
Comparison of Node-Link and Hierarchical Edge
Bundling Layouts: A User Study

Alexandru Telea1 and Ozan Ersoy1 and Hessel Hoogendorp1 and Dennie Reniers2

1 Institute for Math. and Computer Science, University of Groningen, the Netherlands
2 SolidSource BV, Eindhoven, the Netherlands

Abstract. Visually investigating large network-like structures is a challenging
task. Several approaches have been proposed in the past: node-link diagrams,
adjacency matrices, and, more recently, hierarchical edge bundles. We present
a recent experiment that compares the effectiveness of the classical node-link
diagrams with the more recent hierarchical bundled edges. The users involved
several computer science practitioners, the data ranged from graphs of several
hundreds to several tens of hundreds of nodes, the tasks involved answering a
number of structural overview as well as detailed questions involved system de-
pendencies.

1 Introduction

Large network-like structures containing tens of thousands of nodes and hundreds of
thousands of relations and attributes emerge from many applications, such as network
traffic monitoring, relational databases, social sciences, and software engineering.

Understanding such large dependency sets is challenging. Although numerous methods
are being proposed for visualizing dependency graphs in the information visualization
(InfoVis), software visualization, (SoftVis), and graph drawing (GD) communities, it is
still unclear how such methods are received by actual users in the field.

In this paper, we focus on a subset of these understanding activities, and look at the
problem of understanding call graphs extracted from software systems which have a
hierarchical structure. As we aim to understand the effectiveness of such methods in
practice, several aspects are relevant besides the visualization method chosen,e.g. the
availability of a robust method to extract the call graphs; the perfect integration of data
extraction and visualization [13]; and the scalability of the entire pipeline to real-world
systems of hundreds of KLOC.

Visualizing software dependencies is traditionally done using node-link diagrams (NLDs).
Recently, however, a new method called for visualizing hierarchical graphs was pro-
posed: hierarchical edge bundling (HEB). This technique was very well received in the
InfoVis community [12, 5]. However, there is yet no study that compares this technique
with classical, more accepted, techniques such as node-link diagrams (NLDs). Such a
comparison is needed, as the author of the HEB technique also points out.

Dagstuhl Seminar Proceedings 09211
Visualization and Monitoring of Network Traffic
http://drops.dagstuhl.de/opus/volltexte/2009/2154

1

To this end, we performed a study that compares our own implementationof the HEB,
which adds several enhancements we found useful, and several classical NLD layouts
provided in the Tulip graph visualization framework [1]. The comparison was done in
the context of software understanding of large call graphs. To this end, we integrated
both NLD and HEB implementations with an own pipeline for static analysis and call
graph extraction from large C/C++ software systems [26].

The two integrated analysis-and-pipeline tools (HEB and NLD) were used by several
professional C/C++ developers to get insight in, and answer specific questions on, sev-
eral large third-party software systems, such asbison, Mozilla Firefox, andOINK [22].
We compared the results with the aim of drawing conclusions on the suitability of the
two types of visualizations.

We can describe our work using the 5-dimensional model of Marcuset al [18]: our task
is to analyze how two different visual metaphors support the visual understanding of
large call graphs; theaudience includes software developers, designers, and architects;
the target is a graph containing attributed call and hierarchy data; themedium consists
of two different visualization tools, the Tulip framework and our own enhanced HEB
method; finally, therepresentation consists of various types of node-link diagrams and
the HEB metaphor.

This paper is structured as follows. In Section 2, we overview related efforts on visualiz-
ing hierarchical call graphs and C/C++ static dependency analysis. Sections 4.1,4.3 and
[22] present a user study comparing the HEB and NLD visualizations on call graphs ex-
tracted from theBISON, Mozilla Firefox, andOINK systems, and also introduces several
HEB enhancements. Section 4.5 discusses the results. Section 5 concludes the paper.

2 Related Work

Related work addresses two topics: dependency extraction from source code and visu-
alizing the extracted data.

Here, we focus on large C and C++ programs. C++ programs are particularly chal-
lenging, as they have a deep hierarchical structure (folders, files, namespaces, classes,
nested classes, methods), while C program structure is limited to folders, files, and func-
tions. Also, object-oriented code is supposed to be more modular than procedural code,
so a good visualization should be able to emphasize the presence (or absence) of such
modularity.

Several C++ static analyzers exist,e.g. SRCML [4], G CCXML, DMS [2], ASF+SDF [30],
CPPX [17], ROSE [23],OINK [20, 19], COLUMBUS [7], and SOLIDFX [26]. For our
task, we need an analyzer that understands the entire C/C++ language and performs full
semantic analysis (needed to link function calls to function definitions and deliver the
function-class-namespace-file scoping hierarchy of calls), understands various C/C++
dialects, and scales to millions of lines of code (LOC). After analyzing the existing op-
tions, we choose SOLIDFX, a recent C/C++ static analyzer that compiles with the above

2

requirements. Further information on SOLIDFX and its usage for call graph extraction
is available in [26, 29].

Dependency and call graph visualization is a well-known research area. Visualizing
only call relations is of limited use, as these have to be correlated with the system
structure. Hence, many visualization methods combinecall and hierarchy (scoping)
data into so-called compound digraphs.

Several visualizations for hierarchy and association relations exist [21]. SHriMP meth-
ods show containment as nested boxes and associations using the classical node-link
model atop of the nesting [27, 3, 24]. Variations hereof are well known in SoftVis,e.g.
Rigi [25], CodeCrawler [14], VCG [16] and SoftVision [28]. However, for large sys-
tems, association relations tend to clutter the nested layout. ArcTrees draw contain-
ment as nested rectangles and associations as curved arcs connecting the elements [21].
Curved edges showing associations can also be overlaid on treemaps [6]. However, both
ArcTrees and curved edges on treemaps have cluttering problems, like SHriMP. Matrix
views remove clutter by showing associations as an adjacency matrix and hierarchy as
tree views or icicle plots along the matrix edges [31]. However, matrix views are less
intuitive than node-link diagrams and also are less effective in showing modularity [9,
31].

Hierarchical edge bundles (HEBs) are a recent advance in displaying large compound
digraphs [12, 5]. Containment is compactly shown as a circular icicle plot. Associations
are drawn as splines, routed to follow the hierarchy. For modular systems, edges get
’bundled’ together thereby showing the modularity. Visual edge clutter is interpreted as
a sign of limited modularity. Although HEBs have been used to visualize call graphs [5],
a comparison on the effectiveness of HEBs with other dependency visualizations is still
to be done [12]. This is the aim of the current paper.

3 Methodology

To compare the NLD and HEB visualizations, we proceeded as follows. First, we ex-
tracted call graphs from increasingly large systems: thebison parser generator, theOINK

C/C++ static analysis framework, and theMozilla Firefox browser. Five developers with
no prior knowledge of these systems were introduced to the NLD and HEB visualiza-
tions, over a few days, using small datasets, until they were comfortable with their
operation. The developers used the NLD and HEB visualizations to answer a number
of generic questions on the large systems,e.g.: which are the main components; how
these components communicate with each other; assess the system modularity; where
is dead code (uncalled functions); and how are polymorphic interfaces (i.e.function
pointers and virtual functions) used throughout the code. Next, specific questions were
asked,e.g.: which interfaces (i.e.functions declared in the same component) does a
given component call, or provide; and where is a given interface used. We recorded
the answers, as well as additional comments and remarks on workflow and usability.
A sixth person with detailed knowledge on the analyzed systems performed the study
separately and checked the answers of the other five.

3

4 Case study 1: The bison parser

4.1 Node-link visualizations

The first type of visualization we analyzed is the classical NLD visualization. Nodes
are function definitions , directories, files, and classes, and edges show calls. For visu-
alization, we used the Tulip framework [1]. Tulip offers a wide range of search, lay-
out, visualization, navigation, and interaction features, as well as high scalability for
graphs of hundreds of thousands of elements. All operations are directly accessible via
a well-documented user interface (menus, dialogs), making it usable with zero program-
ming effort. This is important, as we assume our users want to quickly investigate large
call graphs, and have no time or experience to develop their own visualization code.
Although less known in the SoftVis community, Tulip is well-known in the InfoVis
community, has a large user base, and is arguably one of the most sophisticated graph
visualization frameworks available.

f)

a) b)

d) e)

c)

Fig. 1. Visualizations of thebison call graph using Tulip: hierarchy only using bubble trees (a) and
directed trees (b); hierarchy and calls using bubble trees (c) and dendrograms (d); force-directed
layouts of hierarchy and calls using HDE embedder (e) and GEM (f)

Figure 1 shows several snapshots of thebison call graph (868 functions, 5535 calls) pro-
duced using the NLD layouts of Tulip. We noticed that all users first aimed at obtaining
a simple hierarchy view, the reason being to get an idea of the system size, number
of layers, and which are the largest subsystems. Images (a) and (b) in Fig. 1 show the
two layouts which were found best for this task: the bubble tree layout, which arranges
children in a circle around their parent [10] and the classical directed tree layout. For all
systems analyzed, the bubble tree layout was found easier to comprehend, as it yields
layouts with good aspect ratios, and also lets one easily compare relative subsystem
sizes (circle size versus length of a row of nodes in the tree layout).

4

Next, calls were added to the picture. The first try was to add themto the existing hierar-
chy visualizations. Figure 1 c shows the complete compound graph with the bubble tree
layout. Thin yellow (light) lines are calls, thick black lines show containment3. Node
colors and shapes show their type: directories (blue, squares), files (green, squares), and
functions (red, circles). As suspected upfront, the result is quite cluttered. At this scale,
the only conclusion drawn is that the three main subsystemslib, src andinclude,
i.e. the top-left, top-right, and bottom large circles respectively, are all strongly con-
nected. Also, it was noticed that functions are not uniformly spread over files: some
green squares are surrounded by many red circles. These are files containing many
functions. Others have only one or a few such circles. These are files containing few
used functions,e.g. the include subsystem.

Other tree layouts and parameter settings provided by Tulip were tried to show both
hierarchy and calls. Most did not produce useful results, due to the high clutter caused
by the call edges. For example, Fig. 1 d shows a dendrogram layout overlaid with call
edges drawn as splines. It might be argued that this layout is useful to compare call
depths of subsystems, by looking at the height of the red dot sequences (functions)
in the lower part of the image. However, showing the actual call edges only produces
clutter.

Next, several force-directed layouts were tried out. Figures 1 e and f show the com-
pound graph drawn using the HDE embedder [11] and GEM [8] layouts of Tulip. The
HEB layout is able to pull the hierarchy nodes (directories and files, shown in blue,
respectively green) apart from the functions (shown in red, in the middle). However,
the function nodes, strongly connected by many calls, form an unreadable cluster in the
middle. Figure 1 f shows a layout using the well-known GEM spring embedder. This
layout is able to pull apart theinclude subsystem, which contains system functions
used by thebison core, but cannot separate thelib andsrc subsystems, which are tightly
coupled.

Overall, the bubble layout was found the best for the generic comprehension tasks, as
it yields stable, regular node placements. This layout strongly emphasizes hierarchy,
which is used as a visual guide when analyzing specific call relations. For the specific
comprehension tasks (see Sec. 3), the built-in search-by-attribute-value and path high-
lighting functions of Tulip were used. Although these functions are easily accessible
via Tulip’s GUI, the high visual clutter (even with the bubble tree) severely impaired
comprehension.

4.2 Hierarchical edge bundling visualizations

For the HEB visualization, we used SOLIDSX, our own implementation of the HEB
method with several enhancements, described next4. The design of SOLIDSX is mini-
malist: all operations are available within the main visualization, by a small number of
mouse clicks.

3 We recommend viewing this paper in full color.
4 SOLIDSX is available fromwww.solidsourceit.com/products

5

Figure 2 a is an overview of the samebison call graph. Several points were made when
comparing this image with the NLD layouts (Fig. 1). Showing containment as concen-
tring rings was very easy to understand. Node labels are, at least on the outer rings,
readable, which was seen as a great advantage compared to the NLD label display. Al-
though Tulip does great effort to eliminate label overlaps, this was not seen as highly
effective. Labels still overlap call edges, and the label level-of-detail feature makes la-
bels pop in and out the view based on the zoom level in a disturbing way.

We enhanced the HEB design to display attributes. Each node in SOLIDSX’s input
graph can have any number of data attributes, stored as (name,value) pairs, the values
being string, numerical, or boolean. We map these values to node colors. A pop-up wid-
get displays all different attribute names (Fig. 2 a top-right). Attributes can be sorted by
name or number of different values they take. Brushing over the listed attributes changes
the colormapped attribute interactively, enabling one to compare different attributes
over the same dataset, with one single mouse click and mouse stroke. For numerical
and boolean attributes, we use a blue-to-red colormapping. Strings are color-mapped
based on alphabetical ordering. The same mechanism is provided for edge attributes,
which are mapped to edge colors.

1
2

3

a) b)

Fig. 2. Visualizations of thebison call graph using SOLIDSX: entire system (a); selected subsys-
tem with most function-pointer calls (b)

Thebison graph (Fig. 2 a) clearly shows the main interactions between its three subsys-
tems:src-lib (1),src-include (2), andlib-include (3). The bundling reduces
visual clutter as compared to the NLD visualizations (Fig. 1). Finding functions which
do not get called was easy: these are the innermost circle segments which have no edges.
Doing this with the NLD visualizations was only possible using Tulip’s search features,
but not the images.

Finding ’polymorphic’ interfaces5 was easy, by coloring edges based on call type. In
Fig. 2 a, static function calls are red, and pointer calls are blue (a minority, mainly in
bitset.h, below in the image). When clicking on a node, e.g. bitset.h, the file
and all its contained functions are outlined in black (Fig. 2 b). This file has many blue

5 Theseare C functions called via pointers inbison

6

edges going to itself, two blue edges going tobitset.c to its left, and a few red
edges going to other parts of the system. This was interpreted as follows:bitset.h
provides many function declarations with equivalent signatures (the loop-like edges
atopbitset.h); these are only called via pointers; only few clients call such function
pointers (red outward edges frombitset.h); and only two function definitions, in
bitset.c, implement these interfaces.

Adding color to nodes brings additional insight. In Fig. 2, we show the static linkage at-
tribute of a function.static functions are green, nonstatic ones are blue. Interestingly,
all function declarations inbitset.h are static. Hence, access to these ’polymorphic’
features ofbison can only be done via pointers to them.

4.3 Case Study 2: Mozilla Firefox

In the second example, we analyzed the Mozilla Firefox code. Given space limitations,
we only discuss two plugins of the entire system. Figure 3 a,b visualize the entire call
graphs of thelibgklayout plugin (11817 functions, 21167 edges) using SOLIDSX and
Tulip’s GEM layout. Directories are blue, files are yellow, classes are green, and func-
tions are cyan. Static calls (edges) are red, virtual calls are cyan. At this scale, the GEM
layout is clearly too cluttered. The HEB layout is reasonably easy to read, due to the
edge bundling. For example, we see that almost all virtual calls go to a few functions in
thensCOMPtr.h file, outlined in black in the upper-left of Fig. 3 a. The virtual calls are
only visible as a blue spot in the GEM layout (Fig. 3 b).

a) b) c) d)

Fig. 3. Call graphs of Mozilla plugins:libgklayout (a,b)and libembed (c,d). Color emphasizes
virtual calls.

Figure 3 shows a further enhancement we added to the basic HEB. Users can show or
hide entire hierarchy layers by simple mouse clicks. Hidden layers, here the top-level
ones, are drawn as thin rings, thereby givinga cue of the hierarchy depth. This saves
screen space for the inner layers in deep hierarchies. Fig. 4 shows a zoom-in on a small
sector of Fig. 3 a. We see here 10 hidden layers which take up only the space needed by
a single layer in the big picture.

Figure 3 c,d shows a smaller plugin,libembed (677 nodes, 936 edges). At this scale,
both the NLD and HEB layouts perform similarly. In both cases, the users detected

7

hidden nodes leafsregular nodes

Fig. 4. Zoom-in on Fig. 3 a illustrating the hierarchy hiding

quiteeasily, that this plugin contains only a single virtual function (marked by an arrow
in the images), called 7 times. This figure shows another enhancement of the original
HEB layout: Instead of rendering all nodes on the same level as contiguous segments
on the same circle, we leave gaps between nodes which do not have the same parent.
Hence, contiguous circle segments indicate siblings, and gaps separate subtrees. This
emphasizes the hierarchical structure at the expense of a little extra space.

4.4 Case Study 3: The OINK Framework

In this last example, we analyzed theOINK C/C++ static analysis framework.OINK

has around 350 KLOC mainly in C++, with small parts in C. Its architecture is quite
elaborate. It consists of a lexer, a GLR parser (elkhound), a class library for the over 180
C/C++ grammar nodes (ast), and a semantic analyzer (elsa). Our expert programmer,
who worked for over 2 years onOINK, stated that the lexer, parser generator, and AST
library are modular and reusable subsystems, while the semantic analyzer is a complex
subsystem, with tight couplings with the rest. The question was if this insight could be
obtained by the other users using only dependency visualizations.

The OINK call graph, with 23497 functions, 242132 calls, and 2060371 attribute val-
ues, istwo orders of magnitude larger than all systems visualized so far with the HEB
method [5]. At this scale, all NLD layouts in Tulip either produce only clutter or abort
with no result. Since showing all these calls at once may be too much even for the HEB
layout, we added support for navigation by hierarchy layers. Clicking on nodes allows
expanding or collapsing. Collapsed nodes aggregate all their calls from/to outside nodes
and show a single thick edge per such node. If all aggregate edges have the same visible
attribute value, then this value colors the edge, else the edge is colored gray. Figures 5 a-
c show the calls of the entireOINK system at file level (a), class level (b), and method
level (c). These views are produced with only three clicks, each click further expands
a deeper hierarchy level. Directories are blue, files are yellow, classes are green, and
functions are blue.

In Fig. 5 a, theast andelhound systems are selected,i.e. marked with white background
and thick black borders. We see that these systems have few calls from the analyzer’s

8

elkhound

elsa

ast

a) b) c)

d) scoping e) variable (types) f) template

Fig. 5. OINK framework: multilevel visualization of calls on the level of files (a), classes (b), and
functions (c); Main semantic analysis subsystems: the scoping environment (d), variables (e), and
template analysis code (f). Selected subsystems are shown in black

core,elsa. This indicates a good separation of these three subsystems. Fig. 5 b shows
the entire system one level deeper,i.e. at class level. The innermost ring is predomi-
nantly blue, which means function definitions (blue) are contained in implementation
files. The few green spots denote private implementation classes, which are thus only
sparsely used. Fig. 5 c zooms one level deeper, showing all functions. As there are more
functions than available pixels, we chose to render those involved in relations with the
selected nodes, and render the remainder in gray (see Fig. 4 for a detail zoom-in of
Fig. 3 a). These are shown in green on the inner circle in Fig. 5 c. Here, we see that,
although the selected subsystemsast andelkhound have strong internal cohesion (many
self edges), they communicate only weakly with the system’s core (elsa). This is a good
modularity sign.

Figure 5 c also shows the relative sizes ofOINK ’s components. Files containing many
functions occupy a larger part of the circular layout. These are files of the semantic ana-
lyzer: the scoping environment (ccscope.cc), the template analyzer (template.cc),
and the type system (variable, cc type.cc). To analyze how modular the seman-
tic analyzer is, we select its components by clicking (see Fig. 5 d-f). We see that these
are large and also have more outward connections than theast andelkhound subsystems
- compare the amount of green segments on the innermost ring and number of edges in
Figs. 5 d-f with those in Fig. 5 c. This correlates with the expert programmer’s insight:
theast andelkhound systems are modular, but the semantic analyzer (half ofOINK) is
not modular.

Finally, to assess the polymorphism ofOINK, we use edge coloring. In Fig. 5, red de-
notes static function calls, and blue denotes virtual calls. We see quite few virtual calls
- in line with the OINK design documentation, which stresses minimal use of virtuals
for optimal performance.

9

4.5 Discussion

Usability comparison We distilled several points from the reports of the five users
in this study. All users strongly agreed that the HEB layout is vastly superior to node-
link diagrams (NLDs) for compound graphs larger than a few hundred nodes, for all
considered tasks, since:

1. HEBs show more data on the same amount of screen space

2. edges in HEBs are much less cluttered

3. hiding/showing nodes changes HEB layouts less than NLDs

4. the circular layout draws parent nodes naturally larger

5. HEBs show more node labels with less clutter than NLDs

6. HEB layouts are near-real-time, while some NLDs take long to compute

However, some advantages of NLDs were mentioned too:

1. NLDs allow more freedom in manual layout editing

2. NLDs make it easier to follow a path than the HEB

3. the HEB layout places sometimes unrelated nodes close to each other

For our tasks of interest, the advantages of HEB compensated the advantages of NLDs.
Although not rigorously timed, we noticed users of HEBs being 3..5 times faster (1..3
minutes on average) in accomplishing the same task than when using NLDs. The search
and select functions of both tools used are comparable in effectiveness and simplicity,
so the difference can be attributed to the visualization. For instance, obtaining Figs. 2
or 5 takes around 1.5 minutes and around 10-15 mouse clicks, including data loading.
Obtaining a similar image in Tulip takes around 5 minutes. In both cases, we used no
custom application presets.

Threats to validity For our comparison of visualization methods for call-and-hierarchy
data, the following points are important. First, we only compared a limited number of
NLD layouts with the HEB layout. Other layouts,e.g. SHriMP-like ones, could per-
form better than those studied here. There are, however, reasons to believe the opposite.
SHriMP layouts are effective in showing containment, but do not scale well in num-
ber of associations. These tend to occlude the containment drawing, and also are hard
to distinguish among themselves [15, 28]. They are effective for top-level architecture
views, but not for massive call graphs. Still, we could not test all possible NLD layouts
in existence. Selecting Tulip was explicitly done from an end-user perspective: choose a
scalable, documented, user-friendly, highly optimized NLD visualization tool, compare
it with a HEB implementation sharing the same features, and see which one is better
accepted by users.

10

4.6 Availability

Theentire toolset, including the C/C+ call-and-hierarchy extractor, the SOLIDSX visu-
alization tool, and the extracted call graphs in Tulip and SQL formats, are available from
the authors upon request. Additional components, not discussed here, include plug-ins
to automatically extract dependencies from Visual C++ projects and .NET assemblies.

5 Conclusions

We have presented a study that compares the usage of node-link diagram (NLDs) and
hierarchical edge bundle (HEB) layouts for the visualization of large call-and-hierarchy
graphs of software systems. To perform this, we have constructed a fully automatic
pipeline for extracting call graphs from C/C++ programs, including a call static ana-
lyzer, and an enhanced implementation of the HEB method. Next, we have compared
the usability of our HEB implementation with several NLD implementations provided
by the Tulip framework. The study points out advantages of the enhanced HEB method
for typical comprehension tasks involving call-and-hierarchy data, and demonstrates
the applicability of such methods for the understanding of large, real-world, programs.

We are currently extending our call-and-hierarchy visualization to additional data kinds,
e.g. class hierarchies, usage of types, and data flow, as well as visualizing multiple
attributes in a single view,e.g. static type information, type matching, and source code
metrics. It is also interesting to study how some of the perceived advantages of NLD
layouts could be merged with the HEB views to obtain a visualization that combines
the benefits of both methods.

References

1. D. Auber. The Tulip graph visualization framework.www.tulip.org, 2009.
2. I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program transformations for practical scalable

software evolution. InProc. ICSE, pages 625–634, 2004.
3. F. Bertault and M. Miller. An algorithm for drawing compound graphs. InProc. Graph

Drawing, page 197204, 1999.
4. M. L. Collard, H. H. Kagdi, and J. I. Maletic. An XML-based lightweight C++ fact extractor.

In Proc. IWPC, pages 134–143. IEEE Press, 2003.
5. B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. van Wijk, and A. van Deursen. Un-

derstanding execution traces using massive sequence and circular bundle views. InProc.
ICPC, pages 49–58. IEEE, 2007.

6. J. D. Fekete, D. Wang, N. Dang, A. Aris, and C. Plaisant. Overlaying graph links on
treemaps. InProc. InfoVis (poster), page 8283, 2003.

7. R. Ferenc, I. Siket, , and T. Gyiḿothy. Extracting facts from open source software. InProc.
ICSM, 2004.

8. A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for undirected
graphs. InProc. DIMACS’94, pages 388–403. Springer LNCS, 1994.

11

9. M. Ghoniem, J. D. Fekete, and P. Castagliola. A comparison of the readabilityof graphs
using node-link and matrix-based representations. InProc. InfoVis, page 1724. IEEE, 2004.

10. S. Grivet, D. Auber, and G. Melancon. Proc. intl. conf. on comp. vision and graphics. pages
633–641, 2004.

11. D. Harel and Y. Horen. Graph drawing by multidimensional embedding. InProc. Graph
Drawing, pages 388–393, 2002.

12. D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical
data. InProc. InfoVis, pages 741–748, 2006.

13. R. Koschke. Software visualization in software maintenance, reverse engineering, and re-
engineering: a research survey.Journal of Software Maintenance: Research and Practice,
15(2):87–109, 2003.

14. M. Lanza. CodeCrawler - polymetric views in action. InProc. ASE, pages 394–395, 2004.
15. M. Lanza and R. Marinescu.Object-Oriented Metrics in Practice - Using Software Metrics

to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer,
2006.

16. I. Lemke and G. Sander. VCG: visualization of compiler graphs. Tech. Report, Univ. des
Saarlandes, Saarbrücken, Germany, 1994.

17. Y. Lin, R. C. Holt, and A. J. Malton. Completeness of a fact extractor. InProc. WCRE, pages
196–204, 2003.

18. A. Marcus, L. Feng, and J. Maletic. 3D representations for software visualization. InProc.
ACM SoftVis, page 2736, 2003.

19. S. McPeak. Elkhound: A fast, practical glr parser generator. Computer Science Division,
Univ. of California, Berkeley. Tech. report UCB/CSD-2-1214, Dec. 2002.

20. S. McPeak. The Elsa C++ parser, 2006.www.cs.berkeley.edu/\ ˜ smcpeak/
elkhound/sources/elsa.

21. P. Neumann, S. Schlechtweg, and M. S. Carpendale. ArcTrees: Visualizing relations in hier-
archical data. InProc. EuroVis, page 5360. IEEE, 2005.

22. OINK. The oink C++ static analyzer, 2008.www.cubewano.org.
23. T. Panas, D. Quinlan, and R. Vuduc. Tool support for inspecting the code quality of HPC

applications. InProc. SE-HPC, pages 2–12, 2007.
24. M. Raitner. Visual navigation of compound graphs. InProc. Graph Drawing, page 403413,

2004.
25. RIGI. Rigi: A visual tool for understanding legacy systems, 2008. U. of Victoria,www.

rigi.csc.uvic.ca.
26. SolidSource BV. SOLIDFX product information. 2008. www.solidsource.nl/

products.
27. M. Storey and H. M̈uller. Manipulating and documenting software structures using SHriMP

views. InProc. ICSM, page 275284, 1995.
28. A. Telea. An open architecture for visual reverse engineering. InManaging Corporate

Information Systems Evolution and Maintenance (ch. 9), pages 211–227. Idea Group Inc.,
2004.

29. A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers. Extraction and visualization of call
dependencies for large C/C++ code bases: A comparative study. InProc. VISSOFT, 2009.
accepted.

30. M. van den Brand, P. Klint, and C. Verhoef. Reengineering needs generic programming
language technology.ACM SIGPLAN Notices, 32(2):54–61, 1997.

31. F. van Ham. Using multilevel call matrices in large software projects. InProc. InfoVis, pages
227–232, 2003.

12

