FA, FICA, ISO, KPCA, LLE, MDS, MLLE, PCA,
t-SNE, and UMAP). We propagated labels in these projections and finally used these
pseudo-labels to train a deep-learning classifier for a challenging problem involving the
classification of human intestinal parasite images.

Our results show that SimCLR+SupCon performed better than using only SimCLR
or SupCon to create a data space with strong DS. In turn, this allowed us to construct
an end-to-end classifier with higher accuracy and κ values than earlier reported for the
respective datasets in the literature.

Separately, we showed that the 10 studied projection techniques can be split into
two groups. Projections in the first group (FICA, ISO, KPCA, LLE, and MLLE) yield
very poor VS results for any DS values of their input data, and consequently also very
poor CP results. These projections are hence not useful for our classifier engineering
pipeline and, arguably, they will also have challenges for other infovis applications
where VS is important. Projections in the second group (FA, MDS, PCA, t-SNE, and
UMAP) show a good DS-VS correlation and, next, a good VS-CP correlation. These
projections are thus ideal for our classifier engineering task and, arguably, for other
infovis applications where VS is important. Our work shows, to our knowledge, for the
first time how specific projection techniques preserve a strong DS-VS-CP correlation
(or not). Our findings can assist additional applications in infovis or machine learning
where projections are used.

Several future work directions are possible. First, the connection between pseu-
dolabeling quality and visual separation could be further exploited to e.g. design new
metrics for visual separation using labeling algorithms or, conversely, to guide label-
ing by existing visual quality metrics. Secondly, user experiments could be designed
and executed to assess more formally the relationship between pseudolabeling quality
and perceived visual separation. Finally, we aim to involve users in the loop to assist
the automatic pseudolabeling process by e.g. adjusting some of the automatically prop-
agated labels based on the human assessment of VS. We believe that this will lead
to even more accurate pseudo-labels and, ultimately, more accurate classifiers for the
problem at hand.
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