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Abstract. Expert human supervision of the large labeled training sets
needed by convolutional neural networks is expensive. To obtain sufficient
labeled samples to train a model, one can propagate labels from a small
set of supervised samples to a large unsupervised set. Yet, such methods
need many supervised samples for validation. We present a method that
iteratively trains a deep neural network (VGG-16) from labeled samples
created by projecting the features of VGG-16’s last max-pooling layer in
2D with t-SNE and propagating labels with the Optimum-Path Forest
semi-supervised classifier. As the labeled set improves along iterations, it
improves the network’s features. We show how this significantly improves
classification results on test data (using only 1% to 5% of supervised
samples) of three private challenging datasets and two public ones.

Keywords: Data annotation - Label propagation - Iterative feature
learning.

1 Introduction

Convolutional neural networks (CNNs) usually need large training sets (labeled
images) [14, 19]. While regularization, fine-tuning, transfer learning, and data
augmentation [24] can help this, manually annotating enough images (human
supervision) by expert uses, as in Biology and Medicine, remains expensive.

To build a large enough training set, Lee [12] propagated labels from a small
set of supervised images to a large set of unsupervised ones, as an alternative
to entropy regularization. In detail, Lee trained a neural network with 100 to
3000 supervised images, assigned the class with maximum predicted probability
to the unsupervised ones, and then fine-tuned a neural network with the true-
plus-artificially labeled (pseudo labeled) samples, showing advantages over other
semi-supervised learning methods. Still, this required validation sets of over 1000
supervised images for the optimization of hyperparameters; used a network with
a single hidden layer; and was shown on a single dataset (MNIST).
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Label propagation from supervised to unsupervised samples was recently
used to build larger training sets|[8,9,26, 13]. Amorim et al.[2] used the semi-
supervised Optimum Path Forest (OPFSemi) classifier [1] for this, outperforming
several existing semi-supervised techniques when training CNNs. Yet, they did
not explore CNNs pre-trained with large supervised datasets for transfer learning,
and still needed many supervised samples (10% of the dataset) for validation.

Graph-based semi-supervised learning has recently received increasing atten-
tion [1, 3, 6,28]. By modeling training samples as nodes of a graph whose arcs
connect adjacent samples in the feature space, one can propagate labels from
supervised samples to their most strongly connected unsupervised neighbors.
Benato et al. [4, 5] showed the advantages of OPFSemi for label propagation in a
2D embedded space created by t-SNE [15] from the latent space of an autoencoder
trained with unsupervised images — which differs from [2] where propagation is
done in the feature space. Their supervised classifiers achieved higher performance
on unseen test sets when trained with large sets of truly-and-artificially labeled
samples, with OPFSemi surpassing LapSVM [22] for label propagation. Yet, they
have not used this strategy to train deep neural networks.

We fill the above gaps by proposing a loop (Fig. 1) that trains a deep neural
network (VGG-16, [21]) with truly-and-artificially labeled samples along iterations.
At each iteration, we create a 2D embedded space by the t-SNE projection (like [4],
different from [2]) of VGG-16’s features at the last max-pooling layer (before
the MLP) and propagate labels by OPFSemi, so that the labeled set jointly
improves with the CNN'’s feature space over iterations. Our method can improve
classification on unseen test data of challenging datasets.

2 Proposed Pipeline

After the user supervises a small set of training images, we execute a three-step
loop (deep feature learning, feature space projection, and label propagation; Fig. 1).

2.1 Deep Feature Learning

To minimize user effort for annotation, we use the ability of pre-trained CNNs to
transfer knowledge [27] between scenarios — e.g., from natural to medical images —
using few supervised samples and few epochs. We use VGG-16, pre-trained on
ImageNet [19], and fine tuned with the supervised images. In the next iterations
of our loop, we train VGG-16 with all true-and-artificially labeled images.

2.2 Feature Space Projection

We project the features of the last max-pooling layer of VGG-16 by t-SNE [15]
in a 2D embedded space. One may conceptually divide a deep neural network
into (a) layers for feature extraction, (b) fully connected layers for feature space
reduction, and (c) the decision layer (a MLP classifier). We explored features that
result from (a), where the feature space is still high and sparse; a comparison
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Fig. 1. Pipeline of our method. The user supervises a small fraction = of images (1).
These are used to train a deep neural network (2), which extracts features from the
unsupervised images (3). Features are projected in a 2D embedded space (4). A semi-
supervised classifier propagates labels to the unsupervised images (5). The model is
retrained by all images and their assigned labels (6), creating a new and improved
feature space along iterations. Finally, the trained model is used for classification (7).

with the output of the last hidden layer is left for future work. Rauber et al. [18]
showed that high classification accuracy relates to a good separation of classes in
a 2D projection. Hence, if a 2D projection presents good class separation, then a
good class separation can also be found in the data space.

Benato et al. [4] showed that label propagation (using two semi-supervised
classifiers) in a 2D projection space leads to better classification results than
using the latent feature space of an autoencoder. We also opt to investigate label
propagation in a 2D projected space (created by t-SNE [15], as in [18] and [4]) to
create larger training sets for deep learning.

2.3 Label Propagation

We used OPFSemi in both the 2D t-SNE projection [4] and the original feature
space [2]. OPFSemi sees each sample as a node of a complete graph, setting
the cost of a path between two nodes to the maximum arc weight (Euclidean
distance between samples) along it. The supervised nodes seed the computing of
a minimum-cost path forest — each seed propagates its label to the most closely
connected unsupervised nodes of its tree.

3 Experiments and Results
3.1 Experimental Set-up

We randomly divide each dataset into supervised training samples .S, unsupervised
training samples U, and testing samples T". To measure the impact of annotated
samples on classification, we let S U U have 70% of samples, while T has 30%.
To minimize user effort for supervision, we set |S| to 1% up to 5% of the entire
dataset, thus much smaller than |U| For statistics, we generate three partitions of
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each experiment randomly and in a stratified manner. We validate our method,
called DeepFA looping, by three experiments:

1. Baseline: train VGG-16 on S, test on T, ignore U (Fig. 1 steps 1,2,6,7).

2. DeepFA: train VGG-16 on S; extract SUU features from VGG-16 and project
them in 2D with t-SNE; OPFSemi label estimation in U; train VGG-16 on
SUU and test on T (all of Fig. 1 for n = 1).

3. DeepFA looping: train VGG-16 on S; extract S UU features from VGG-16;
project them in 2D with t-SNE; OPFSemi label propagation on U; train
VGG-16 on S U U; repeat from the projection step n = 5 times; test on T’
(all of Fig. 1 for n > 1).

To compare effectiveness, we compute accuracy from VGG-16’s final proba-
bility. As we have unbalanced datasets, we also compute Cohen’s k coefficient,
k € [—1,1], where k < 0 means no possibility and x = 1 means full possibility of
agreement occurring by chance, respectively. For the experiments where OPFSemi
propagates labeled samples, we also compute the label propagation accuracy in
U, i.e., the number of correct labels assigned in U over the size of U.

3.2 Datasets

We first use two public datasets: MNIST [11] contains handwritten digits from 0
to 9 as 28 x 28 grayscale images. We use a random subset of 5K samples from
MNIST’s total of 60K. CIFAR-10 [10] contains color images (32 x 32 pixels) in
10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
We use a random subset of 5K images from CIFAR-10’s total of 60K.

We also used three private datasets from a real-world problem (Fig. 2). These
datasets contain color microscopy images (200 x 200 pixels) of the most common
species of human intestinal parasites in Brazil, responsible for public health
problems in most tropical countries [25]. These datasets are challenging, since
they are unbalanced and contain an impurity class for the large majority of
the samples, having samples very similar to parasites, which makes classifica-
tion hard (Fig. 2). We explored two (out of three) datasets with and without
the impurity class, yielding thus five total datasets: (i) Helminth larvae, (ii)
Helminth eggs without impurities, (iii) Helminth eggs with impurities, (iv) Pro-
tozoan cysts without impurities, and (v) Protozoan cysts with impurities. The
Helminth larvae dataset presents larvae and impurities (2 classes, 3514 im-
ages); the Helminth eggs dataset has several categories: H.nana, H.diminuta,
Ancilostomideo, E.vermicularis, A.lumbricoides, T.trichiura, S.mansoni, Taenia,
and impurities (9 classes, 5112 images); and the Protozoan cysts dataset has
the categories F.coli, E.histolytica, E.nana, Giardia, I.butschlii, B.hominis, and
impurities (7 classes, 9568 images). For more details, we refer to [17]. Table 1
presents the experimental set-up described in Sec. 3.1 for these 7 datasets.

3.3 Implementation details

We implemented VGG-16 in Python using Keras [7]. We load the pre-trained
weights from ImageNet [19] and fine-tuned this model using the supervised S
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Fig. 2. Datasets: (a) MNIST (b) CIFAR-10 and (c) H.eggs, with parasites (green box)
and similar impurities (red box).
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first, and subsequently labeled sets (SUU) for each chosen dataset. To guarantee
convergence, we used 100 epochs with stochastic gradient descent with a linearly
decaying learning-rate from 10~* to zero over 100 epochs and momentum of 0.9.

3.4 Experimental Results

We use our results to address three joint questions:

Q1: How do more supervised samples improve the process? Per dataset, Tab. 2
first shows accuracy (mean, standard deviation) and k for VGG-16 trained on
S with 1%..5% supervised samples and tested on T (baseline). Accuracy and k
increase with the supervised sample count. For H.larvae and H.eggs, this trend
cannot be seen for the given training-data fractions (3% to 4%). Still, VGG-16
performs better when the supervised training sample count increases.

Q2: What is OPFSemi’s effect? Table 2 next shows mean and standard deviation
for accuracy, k, and propagation accuracy for VGG-16 trained with S U U, with
U labeled by OPFSemi in the 2D projection (DeepFA). As for baseline, accuracy
and k increase with the fraction of supervised training samples. The propagation
accuracy of OPFSemi is related to the number of supervised samples used to train
VGG-16. The labeling performance of OPFSemi in the 2D projected space can
be verified by the propagation accuracy. For the parasites dataset, this accuracy
is over 80% even when VGG-16 was trained with just 1% of the data.

Q3: What is Looping OPFSemi’s effect? Finally, Tab. 2 shows mean and standard
deviation of 5 iterations of DeepFA looping for accuracy, Cohen’s k, and propa-
gation accuracy for VGG-16 trained with S U U, with U labeled by OPFSemi in
the 2D projection. As for baseline and DeepFA, we see an increase of accuracy
and k with the fractions (1% to 5%) of supervised training samples. We see

Table 1. Number of samples in each set S, U, and T considering |S| for five sample

percentages x = 1,2,...,5% of supervised images in each dataset.
Dataset H.larvae H.eggs P.cysts
T 1% [ 2% | 3% | 4% | 5% | 1% | 2% | 3% | 4% [ 5% | 1% | 2% | 3% | 4% | 5%
| S| 35| 70| 105| 140| 175 17| 35| 53| 70| 88| 38| 77| 115| 154| 192

| U | [2424]2389[2354(2319(2284(1220[1202[1184|1167[1149(2658(2619|2581[2542(2504
[T ] [1055]1055[1055[1055[1055] 531] 531[ 531] 531[ 531[1156]1156]1156[1156[1156
Total [3514|3514(3514|3514|3514|1768|1768|1768|1768|1768|3852|3852|3852|3852|3852

Dataset H.eggs imp P.cysts imp MNIST / CIFAR-10
T 1% [ 2% [ 3% | 4% | 5% | 1% | 2% | 3% | 4% [ 5% | 1% | 2% | 3% | 4% | 5%
S| 51| 102] 153| 204| 255 95| 191| 287| 382| 478| 50| 100| 150 200| 250

| U | |3527[3476]3425|3374|3323|6602[6506[6410(6315(6219]3450(3400(3350(3300(3250
| T | [1534[1534|1534|1534]1534[2871|2871[2871]2871(2871|1500(1500]/1500|1500]1500
Total [5112]5112(5112[5112({5112]9568(9568[9568(9568[9568(5000|5000(5000|5000(5000
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Table 2. Results of the baseline, DeepFA, and DeepFA looping experiments, all datasets,

five supervised sample percentages x, color-coded using a white-to-green colormap.
z = 3%

Methods|Metrics
baseline i::‘;?c}]
g accuracy
2 |DeepFA  |kappa
.E, propagation
o Decpka | 2ccuracy
looping kappa .
propagation
. accuracy
baseline kappa
. accuracy
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é propagation
DeepFA accuracy
looping kappa .
propagation
. accuracy
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@ accuracy
E DeepFA  |kappa
Q propagation
=M
DeepFA accuracy
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= [DeepFA accuracy
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9
o | DeepFA accuracy
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DeepFA accuracy
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g propagation
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S accuracy
ﬁ DeepFA  |kappa
= propagation
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0 DeepFA accuracy
looping kappa
propagation

z=1%

0.613432

0.783412

0.812932
0.775954

0.757209
0.651933

0.794713

0.740861

0.751667

0.755127

0.763711

0.661111
0.623148
0.766222
0.740028
0.750571
0.815778
0.795079
0.806000
0.266000
0.183681
0.228445
0.142149
0.219048
0.324000
0.248837
0.314286

+ 0.2334

+ 0.1150

=+ 0.0599
=+ 0.0737

+ 0.0158
=+ 0.0232

+ 0.0124

=+ 0.0287

=+ 0.0280

=+ 0.0132

=+ 0.0026

=+ 0.0523
=+ 0.0582
=+ 0.0252
=+ 0.0280
=+ 0.0320
+ 0.0212
=+ 0.0236
=+ 0.0230
=+ 0.0264
=+ 0.0301
=+ 0.0435
=+ 0.0492
+ 0.0428
+ 0.0418
=+ 0.0463
+ 0.0277

z=2%

0.815160

0.776938

0.756045

0.774361

0.782222
0.757848

0.321555
0.245770
0.310000
0.232875
0.288952
0.375333
0.305496
0.369334

+ 0.0138

=+ 0.0031

=+ 0.0138

=+ 0.0434

=+ 0.0269
=+ 0.0298

=+ 0.0151
=+ 0.0166
=+ 0.0790
=+ 0.0880
=+ 0.0790
=+ 0.0436
=+ 0.0483
=+ 0.0235

x = 4%

0.818082 4 0.0492| 0.808397 + 0.0416

0.811239 =+ 0.0231

0.372889
0.303050
0.365555
0.295078
0.356095
0.402444
0.335927
0.411238

=+ 0.0341
=+ 0.0377
=+ 0.0205
=+ 0.0230
=+ 0.0340
=+ 0.0125
=+ 0.0138
=+ 0.0253

0.417111
0.352095
0.407778
0.341907
0.389619
0.448445
0.387059
0.446667

=+ 0.0413
=+ 0.0461
=+ 0.0136
+ 0.0148
+ 0.0190
=+ 0.0177
=+ 0.0199
=+ 0.0152

x = 5%

0.455333
0.394558
0.424889
0.360883
0.421143
0.461555
0.401490
0.466857

+ 0.0263
+ 0.0291
+ 0.0093
+ 0.0102
+ 0.0126
+ 0.0211
=+ 0.0236
+ 0.0301

the same for propagation accuracy, which reflects the effect of 5 iterations of
OPFSemi for labeling samples in the 2D projected space. For all datasets, except
CIFAR-10, propagation accuracy is over 80% even when the VGG-16 feature
space was trained with only 1% of data.

4 Discussion

Added-value of DeepFA looping: Figure 3 plots the average x for our base-
line, DeepFA, and DeepFA looping experiments, for all 7 studied datasets. DeepFA
looping consistently obtains the best results, except for the P.cysts with impurity
dataset. DeepFA shows an improvement over the baseline experiment, while the
first one was improved by a looping addition in the method. The gain of DeepFA
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looping is even higher when using a low number of supervised samples — relevant
when one cannot, or does not want to put effort, to supervise new ones. This
gain is lower for CIFAR-10 and almost zero for P.cysts with impurities, as these
datasets are more challenging, as their lowest s scores show.

Effectiveness of OPFSemi labeling: The positive results for VGG-16 rely on
OPFSemi propagating labels accurately. Figure 3 shows this by the average prop-
agation accuracy of OPFSemi for DeepFA and DeepFA looping, which is high for
all datasets, being worst-case 50% for CIFAR-10. For CIFAR-10, the propagation
accuracy gain of DeepFA looping is higher than for the other datasets. We see also
the impurity class impact for H.eggs and P.cysts in propagation accuracy (roughly
5%). Propagation accuracy is high as long as the sample count increases. The
DeepFA looping curve is on top of DeepFA curve for all datasets, so the effective-
ness of OPFSemi label propagation consistently improves by the looping addition.

Feature space improvement: Figure 3 showed that OPFSemi improved VGG-
16’s effectiveness and also accurately propagated labels to unsupervised samples.
The OPFSemi labeled samples also improve the VGG-16 feature space. Figure 4
shows this space projected with t-SNE for the studied datasets. Projections are
colored by (i) labels (supervised samples colored by the true-label; unsupervised
samples black), and (ii) OPFSemi’s confidence in classifying a sample (red=low
confidence, green=high confidence) [16, 20, 23]. For all datasets, we see a clear
reduction of red zones from baseline to DeepFA and a good cluster formation
in the projection for same-color (i.e., same-class) supervised samples (Fig. 4a).
From DeepFA to DeepFA looping, there is no further reduction of red zones. Yet,
different-color groups get more clustered and better separated. This is clearer for
CIFAR-10, which does not show good cluster separation for DeepFA (Fig. 4b).
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07 H.eggs (imp) . P.cysts(imp) . MNIST| m DeepFA looping experiment

Fig. 3. Cohen’s k (top) and propagation accuracy (bottom), all datasets, for 1% to 5%
supervised samples, DeepFA (red) vs DeepFA looping last iteration (blue).
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Fig. 4. 2D feature-space projections of training samples (SUU) — baseline, DeepFA, and
DeepFA looping, 1% supervised samples. Top row per experiment: Supervised samples
colored by true labels, unsupervised ones are black. Bottom row per experiment: Samples
colored by OPFSemi’s confidence (red=low, green=high). Insets (a,b) show details.

We conclude that OPFSemi’s label propagation and the looping strategy improve
VGG-16’s feature space when this space is fed by those samples.

Figure 5 shows the projected space colored by class labels (unsupervised
samples in black) and the OPFSemi’s confidence values for 5 iterations of DeepFA
looping on the P. cysts dataset with impurities, 1% supervised samples. Class
separation and confidence values increase with the iterations. The red-class sam-
ples are well separated from samples of the other classes in the first iteration;
some brown supervised samples get attached to them in iteration 2, creating a
low-confidence region. From iteration 3 on, the problem is solved.

Limitations: Our validation used only seven datasets, one deep-learning ap-
proach (VGG-16), one semi-supervised classifier (OPFSemi), and one projection
method (t-SNE). Exploring more (combinations of) such techniques would be
valuable. Also, using more than 5 iterations could help understand how OPFSemi
labels low-confidence regions and how it affects VGG-16’s feature space.

5 Conclusion

We proposed an approach for increasing the quality of image classification and
of extracted feature spaces when lacking large supervised datasets. From a few
supervised samples, we create a feature space by a pre-trained VGG-16 model
and use the OPFSemi technique to label unsupervised samples on a 2D t-SNE
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Fig. 5. 2D projections of training samples (S U U) for DeepFA looping, 1% supervised
samples, P. cysts impurities dataset. Top row: Color shows class labels; unsuper-
vised samples in black. Bottom row: Color shows OPFSemi’s confidence (red=low,
green=high). Class separation and confidence increase with iterations.

projection of that feature space. We iteratively improve labels (and the feature
space) using labeled samples as input for the VGG-16 training.

OPFSemi shows low label-propagation errors and leads VGG-16 to good
classification results for several tested datasets, thereby improving the VGG-16
training and hence the feature space. The small gain yielded by looping tells
that OPFSemi can stagnate, its label-propagation errors lowering classification
quality. To help OPFSemi during label propagation, we plan next a bootstrapping
strategy to avoid propagation in low certainty regions. We also aim to include
user knowledge to support OPFSemi’s label propagation and to understand the
VGG-16 training process and feature space generation. This co-training approach
involving a bootstrapping strategy and two classifiers (OPFSemi and VGG-16)
can lead to higher quality, and more explainable, deep-learning methods.
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