
DEMONSTRATION OF THE SOFTVISION
SOFTWARE VISUALIZATION FRAMEWORK

 Matti Sillanpää

Nokia Research Center
Helsinki, Finland

E-mail: matti.jo.sillanpaa@nokia.com

Alexandru Telea
Eindhoven University of Technology

The Netherlands
E-mail: alext@win.tue.nl

Abstract

When recovering and maintaining the architectures of software systems,
effective visual presentations are essential for grasping the concepts and
constructs involved. There exist several reverse engineering tools that provide
visualizations of architectural information. The tools usually offer a set of
views allowing interactive navigation of the architectural information in some
predefined ways. However, one almost always needs to customize both
presentation and exploration methods of the architectural models, according to
their domain type, data size, and exploration goal. The SoftVision toolkit aims
to provide this customizability via a modular design, in which all elements of
the data exploration process are fully customizable by means of a scripting
interface. This interface allows the creation of information processing
procedures, and custom navigations, visualizations and user interfaces. In this
way, several graphical layouts can be created and combined with interactive
data viewers, to yield fully customized applications for exploration of
software architectures.

1 Introduction

The SoftVision visualization framework is a general-purpose visual
environment for browsing and editing graph-based data. Concrete instances of
such data are software architectures, component-based systems, network and
web structures, and relational databases. Compared to other similar
visualization tools, SoftVision’s main advantage is the freedom it provides for

1

the user to customize and extend its functionality to produce effective
visualizations for specific domains and data sets. So far, SoftVision has been
used to visualize reverse engineering data (Telea et al., 2002a,b; Telea, 2004),
the Internet resource metadata language RDF (Resource Description
Framework) (Telea et al., 2003), and component-based software systems
(Voinea and Telea, 2004). SoftVision’s architecture and design philosophy
are described in detail by Telea et al. (2002a,b). The toolkit is also available
for download with its manual at a website (Voinea, 2004). In this paper, we
focus on demonstrating the flexibility of SoftVision for building
visualizations for reverse engineering applications. First, we give a short
description of the main concepts SoftVision is based on, i.e. its data and
operation model (Section 2). In Section 3, we present a number of reverse
engineering visualization scenarios we have constructed using SoftVision and
detail the steps we took to customize the generic framework provided by
SoftVision to achieve our specific goals. Our presentation of these scenarios
has two aims. First, we illustrate and advocate the effectiveness of a visual
exploration tool for understanding architectural data. Second, by detailing the
steps we took in constructing our visualizations, we give an indication of the
(small) amount of effort needed to achieve such results when using the
SoftVision toolkit. Finally, we draw out conclusions in Section 4.

2 Toolkit Overview

The SoftVision toolkit is essentially based on the well-known Model-
View-Controller (MVC) architecture (Gamma et al., 1995). The Model
represents the data to be visualized (Section 2.2) and operations that process
these data (Section 2.3). The Views implement the interactive visualization
mechanisms (Section 2.4). Finally, the Controller receives commands from
SoftVision’s scripting language and the graphical user interface (GUI),
translates them to operations on the Model data, and updates the Views to
reflect the changes. These elements are outlined in the following. Telea et al.
(2002a,b) have described SoftVision’s architecture in more detail.

2.1 Motivation

Here we present a brief overview of the similarities and differences of the
SoftVision toolkit with some tools which we have identified as closely
resembling SoftVision by their goals and functionality. We outline the reasons

2

that have led us to the conclusion that SoftVision is needed even though
several tools in the field are available. As we shall see in the following, the
main contribution of SoftVision is the easy customization concerning the user
interface, the operations on the data, and the visualizations. This is why we
will take a close look at some implementation details in Section 3, i.e. the
steps that the user of SoftVision would need to take to create the
functionalities that we have decided to create for each specific scenario. As
we shall see, some of such functionalities may rather easily be re-used in
future scenarios also.

2.1.1 Rigi

The Rigi reverse engineering system (Wong et al., 1995) provides the user
with graph-based views of software structures, similarly to SoftVision. It
provides multiple windows with “slices” of a software systems’ hierarchy,
and the so-called ShriMP views, which provide a fisheye-type view into
hierarchical data. However, Rigi does not provide customization for different
scenarios by several ways which we have found necessary: The selection of
sub-graphs is not well supported; we can only specify one containment
relationship type instead of e.g. aggregating containment by several types of
edges; and the drawing of nodes and edges can not be customized, e.g. by
changing the shapes, lighting, and colors used. A more detailed discussion of
the limitations of Rigi, as compared to SoftVision, is given in (Telea et al.,
2002a).

2.1.2 VANISH

The VANISH system (Kazman and Carriere, 1995) (Visualizing and
Navigating Information Structured Hierarchically) was designed for
prototyping different kinds of 2D and 3D visualizations. It provides a custom
interpreted visual programming language with which the user may write
visualizations. It also includes the possibility to create different kinds of
glyphs based on graph information. However, the way in which graph and
node attributes are used is based on pre-compiled C++ classes. For rapid
scenario prototyping, this solution is inflexible. Moreover, VANISH does not
provide prepackaged layout engines that allow users to quickly construct the
graph layouts present in most software visualizations.

3

2.2 Data Model

The data model in SoftVision is a hierarchical, typed, and attributed graph.
In our reverse engineering applications, nodes represent software artifacts that
have resulted from program analysis. Arcs, or edges, represent relations such
as ‘uses’, ‘includes’, ‘provides’, ‘requires’, ‘inherits’, or ‘calls’. The hierarchy
is defined by clustering of nodes into layers, which represent levels of
containment in the system. To model alternate structurings, nodes may have
multiple parents defined in the data model.

Although this is a common way of modeling software structures,
SoftVision has been successfully applied to data models that are not
inherently hierarchical. An example is the visualization of data in the
Resource Description Framework format (Telea et al., 2003), which is a
metadata model.

In case of a software structure, the data does not need to represent a
program implemented with a particular programming paradigm, because of
the freedom the user has over the semantics of the nodes and edges. So far,
both object-oriented and procedural programs have been visualized with
SoftVision.

The data to be input into SoftVision may be in one of several graph
formats: the Rigi Standard Format (RSF), GraphEd or AT&T’s text-based
graph description language. Such data may be derived from software systems
by means of e.g. scripting or using symbol extraction tools such as the Red-
Hat Source-Navigator (De Jong, 2003).

2.3 Operation Model

All operations in SoftVision have subsets of the graph (nodes and edges),
called selections, as their input and output. Selections are created by user-
defined selection operations, which are analogous to filters in other software
analysis tools. Operations may also alter the graph data. Graph editing
operations may change the nodes’ and edges’ attributes, or even add or
remove nodes altogether. Computing metrics, such as the number of
provisions and requirements, or performing layouts, i.e. computing graphical
coordinates to draw nodes and edges, are naturally implemented as attribute-
editing operations. For example, layout operations store the nodes’
coordinates in the node attributes. Nodes may have any number of (named)
attributes, which allows storing different layouts, metrics, or any other data
(e.g. number of lines of code, name of programmer, software version, etc).

4

These attributes can be used together, or separately, in different data viewers
(Section 2.4). When an editing operation has changed the data model, all
SoftVision components that depend upon it, such as data viewers, are
automatically updated. This mechanism is implemented using the Observer
design pattern (Gamma et al., 1995). The last type of operation in SoftVision
is the mapping operation. Mapping creates visual objects from graph data. We
describe mapping, user interaction, and other aspects related to visualization
in the next section.

Figure 1 shows a typical work session of SoftVision, when the tool is used
for getting insight into source code, e.g. in a typical reverse engineering
activity. A work session consists of a sequence of operations that successively
refine the data under scrutiny to finally produce the desired visualization.
First, the source code is read and the artifacts of interest, such as functions,
classes, and their relationships and/or attributes, are extracted. Next, these
low-level artifacts are aggregated into semantically richer constructions. In
most cases, this yields a hierarchical system description with the original
artifacts at the bottom and successively simplified system descriptions at the
top. Next, the user selects a subsystem of interest in the hierarchy, which is
examined by operations such as computing various metrics on, or drawing
(visualizing) it. The selection and examination steps are usually repeated
several times until the desired insight is gained.

Figure 1. A typical work session in SoftVision.

5

2.4 Visualization and User Interaction

As described in the previous section, SoftVision separates the mapping
operation (how nodes and edges are drawn) from the layout operation (where
nodes and edges are drawn). This choice is usually not present in other
visualization systems for graph data (Gansner et al., 2002; North, 2002; Wong
et al., 1995; Kazman and Carriere, 1995). We believe this choice to be
essential for a flexible toolkit for data visualization for two reasons. First, it
allows users to customize their visualizations more freely than if the two
operations are tightly coupled. Secondly, it allows (re) using existing layout
and mapping software tools, without rewriting them from scratch. For
instance, SoftVision provides several layouts such as spring embedding,
directed trees, 3D stacked, and nested layouts. Spring embedding and tree
layouts are directly reused from the AT&T GraphViz (Gansner et al., 2002;
North, 2002) and the GEM toolkits (Frick et al., 1994). The 3D stacked and
nested layouts are easily implemented in SoftVision atop of GraphViz and
GEM, as described by Telea et al. (2002a,b).

For the mapping operation, we use the powerful Open Inventor 3D
graphics and interaction toolkit (Wernecke, 1993). To create custom node and
edge shapes, called glyphs, SoftVision provides a simple callback mechanism.
The user provides a script, written in the Tcl language (Ousterhout, 1994),
that describes how a certain node and/or edge should look like. This script,
called by SoftVision for every node and edge to be mapped, can perform
arbitrary functions such as examine node or edge data attributes, select the
corresponding glyph from a predefined glyph library, and set glyph properties
such as color, size, label text, and so on. Users can extend the predefined
glyph library of Open Inventor with any 2D and 3D shapes provided in the
Inventor file format. Users can switch between glyph scripts, or even edit
them at run time, thus instantly customizing the visualizations. If more
powerful glyph customization is needed, users can program virtually any
shape directly in C++, using Open Inventor’s object-oriented API.

In an instance where a component-based system was the subject of
visualization, the glyphs were chosen so that each component type would be
of different shape (Sillanpää, 2004). The shapes were selected from a set that
enabled easy differentiation based on theories of three-dimensional
perception. Examples of these types of graphical primitives may be seen in
the visualization scenarios that are presented in Section 3. For example in
Figure 7 we see that our ability to identify different types of components is
enhanced by the ability to use both color and shape for distinction.

To visualize the glyphs created by the mapping operation, SoftVision

6

provides so-called viewers. Viewers allow end users to interactively navigate
(e.g. pan, zoom, translate, rotate, or fly through) the data visualization.
Moreover, viewers allow users to customize their interaction with the
displayed data, via the same Tcl scripting mechanism as for the mapping
operation. When the user selects the displayed glyphs with the mouse, the
corresponding nodes and/or edges are stored in a so-called pick selection.
Next, the user’s Tcl script is invoked on this selection. This allows full
customization of the user interaction. Finally, scripts can also be associated
with GUI elements, such as buttons, providing a more traditional user
interaction.

3 Example Scenarios

In this section, we present how we used SoftVision to construct
visualizations that enabled exploration of software architectural models. All
these scenarios were built by customizing SoftVision via its Tcl scripting
interface, as outlined in Section 2.4. In detail, Tcl is used for three main goals
in SoftVision:

• To write mapping and pick callbacks that customize the way visualized

data is drawn and interacted with (Section 2.4).
• To write GUI elements (panels, dialogs, etc) that provide operations (e.g.

metrics, filtering, etc) to end users, structured in a custom, scenario-
dependent way.

• To allow end users full, low level control of SoftVision via a command-
line interface.

All these mechanisms are illustrated in the following for our reverse

engineering applications.

3.1 Custom Navigation

To grasp a software system, the user needs an easy and straightforward
way to navigate the visual presentation. SoftVision provides possibilities to
freely customize navigation and interaction via its Tcl interface. Several
custom navigations are presented next.

7

3.1.1 Navigation with an Overview

We created an overview viewer to show the containment relations of a
system, displayed using the tree layout (Section 2.4). This viewer was then
linked, by pick and button-activated callbacks, to other, more detailed
viewers. By linking, we mean that a user interaction in the overview viewer
triggers actions in the detail viewers. The detail viewers show the files
contained by a module, or other data that is equally unsuitable to be shown for
all components in the overview, due to cluttering. Alternate layouts could also
be generated on basis of the pick selection, such as level slices of the
containment hierarchy, which are displayed using the nested layout (Section
2.4).

To restrict the amount of data displayed in the overview at once, in case of
large software systems, we added a script that limits the number of levels

Figure 2. Toggling the display of subsystem contents. Complete system (top).
Opening and visualizing a subsystem of interest (bottom).

8

drawn starting from the top of the containment hierarchy. A button was added
to the GUI to enable the opening and closing of a subtree under the selected
subsystem node. Navigating the overview by opening subsystems of interest
is illustrated in Figure 2.

To enable the creation of nested views based on the overview, a second
button was added. This button invokes a script that constructs the nested view
in a separate viewer, with the selected node defining the topmost level
displayed. As for the first task of opening and closing subsystems of interest,
SoftVision’s Tcl interface allows linking together any viewers the user wants
to relate, and thus creating a collection of views which best supports the

Figure 3. Invoking a nested view. Selected subsystem of interest (top). Details
inside selected subsystem (bottom) .

9

construction of a mental model from a particular software system. The linking
functionality is illustrated in Figure 3. In the top image, the user has selected a
subsystem of interest. The bottom image shows the ‘contents’ of the selected
system using the nested layout (Section 2.4). While in the upper image only
high-level elements are seen, in the lower image we see the contents of all the
elements below the topmost container. In this layout, subsystems contained in
a system are displayed as ‘boxes in boxes’, allowing a quick and effective
way to understand large structures. The highlighted area of the upper image
corresponds to the containing boxes in the lower image.

We present now a slightly more involved visualization scenario that
addresses the same problem of navigating in a system, but adds some extra
information to the display. First, we display the containment relations in the
system using a tree view, as described at the beginning of this section. This
produces the image shown in Figure 4 (bottom). When the user selects one or
more components in the tree view, we use a custom pick script that performs
two actions, as follows. First, it selects all components recursively contained
in the selected items. In Figure 4 (bottom), these selected components are the
two highlighted subtrees. Secondly, the pick script displays the selected
subtrees in a second view, using the “boxes in boxes” nested layout. Besides

Figure 4. Coordinated views using both the tree and nested layouts.

10

containment, the nested view displays also the association (e.g. “provides”
and “requires”) relationships between components. For the two system
subtrees selected in Figure 4 (bottom), the nested view is shown in Figure 4
(top left). Obviously, displaying all containment and association relations in a
subsystem will often produce cluttered results, due to the sheer amount of
data. To alleviate this, we designed a second pick script that filters out the
‘uninteresting’ association relations between the selected components. Such a
filter can, for example, keep only the relations of a certain user-specified type,
which the user deems to be important. The result of this filter is shown in the
view in Figure 4 (top right). The containment relations are the same as in
Figure 4 (top left). However, using the filter described above, we can now get
insight in both the structure and “provides”-“requires” relations of a
subsystem. If desired, different filters can be easily programmed as scripts, in
order to let users selectively browse through different subsets of relations of a
given software system.

3.1.2 Level-by-Level Navigation

To enable the traversing of containment levels, interaction buttons were
added to a viewer showing a nested layout. After the user visually picks a
node, a button performs a re-layout in which the picked node defines the root
level. In addition, by simply storing the identifiers of the nodes traversed in
Tcl lists, history functionality could be easily added. Going up in the
containment hierarchy was added via another button. Such navigation, not
present in the original applications of SoftVision (Telea et al., 2003; Telea et
al., 2002a,b), is of assistance when fetching information from a large
containment hierarchy, where also the horizontal relations, i.e. relations
between software artifacts on the same containment level, may be of interest.

3.1.3 Text-based Navigation

When exploring a system, the user may know the name of a component
and wish to select it using this information from a view, or see a list of the
representatives of a certain component type and choose from those. We felt
that adding such text-based search and navigation would enhance the usability
of SoftVision for reverse architecting. To add the functionality described
above, a new, custom graphical user interface panel was added to SoftVision.
Readily available GUI construction procedures in SoftVision were used to

11

Figure 5. Custom navigation interface.

create some of the interface elements, such as a graphical display of
information about a selected node. The resulting GUI is shown in Figure 5.
The pull-down menus provide the selection, and the button labeled “Element
Name” invokes the picking callback function that is related to the selected
viewer.

3.2 Investigating the Modularity of a System

When designing a software system, an architectural view is often created to
restrict certain functionalities inside predefined modules. The interaction
between modules may be restricted arbitrarily. In practice, however, it is
entirely possible that the restrictions are violated at some point by e.g. making
a function call that the original design would not permit.

During the original (or further) development of a system, it may be
necessary to check if the implementation actually obeys the designed
interaction restrictions and, if not, where violations occur. To begin
investigating which modules interact with which, we first apply the nested
layout to navigate the system in a level-by-level fashion where we see one
hierarchy slice (i.e. all artifacts on the same containment level) at a time. The
selection of the slice level may be accomplished e.g. by the methods described
in Section 3.1.

After selecting the level we are interested in, we wish to display the
relations between some or all of the modules in this level. We found that a

12

Figure 6. Connections in a component model (top). Selected components are
opened (bottom).

practical way to do this is to a) first let the user select the nodes of interest and
b) add a GUI button that shows or hides the relations (graph edges) between
the selected nodes. The reason for this selective relation display is that
showing all relations between all components in a view may easily produce a
cluttered display, as previous work confirms (Stasko et al., 1998). A slice
from a system’s component model with several connections displayed is
shown in Figure 6. The displayed connections may trigger an interest to study
which subcomponents inside all or some of the displayed systems are actually
at the connection end points. For this, we added another GUI button to enable
the opening or closing of the selected nodes. To implement this functionality,

13

another script was written that has the following functionality: first, it fetches
the children of the selected nodes from the containment hierarchy and adds
them to the set of nodes to be shown. Then, only the connections between the
lowest level nodes that are visible are added to the set, and the nested layout is
applied. In Figure 6 (bottom image), we have opened some container nodes to
show the connections inside.

3.3 Displaying the Clients and Suppliers of a Component

When investigating a software model, we may want to view all the
connections of a particular component to quickly see where it is used, or see

Figure 7. Creating a layout of the clients of a component (bottom). Component
types are indicated by the shape and color of each glyph (top).

14

which other software components it uses itself. Thus, we decided to provide
the functionality to collect and visualize the client-supplier relationships for a
selected node. We added two buttons to select either clients or suppliers, thus
minimizing the display clutter. When a node is picked, the buttons allow
invoking a simple Tcl script that collects all nodes the picked node is
connected to via the client or the supplier relation. The script performs next a
spring layout (Section 2.4), in a separate viewer, of the collected nodes and
edges. This simple script allows creating visualizations as shown in Figure 7.
To depict the relation directionality (from, to), we used arrow glyphs for
visualizing the edges.

To further enhance the display of clients and suppliers, we added an option
to display the containing modules and subsystems for the connected
components. For this, we display two types of relations in the same nested
layout (Figure 8): The containment relations are shown by the usual ‘boxes in
boxes’ metaphor, whereas the client-supplier relations are shown by the arrow
glyphs. The logic of fetching client-supplier related components is the same as
in the first scenario in this section, but we include also the parents of the
involved components before applying the nested layout. Figure 8 shows a
visualization of the dependencies between modules and files using those
modules (arrow glyphs), and the containment relations of modules (boxes in
boxes). This scenario provides us with a lot of information via a relatively
simple image, a desirable property in our application.

Figure 8. Files that are clients of a module, with their containers.

15

Figure 9. Mapping an application entity (uppermost node) to the three
components implementing it.

3.4 Displaying The Mapping of a Conceptual Entity to Its

Implementation

In reverse architecting applications, it is sometimes desirable to be able to
select a high-level software entity in the containment hierarchy, and then find
out its mapping to the lower level entities that are responsible for its
implementation. In this way, the user is able to investigate e.g. all the parts
that contribute to a certain system function. Using SoftVision, we
implemented the above scenario as follows: We created a new operation that
traverses the ‘use’ relations between the system components, starting from a
selected component. After this, we applied the tree layout (Section 2.4) to the
resulting selection to produce the desired visualization, as exemplified in
Figure 9.

3.5 Visualizing Architectural Metrics

In this application, we visualize several architectural metrics computed by the
software analysis tool SAAT (Muskens, 2002) on a given software system.
Our system representation consists of a logical view, containing structural
inter-component relations, and a scenario view, containing use cases

16

Figure 10. Visualizing structure and architectural metrics together.

describing specific system tasks. We use a nested layout to represent the use
cases, scenarios, and components: If component C is in scenario S, its visual
representation is contained in S’s visual representation. For use cases and
scenarios, we use simple box glyphs. For the system we study, containment
has just three levels (components in scenarios, scenarios in use cases).
However, our nested layout can accommodate in principle any number of
containment levels. Inter-component relations (method calls) are drawn as
lines. If the same element (e.g. component) appears in several scenarios, it is
separately drawn in every scenario box. This matches the representation
expected by system architects. When the user selects a component in a
scenario with the mouse, all visual representations of that component in all the
scenarios in which it occurs are automatically highlighted (Figure 10). This is
easily implemented by a custom pick action (Section 2.4). This allows quick
comparison of the behavior of a given component in different scenarios. For
components, we designed a special glyph that shows four metrics: coupling,
inverse coupling, fan in, and fan out. These are displayed as a four
(individually colored) bar chart in 3D. In contrast to the previous
visualizations presented in this paper, which were essentially 2D drawings,
this scenario is best viewed when using a three-dimensional viewpoint. This
allows understanding both the spatial nesting (components in scenarios, etc)
and comparing the components’ metrics (by looking at the bar glyph heights).

17

Essentially, this scenario combines two classical views on component
architectures: the structural view, usually coming as UML class or package
diagrams, and the metric view, usually coming in tabular, text-based form.
Combining the two views in the same visualization has several advantages, as
follows. Finding outliers, i.e. components with high/low metrics, is easy, as
these have the longest/shortest metric bars. Displaying the four metrics along
each other with the bar chart glyph allows easy comparison of the metrics for
the same component. Using the same color for the same metric allows
comparison of that metric between different components.

4. Conclusions

We have presented a number of exploration scenarios of reverse
engineered architectural data that we have built using the SoftVision data
visualization toolkit. From all our experiments, we have observed that two
main aspects contribute to the effectiveness of such visualizations. First, one
must be able to define a scenario, consisting of a limited number of relatively
simple end-user operations, such as selection, filtering, and navigation, which
answers the desired questions about the data at hand. It is not always simple to
imagine such simple scenarios, as previous research in software systems
visualization has indicated (Wong et al., 1995; Telea, 2004). Secondly, one
must be able to implement such scenarios effectively and efficiently, using
some data exploration tool. Here, the main problem is to find a data
visualization tool which is, on the one hand, generic enough to easily
accommodate the data model and interaction type for the scenario at hand,
and on the other, specialized enough to allow implementing the desired
behavior with little coding effort. For this task, we found the SoftVision
toolkit to be an effective working platform. All of the scenarios we described
were implemented by essentially writing a number of small, independent Tcl
scripts. Such scripts customize the three modular operations of SoftVision:
selection, picking, or mapping. By cascading such operations, the desired
scenarios could be quickly prototyped. In the future, we plan to organize such
operations in more high-level forms, in order to allow the users of SoftVision
to quickly exchange ready-made scenarios for a palette of data visualization
tasks for several application domains. One such possibility we are currently
working on is to organize the SoftVision operations into some form of
‘scenario packages’ that provide specialized tools for a given application
domain.

There exist many papers that present applications of visualization systems

18

in software visualization in general and architectural and reverse engineering
data visualization in particular (see, for example the work of Stasko et al.
(1998)). However, few such papers present in detail experiences of how
visualization tools have been concretely used to solve a real-world problem on
real-world software data, outside an academic environment. Even fewer detail
the steps and effort taken to construct visualization applications using such
tools. In this sense, the work presented here represents a concrete testimony
showing how an existing toolkit (SoftVision) has been used outside the
academic world to address the problem of exploration of reverse engineering
data.

Due to the relatively early development stage of the SoftVision toolkit,
there is some effort in studying the toolkit’s API and assumptions before
being able to produce one’s own custom scripting. However, the user’s guide
for SoftVision is under development and available at the website (Voinea,
2004), and future enhancements of SoftVision’s API will also support easier
learning. Simple customization options that are available in SoftVision’s
standard GUI, such as adjusting layout parameters, also offer straightforward
customization of the visualizations. We believe that, once the user masters
SoftVision’s basic concepts and functionalities, rapid development of data
visualization applications is possible.

4 References

De Jong, M. (2003). Source-navigator. WWW. http://sourcenav.sourceforge.net/,

visited 30.7.2004.
Frick, A., Ludwig A., and Mehldau H. (1994, 10-12). A Fast Adaptive Layout

Algorithm for Undirected Graphs. In R. Tamassia and I. G. Tollis (Eds.), Proc.
DIMACS Int. Work. Graph Drawing, GD, Number 894, Berlin, Germany, pp.
388–403. Springer-Verlag.

Gamma, E., Helm, R., Johnson, R and Vlissides, J. (1995) Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley

Gansner, E., Koutsofios, E. and North, S. (2002, February). Drawing Graphs with
dot. AT&T. http://www.research.att.com/sw/tools/graphviz/dotguide.pdf.

Kazman, R. and Carriere J. (1995). Rapid Prototyping Of Information Visualizations
Using VANISH. In Proc. IEEE INFOVIS’95. IEEE CS Press.

Muskens, J. (2002). SAAT: Software Architectural Analysis Tool. Master’s thesis,
Eindhoven University of Technology, The Netherlands.

North, S. C. (2002, April). Drawing Graphs with NEATO. AT&T.
http://www.research.att.com/sw/tools/graphviz/neatoguide.pdf.

Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Addison-Wesley
Sillanpää, M. (2004) Visualizing Reverse Architected Software Models with an Open

Visualization Toolkit. Master’s thesis, Helsinki University of Technology

19

http://www.research.att.com/sw/tools/graphviz/neatoguide.pdf

Stasko, J., Domingue, J., Brown, M. H. and Price, B. A. (1998). Software
Visualization – Programming as a Multimedia Experience. MIT Press.

Telea, A. (2004). An Open Architecture for Visual Reverse Engineering. In K. Khan
(Ed.), Managing Corporate Information Systems Evolution and Maintenance. Idea
Group Inc, Hershey PA.

Telea, A., Frasincar F., and Houben G-J. (2003). Visualizing RDF(s)-Based
Information. In Information Visualization 2003. IEEE CS Press.

Telea, A., Maccari A., and Riva C. (2002a). An Open Toolkit for Prototyping Reverse
Engineering Visualizations. In Proceedings of the symposium on Data
Visualisation 2002. Eurographics Association.

Telea, A., Maccari, A., and Riva, C. (2002b, June). An Open Visualization Toolkit for
Reverse Architecting. International Workshop on Program Comprehension.

Telea, A. and Voinea, L. (2004) A Framework for Interactive Visualization of
Component-Based Software. In Proc. IEEE EUROMICRO 2004. Workshop on
Component Models for Dependable Systems (to appear). IEEE CS PRess.

Voinea, L. (2004). Softvision official home page. WWW.
http://www.win.tue.nl/˜lvoinea/SoftVision.htm.

Wernecke, J. (1993). The Inventor Mentor: Programming Object-Oriented 3D
Graphics. Addison-Wesley.

Wong, K., Tilley, S., Muller, H. and Storey, M. (1995) Structural Redocumentation:
A Case Study, IEEE Software, vol 12, nr. 1, pp. 46-50, IEEE CS Press.
See also: Wong, K., Rigi User’s Manual, Department of Computer Science,
University of Victoria, Canada

20

	Introduction
	Toolkit Overview
	Motivation
	Rigi
	VANISH

	Data Model
	Operation Model
	Visualization and User Interaction

	Example Scenarios
	Custom Navigation
	Navigation with an Overview
	Level-by-Level Navigation
	Text-based Navigation

	Investigating the Modularity of a System
	Displaying the Clients and Suppliers of a Component
	Displaying The Mapping of a Conceptual Entity to Its Implementation
	Visualizing Architectural Metrics

	4. Conclusions
	References

