Multivariate Graphs in Software Engineering

S. Diehl! and A. Telea?

! Department of Computer Science, University of Trier, Germany
2 Institute Johann Bernoulli, University of Groningen, the Netherlands

Abstract. Multivariate networks, or graphs, are an essential element of
various activities in the software engineering domain, such as program
comprehension for software maintenance and evolution. In this chapter,
we present the specific context in which multivariate graphs occur in
software engineering, highlight their importance in domain-specific tasks,
and survey several visualization solutions designed for such graphs in the
software engineering field.

1 Introduction

Multivariate networks, or graphs, occur in many application domains. In this
chapter, we focus on software engineering. We present the specific nature of
the data, challenges, and visual exploration solutions for multivariate graphs
stemming from software engineering applications. Our goal is twofold. First, we
draw attention to specific software engineering aspects, and the ensuing multi-
variate graphs, which make their (visual) understanding hard. This should help
researchers to better understand the software engineering challenges related to
multivariate graphs, and thus contribute to solutions. Secondly, we present ex-
isting approaches for the visual exploration of multivariate software graphs. This
should help disseminating such solutions to areas beyond software engineering.

The structure of this chapter is as follows. In section 2, we outline the impor-
tance and scope of software visualization. Section 3 details the characteristics
of the data involved in such visualizations and the scope of multivariate graphs
herein. Section 4 presents a selection of relevant tasks addressed by software vi-
sualization which involves multivariate graphs, and also presents visualizations
that address such tasks. Section 5 discusses the current state-of-the-art in multi-
variate visualization of software networks, and outlines the main challenges that
this application domain currently faces.

2 Aims and Scope

To understand the specific challenges (and existing solutions) to the visualization
of multivariate software graphs, we first need to understand the main aims and
scope of software visualization (SoftVis). In this section, we provide an overview
answer to this question. Given the huge scope of software engineering and, implic-
itly, SoftVis techniques and tools, we cannot aim at a complete review. Rather,

II

the aim is to outline the key value drivers that make SoftVis relevant to software
engineering, and also to highlight how software visualization (with a focus on
multivariate graphs) differs from other multivariate graph visualizations. For a
comprehensive survey of software visualization, we refer to [12].

2.1 History and definitions

Early examples of software visualizations include the visual depiction of program
control flow charts [16, 35], sorting algorithms [2], and software source code [13].
In the 1990s, software visualization was being recognized as a separate research
field. One of its first definitions is as follows: “Software visualization is a represen-
tation of computer programs, associated documentation and data, that enhances,
simplifies and clarifies the mental representation the software engineer has of the
operation of a computer system” [38]. We see that SoftVis covers the full range
of data artifacts produced by the software lifecycle. Equally importantly, we see
that the key aim of SoftVis is to help software engineers to understand the op-
eration of software systems. These aspects have stayed relevant throughout the
history of software visualization, as further discussed.

A decade later (2007), a comprehensive survey of software visualization [12]
proposed the following definition: “Software visualization targets the visual de-
piction of the structure, behavior, and evolution of software”. The definitions of
these three key data ingredients of software are as follows:

1. Structure: Describes all entities involved in the studied software, including
their properties and relations between them,;

2. Behavior: Describes how entities dynamically interact with each other, and
also process data, during program execution;

3. Evolution: Describes how software is changed during the software lifecycle.

The reach of software visualization to software evolution parallels the growing
interest in developing models, techniques, and tools for the data mining and
analysis of software evolution processes [25]. In parallel, the audience of SoftVis is
also enlarged, to include almost all stakeholders of the software lifecycle: product
and process managers, architects, designers, developers, and testers [22].

2.2 Importance

To better advocate the necessity and added value of SoftVis, we consider the
question: Is software visualization really needed? Answering this question has two
parts. First, its application domain, the software industry, is large and growing;:
$457 billion for 2013, 50% larger than in 2008 [20]. For comparison, the total
US healthcare spending in 2009 was $2.5 trillion [46]. Studies over two decades
show that 80% of software development costs are spent on maintenance [37, 10,
25]. Secondly, over the same period of time, several studies have shown that
over 50% of the effort spent by software engineers is dedicated to understanding
the software [22,12,25]. As modern software systems become even larger, this
understanding effort becomes a key component of the software lifecycle [5].

111

3 Data characteristics

Data involved in program comprehension is large, complex, and changes in time.
As such, software visualization has a good potential to be an effective part of
comprehension solutions. In a survey of over 100 practitioners involved in soft-
ware maintenance and re-engineering, 42% of the participants stated that SoftVis
is an important, but not critical, aid to comprehension; 42% other participants
found SoftVis absolutely necessary for their work [22]. A survey on SoftVis tools
highlighted as added value points the increase of productivity and quality of
produced software, better management of complexity in large software systems,
all leading to saving time and money in development and maintenance [3].

Software can be modeled by three orthogonal data aspects: entities, relations,
and attributes. These are detailed in the following sections.

3.1 Entities

Software entities correspond to the nouns in the software description, i.e. de-
scribe the items which interact to form the structure, behavior, and evolution of
a software system. Structural entities typically describe the static organization
of a software corpus. Examples are folders, files, packages, components, classes,
methods, and individual lines of source code. Behavioral entities describe the
execution of a software system. Examples are program traces, profiling logs,
method invocations, test results, and bug reports. Evolutionary entities are,
largely speaking, related to the process of software maintenance. Examples are
change requests, product documentation and requirement documents, develop-
ment tasks, and actors with different roles in the development process (contrib-
utors to software repositories, testers, quality engineers, and release managers).

3.2 Relations

Relations correspond to the verbs in the software decription, i.e. describe how
various software entities are connected and interact to form the structure, be-
havior, and evolution of a software system. Structural relations can be further
organized into hierarchical and association relations.

Hierarchical relations describe the static structure of a software system. They
form a part-whole hierarchy that captures the aggregation of smaller-scale soft-
ware entities into larger units. Examples of containment relations are

1. physical relations (files in folders in higher-level folders);
2. logical relations (methods in classes in libraries in systems).

Several such hierarchies may be needed to describe a given system. For in-
stance, C++ programs admit both a physical file-folder hierarchy and a logical
namespace-class-method hierarchy, and the two hierarchies are not identical.

Association relations cover all relations which do not describe (hierarchical)
part-whole relationships. Examples are

v

— calls: Function A calls function B;

— inheritance: Class A inherits from class B;

— co-change: File f; changed at the same time as file fs;

— duplication: Files f; and f5 share similar (cloned) source code;

— change impact: When changing file f;, we next need to change file fs;
— ownership: Developer D performed task T'; class X owns an object Y;
— data flow: Component C reads data from component Y.

Clearly, several types of relations are needed to describe the structure, be-
havior, and evolution of a software system. Association relations can form both
acyclic graphs (e.g. inheritance) but also cyclic graphs (e.g. a call stack contain-
ing recursive or re-entrant functions). Associations can be either undirected (e.g.
clone or co-change relations) or directed (e.g. inheritance or call). Software as-
sociations are typically one-to-many relations (e.g. a function calls several other
functions; a data object owns a collection of subordinate objects).

3.3 Attributes

Attributes model structural, behavioral, and evolutionary properties of both
entities and relations. Examples are

— syntax: name, signature, and location in the source code for classes, func-
tions, or individual symbols;

— execution: call duration, call stack depth, processor allocation, and resource
usage of a function call in a program trace;

— person: name, role, and e-mail of a person involved in a software mainte-
nance process;

— testing: time stamp, number of failed and passed tests, and amount of lines
of code covered by tests for a code unit.

Typically, attributes are modeled as key-value pairs for an entity or relation,
e.g. a class C has an attribute name with value C'. An entity or relation can have
several such attributes. Also, entities (or relations) of the same kind, or type,
do not necessarily need to have the same number of attributes. This is, among
others, due to incomplete data delivered by the various data mining tools used.

3.4 Software as multivariate time-dependent graphs

Entities, relations, and attributes can change during the lifetime of a software
product. Two causes drive this process:

1. behavior: Running the same software system several times can yield dif-
ferent execution paths and data values. Thus, both relations (calls) and
attributes (call durations) for the same entity (caller function) will differ;

2. evolution: Software continuously changes as it is maintained. Hence, an
entity (e.g. file) can have different contents, relations (to other files), and
developers owning it over time.

v

Putting it all together, we can describe software as a multivariate time-
dependent graph G = (V, E =V x V). Nodes V model software entities. Edges E
model structure and association relations. Each node n € V and edge e € FE has
a set of attributes {a} and {af} respectively. Each attribute a = (key, val) is a
key-value pair. Keys key are typically textual or categorical identifiers. Attribute
values val belong to various domains, depending on the attribute type, e.g. N
for code size, R™ for execution duration, B for test outcomes (passed, failed), or
X* for developer names (where X' is the used alphabet). All elements of G, i.e.
V, E, a}, and af are time-dependent, i.e. functions of ¢ € T". Since both software
execution and software evolution are discrete processes, and also since data is
mined from software systems typically at discrete points in time, T is usually a
finite set of ordered points in time 7' = {t; € RY|t; < t;,Vi < j}.

3.5 Reference implementation

Hierarchy-and-association graphs G are also often called compound graphs in the
literature [40]. Creating, storing, manipulating, and ultimately understanding
the information captured by such graphs is clearly very challenging, even for
moderately-sized systems. Important questions in this respect are

1. schema: How to best model (capture) a given aspect of a software system
in terms of entities, relations, and attributes?

2. selection: How to select data relevant for a given task from an entire G?

3. implementation: How to store G in a way that is efficient for quickly
reading and writing large amounts of data?

Several so-called data schemes or data models for G have been proposed,
e.g. [43,27,14,30,24]. This wealth of models can be puzzling for the practi-
tioner interested in using existing SoftVis tools and techniques on given software
datasets. More importantly, not all challenges of modeling multivariate software
data become evident from studying such data schemes.

To outline such challenges, we present next a data model for G. This model
is based on a SQL relational database, so it is simple to understand, scalable,
computationally efficient, and can generically capture most degrees of freedom
of G. First, we define the concept of a selection. Selections S C G are subsets of
nodes and/or relations that specify the part of G that we want to study. They
are a necessary abstraction when using a single graph G to store all available
data, or facts, mined from a software project. For example, if we are interested
in studying the call graph of a system, we need a selection containing only
software-structure nodes and call relations between them. If we want to study
the contribution of a given developer, we need a selection containing only entities
and relations that the respective developer has worked on.

The proposed SQL schema contains the following elements (see also Fig. 1 top):

1. Keys: each node, hierarchical and association edge, and selection, has a
unique ID (further used as primary key);

VI

2. Hierarchy table: one hierarchical edge, listed as (parent, child) node IDs,
per row;

3. Association table: an association edge, listed as (from,to) node IDs, per
row;

4. Node attribute table: each row stores all attributes (metrics) af, ..., a} of
a given node n as k columns;

5. Association attribute table: each row stores all attributes (metrics) a§, .. ., af,

of a given association edge e as k columns; different edge types, e.g. calls,
uses, includes, are modeled by adding an edge-type attribute;

6. Two selection tables per selection s € S, for the node IDs and edge IDs of
the items in s, respectively;

hierarchy node association association
table attribute table table attribute table
edge |parent |child node | attribute 1| attribute 2] attribute 3 edge | from to edge | attribute 1
ID__[node ID[node ID| [ID__[(name) |(type) (LOC) ID__[node ID_|node ID D [(type)
0 0 1 0 | maincc | file 200 4 0 1 4 | defines
1 i) 2 1 | main() [function | 50 5 2 5 |calls
2 0 3 2 | run(Foo) [function | 20 6 2 3 6 |uses type
3 3 4 3 | Foo class 100 7 1 4 7 |calls
4 | load() method | 80
selection 1 tables selection 2 tables
node ID |{edge ID node ID |{edge ID
. 1 5 2 6
name: main.cc 2 7
LOC: 200 4
Legend
name: main() D: 3 name: Foo abc attributes
Loc: 50 *vYJLocC: 100 —> contains
; ---» calls
oo P — defines
==) uses type
ID:7 e N @ Zgné‘f" ?;d{) I selection 1 (call graph of main())
: selection 2 (requires graph of run(Foo))

Fig. 1. Database schema (top) for a compound attributed graph (bottom) and two
selections: The call graph of main() and the ‘uses’ graph of run(Foo).

Figure 1 (bottom) illustrates this schema this for a simple program. Hierarchy
consists of a file main.cc containing two functions main() and run(Foo), and
a class Foo with a method load(). Associations are call, define, and ‘uses type’
relations, modeled as edge ‘type’ attributes. Nodes have two attributes: name
and lines-of-code size (LOC). Two selections exist: the call graph of main() (red),
and the ‘uses’ graph of run(Foo) (green).

This schema can store any compound (hierarchy-and-association) attributed
graph, e.g. annotated syntax graphs, call graphs, developer networks, or code
duplication relations. New association types can be added to a database without
changing its schema, since types are stored as attributes. This allows incremen-
tally refining an existing fact database e.g. by adding new results obtained from

VII

additional data mining processes. Adding node or relation attributes amounts
to adding new columns for the node and edge attribute tables respectively. At-
tribute types can be any of the supported data types of the underlying SQL
database (e.g. numeric, text, date-time, image, or binary blob). Multiple associ-
ation types can be stored in a single pair of association and association-attribute
tables. Hierarchy data is stored separately in a hierarchy table. This follows
the observation that, in software databases, hierarchy data is much smaller in
size (and typically changes less frequently) than association data. As such, this
schema is more efficient for fast querying and updating. If desired, several hier-
archy tables can be used to model multiple software hierarchies (Sec. 3.2).

Multiple selections can be stored in separate selection tables. This fully de-
couples data storage (node, association, and hierarchy tables) from data usage
(e.g. visualization). Users can create and iteratively refine selections by executing
SQL queries on already existing selections. This supports the visual information-
seeking mantra “overview, filter, then details on demand” [36]. The above schema
scales well to databases of millions of entities and relations [33].

However, the above schema for G does not capture time-dependency. Schemas
that model time-dependent graphs have been proposed, e.g. [50, 30]. However, to
be scalable to large software projects, such schemas are geared towards capturing
specific types of relations, rather than the generic model of the graph G outlined
above. A fully general solution to efficiently and effectively modeling G is not
yet known, and this is a topic for future research.

3.6 Software data vs other Infovis domains

Large multivariate time-dependent graphs having the model outlined in Sec. 3.5
are not unique to software engineering. They arise also in other application areas,
most notably biology, chemistry, and bioinformatics. As such, relevant questions
are: What is specific to the software understanding domain, which underlies the
evolution of software visualization as a discipline separated from biological visu-
alization (BioVis) or, more generally, information visualization (InfoVis)?

BioVis: Comparing our software graphs to networks in the BioVis domain, we
notice several similarities: In both domains, large graphs (hundreds of thousands
of entities, relations, and attributes or more) are common in real-world use-cases.
As such, scalability and efficiency are common concerns. Moreover, both domains
feature problems involving multivariate and time-dependent graphs. However,
several differences exist. First, SoftVis artifacts, and thus graphs extracted from
them, are man made. In contrast, BioVis graphs capture (the measurement of)
natural processes. In other words, SoftVis graphs are constructive, whereas Bio-
Vis graphs are observational. This deserves additional explanations. We could,
on the one hand, say that SoftVis graphs are also observational, if we consider
a software process as a “black box” which is monitored from the outside e.g.
to reverse-engineer its behavior. On the other hand, software is constructed by
humans. As such, the underlying software understanding process takes the form

VIII

of recovering (possibly lost) semantics. In contrast, understanding biological pro-
cesses often aims at discovering yet-unknown natural laws and designs.

A second difference relates to uncertainty. Software processes are defined by
an underlying exact computational model given by the processor and seman-
tics of used programming languages. For example, there is no uncertainty as to
which is the type-usage or inheritance graph of a given code base. In contrast,
BioVis data typically contains more uncertainty, due to measurements and the
natural variability of experiments. If, however, we add human aspects to SoftVis
data, e.g. we want to reason about developer properties, then data uncertainty
becomes more important, and this distinction gets blurred.

Last but not least, a major distinction is induced by the user group. In BioVis,
users are typically not computer scientists themselves. As such, they are likely
less familiar with various algorithmic, implementation-level, and data modeling
aspects involved in the construction and usage of visualization tools. In contrast,
developers and users of SoftVis tools largely overlap — they are all computer sci-
ence professionals. On the one hand, this makes the task of SoftVis developers
easier, as they understand both the end goals and mechanisms their tools should
support and respectively provide. In contrast, developing effective BioVis tools
is a much harder proposition, as their developers have to become, at some point,
experts in both information visualization and biology.

InfoVis: Software visualization can be seen as a specialized sub-branch of in-
formation visualization (InfoVis). However, if we compare the focus of many
InfoVis research projects with their SoftVis counterparts, several differences
emerge. First and foremost, SoftVis ‘solutions’ (techniques, tools, and appli-
cations) show a strong coupling of data mining and visualization components,
covering the entire pipeline from getting the raw data, filtering and analyzing
this data to extract relevant information, and next exploring this information
visually to (in)validate a hypothesis related to a software process or product. As
such, SoftVis is closer to what is currently called visual analytics. In contrast,
a significant part of InfoVis research focuses on more generic problems, such as
the visualization of large generic graphs, tables, or hierarchies. Typical program
understanding challenges involve correlating a multitude of different aspects,
such as source code, execution traces, documentation, and developer activities.
As such, SoftVis datasets are by nature high-variate graphs which contain at-
tributes of a multitude of different types. The challenge of visually understanding
multivariate data is thus fundamental to SoftVis. In contrast, multivariate data
is not, by definition, a key aspect to all InfoVis applications and solutions.

4 Applications

In the previous section, we have shown that SoftVis datasets consist naturally of
large multivariate time-dependent attributed graphs. In this section, we overview
a number of techniques and tools that have been developed in the SoftVis do-
main for visualizing such data. We organize the presentation along the structure,

IX

behavior, and evolution aspects introduced earlier. For each aspect and solution,
we also outline the tasks that the respective solution aims to support (Fig. 2),
and also emphasize the multivariate nature of the visualized data.

software data

tools

Fig. 2. Data sources, tools, and tasks in software visualization.

4.1 Structure visualization

Software has a hierarchical structure (Sec. 3.2). At the lowest level, we can visu-
alize individual lines of code. Fig. 3 shows two examples. Both examples share
the same core idea, introduced by the SeeSoft tool [13]: show each code line
as a horizontal pixel line, scaled by the line’s length (in characters), and col-
ored by a data attribute computed for that line. Similar to the table lens [31],
line-level visualizations scale well up to tens of thousands of code lines on a sin-
gle screen. Image (a) shows the Tarantula tool [21]. Here, lines are colored by
a data value indicating testing outcomes. Red lines show many failures, green
lines show passed tests, and gray lines show code not covered by tests. Image
(b) shows a similar design in the CSV tool [23]. Here, colors are added to syn-
tax blocks in source code, rather than individual lines. Users can pick specific
language constructs, such as functions, class declarations, iterative statements,
conditional statements, variables, or comments, using a classical tree browser
for the language’s syntax, and assign them specific colors. Matching code blocks
are displayed using these colors by the shaded cushion technique introduced by
Van Wijk and Van de Wetering for treemaps [48]. The spatial cushion nesting
conveys the code’s nesting depth. The color distribution conveys the overall code
structure. For instance, in Fig. 3b, green shows comments. We can thus see that
the visualized code (around 10K lines) is densely and uniformly commented.
Line-based visualizations have a natural multiscale aspect. Zooming out, we
can continuously transition from the simplified images in Fig. 3 to classical text

oz E5E 6558 H XA

m

Fig. 3. Line-level (a) and syntax-level (b) visualization of program structure.

views where individual code lines are readable [23]. Several software aspects can
be viewed simultaneously: structure-and-evolution (Fig. 3a), and structure-and-
behavior (Fig. 3b). However, we also see several limitations. First, in the con-
tinuous transition described above, continuous attribute interpolation is hard to
do for non-numerical attribute types. Secondly, given the limited display space,
it is hard to show several attributes per item (line of code).

Structure at higher levels than code lines involves folders, files, classes, and
methods (Sec. 3.2), and also their relations. Figure 4 shows several such visualiza-
tions. Image (a) shows a classical UML diagram (nodes=classes, edges=interitance,
‘has’ and ‘uses’ relations). Nodes are laid out using graph drawing algorithms
such as Sugiyama-style methods or spring embedders [15]. Multiple attributes,
e.g. code quality metrics, are shown atop of each class using glyphs (bar and
pie charts) sized and colored by the metric values. Glyphs are laid out in the
same (grid) order in each class. This helps correlating the same attribute across
different classes. As typical UML diagrams contain only tens of nodes (classes),
nodes offer enough space to show several per-class metrics. Image (b) shows how
the third dimension brings an additional degree of freedom — here, glyph heights
attract attention to extreme attribute values. This 3D technique is generalized in
CodeCity [51], where the UML ‘base’ layout is replaced by a treemap to increase
information density (Fig. 4e).

Additional structure can be added by considering so-called areas of inter-
est (AOIs). AOIs are sets of nodes which share a common property, e.g. all
thread-safe or all platform-dependent classes in a system [8]. Such sets can be
nested, overlap, or be disjoint. AOIs can be shown with Venn-Euler diagrams,
by surrounding all elements in a set by a smooth shape (Fig. 4c). Adding shaded
cushions [48] helps seeing how AOIs overlap or nest. Nodes can also have per-AOI
metrics. These are multiple attribute values that a node has, one for each AOI
it belongs to — for example, the amount of thread-safe, respectively platform-
dependent code lines that a class has. To visualize these attributes, space is used
outside the node icons (which are reserved to show the AOI-independent node

XI

Fig. 4. Code structure and multiple code metrics shown on UML and treemap diagrams

attributes) — specifically, per-AOI attributes are drawn on the AOI cushions us-
ing texture and color interpolation. Texturing creates a weaving pattern which
helps mapping the identity of an attribute to its corresponding AOI.

Detail information can be added by a table lens [31] atop each class icon
(Fig. 4d). Rows are class methods, and columns show 1..3 metrics for each
method. All class tables can be sorted synchronously, which allows easily com-
paring the metrics’ distributions across an entire diagram.

Despite considerable work in the graph drawing community, classical node-
link diagrams are effective only for graphs up to a few hundred nodes. Beyond
this, clutter created by node-node, edge-edge, and node-edge overlaps makes
reading such images hard. Also, for large graphs, the white space left between
nodes by such algorithms makes their use less scalable. A different approach is
taken by hierarchical edge bundling (HEB) methods. Pioneered by Holten [17],
HEB assumes its input is a compound (hierarchy-and-association) graph. Start-

XII

ing with a given node layout, HEB groups, or bundles, straight-line association
edges between these nodes using the hierarchy relations. If the given node lay-
out is compact (space-filling), then HEB can scale easily to thousands of nodes
and edges on a single screen. Additional automatic level-of-detail and interaction
options make HEB scale to hundreds of thousands of nodes and edges [19].

tree view treemap view

B
Emmmn

-
i

clusion Fiter (1063 |
xclusion filter (1063 1

Ordinal edge fiter

nnnnnn <

[o]

Fig. 5. Syntactic structure and attributes visualized with multiple space-filling views.

;%;nmay%?xpmm EviuAT\oN %‘mn Visit hifp Ay solidsource Solid Sofware eXplorer EVALUATION Berslon, Visit hip/Aw solidsourcsit com 10 huy.

Figure 5 shows the SolidSX Software eXplorer tool [33]. The input com-
pound graph captures the syntactic structure of a C# program (50K lines of
code). Image (a) shows the program hierarchy (assemblies, classes, methods,
and files) using a classical tree browser. In image (b), a table lens [31] shows
several method-level attributes (name, size, complexity, number of callers, and
number of callees). Sorting this table allows finding e.g. the most complex and/or
largest methods. In image (c), these methods are highlighted atop of the software
structure-and-association graph shown with HEB. Relations (calls, inheritance,
and type usage) between elements are shown by bundles, colored by relation
type. Finally, a fourth view, image (d), uses a treemap to show two different
node attributes encoded in the treemap-cell colors and sorting order.

Several aspects are relevant here. Visual scalability is achieved by using differ-
ent types of space-filling techniques: table lenses, treemaps, and HEB plots. Un-
derstanding aspects which are encoded in the correlation of multiple attributes
is done by using multiple views linked by selection and brushing. This implicitly
makes the entire solution scalable to multivariate data — the four-view display

XIII

in Fig. 5 can show, in practice, ten such attributes per data element. However,
this puts an extra burden on users in terms of performing the interactive view
linking. Separately, bundling creates (by construction) many edge overlaps. Al-
though this reduces visual clutter as compared to classical node-link displays, it
also makes it hard to use color-mapping to show individual attributes at edge
level. Also, even for limited amounts of edge overlaps, showing multiple attributes
per edge in the same time is not possible.

hierarchy 1

>
TS i I i3
2 e 2 ¢ ST,

LI - e

Fig. 6. Adjacency matrix visualization for comparing two software hierarchies.

Figure 6 shows a different use-case — the comparison of two hierarchies of a
software system [4]. The choice of structures used supports different use-cases,
e.g., the comparison of the logical and physical views (Sec. 3.2) of a system, or
the comparison of two related systems such as two versions of a software code
base. The horizontal and vertical icicle plots show the two considered structures.
The shaded cells in the central adjacency matrix indicate how entities match
between the two structures. In the shown figure, these cells are quite close to the
diagonal, indicating a strong similarity of the two structures. Adjacency matrix
plots are a good space-filling alternative to HEB views for showing compound
graphs, and have been used to visualize very large call graphs [47,1].

4.2 Behavior visualization

Apart from program structure, behavior is an essential part of program compre-
hension. Captured by execution traces, behavior can be visualized using activity
charts. Figure 7a shows a typical chart, produced by the Shark profiling tool on
Mac OS X. Table rows correspond to function calls, sorted on calling order, call
duration, or other user-specified criteria. The right table part shows per-CPU-
core occupancy, color-coded by CPU code ID. This gives insight in how well

XIV

a parallel program is designed to take advantage of a multi-threaded architec-
ture. Similar techniques are used to visualize software behavior on superscalar-
processors (Rivet tool, [39]) and Java program executions (Jinsight tool, [29]).
Apart from the per-function-call view, the call stack metaphor is also used to
visualize execution traces (Fig. 7b). Here, an icicle plot shows function call nest-
ing and call duration. In this view, the call stack depth, as well as time spent in
a function call itself vs time spent in deeper-called functions, are easily visible.

Tfunction calls] == *{CPU occupancy] = execution time

call stack depth

2000 3000 4000 S000 6000 7000 8000 9000 10000

Fi i
3=
{8 T
call stack
] 1 TH -1
! R]
et = ST
" I
: 35 ammsdIoRS S
T ey
S 1iiZiEE, 188
static structure - m SN

Fig. 7. Visualizations of execution traces (a-b) combined with program structure (c-d).

Program structure can be added to execution trace data. The Extravis tool [11]
does this by showing execution traces with a sequence view, where each call is
drawn as a horizontal line (Fig. 7c, right). Line endpoints are aligned to match
the layout of an icicle plot that shows the program static structure (Fig. 7c,
top-right). This shows when, and how often, a given function declaration (in the
static structure) was called during the execution. Separately, a HEB view shows
the static structure and calls within a user-selected time range.

An alternative structure-and-behavior combination is proposed by the View-
Fusion tool [45]. An icicle plot (Fig. 7d, top) shows the call stack, similar to
Fig. 7b. This plot is overlaid atop of a treemap showing the static system struc-
ture, and can be interactively panned and zoomed to select interesting execution
time ranges. Function calls (from the call stack) are correlated with function
declarations (from the treemap) using interaction and color mapping. Just as in

XV

Extravis, interaction and multiple views help cope with the multivariate data
implied by program structure and execution information.

TraceDiff [44] extends the ViewFusion idea to compare two execution traces
Ty and Ts. (Fig. 8). The traces are shown at the top and bottom of the view,
using the same icicle plot design as in Fig. 7d. HEB-like bundles are computed
between function call sequences in 17 and T, that match a user-supplied sim-
ilarity criterion. To simplify the view, matching calls that are close to each
other in both time and caller space are aggregated and rendered as thick shaded
tubes, following a visual simplification technique originally proposed for HEB
views [42]. Tubes are colored to encode the call similarity. Zooming the view in
and out allows users to find matching call sequences at different levels of detail.

length of trace 1

length of trace 2
= —— = ——
T Y CRY N YT TN T BV RN P opyer e <=

Fig. 8. Multiscale visual comparison of two execution traces.

Multiple behaviors can also be visualized against software structure. The
Gammatella tool [28] collects deployment data of multiple instances of a given
software system, and shows a distribution of this data at detailed code-line level
(Fig. 9, code view), SeeSoft-like level (file view), and package level (treemap
structure view). On each shown element, the computed metric distribution is
visualized using a color gradient ranging from red (failed) to green (successful).

4.3 Evolution visualization

Software evolution generates time-dependent data in terms of different versions,
or revisions, of a software system. These can be mined from source control man-
agement (SCM) systems, or repositories, such as CVS, SVN, Git, or TFS. Each
revision yields a multivariate compound attributed graph that can be visual-
ized using the techniques described in Secs. 4.1 and 4.2. However, the sheer
amount of data a typical repository stores is huge: thousands of files having tens

XVI

Preferences

i e e R o cture view
fileview - [At ranes | Arvasses | Aioe-

< |
Mouse is on Line 1066 of jaba/graph/ cfa/ CFGImp1

Fig. 9. Multiple deployment results vs system structure at different levels of detail.

of thousands of revisions spread over years. Repositories store additional data
besides software structure and behavior, such as commit logs, change requests,
time stamps, and the identity of developers who changed the software. This only
increases the number of attributes available per data item. One approach is to
reduce the amount of information by using rule or pattern mining techniques
first. It turns out that the number of mined rules or patterns is still very large
and that standard visualization techniques can be applied to interactively ex-
plore these rules [7]. Analyzing the data without the information loss induced by
rule or pattern mining asks for different, more scalable, visualization techniques.

Fig. 10a shows a first solution for evolution visualization [50], applied to
a SVN repository. The = axis maps time. Each file is drawn as a horizontal
line starting when the file was first committed in the repository. Lines are cut
into chunks, one per interval between consecutive revisions. Chunk colors show
an attribute, e.g. revision author, testing results, or code quality metrics. Files
can be sorted along the y axis to support several analyses. In Fig. 10a, files
are sorted by decreasing activity (revision density per unit time). This allows
finding the most active files (placed at the top), and correlating these with other
attributes, such as age, developer identity, or code metrics. In Fig. 10a, revisions
are colored by developer ID. We see a large purple spot over the first evolution
half for the top files, and a large green spot over the second evolution half. This
shows that, halfway the project, the main development switched between two
different persons (‘purple’ and ‘green’ developers).

Figure 10b shows a detailed view from a TFS repository. Only C# source
code files were selected for analysis. The top widgets show the distribution of two
code metrics (complexity and size) color-coded from blue to red. These views
allow easily spotting the dominant values of these metrics across a desired time or
file range, which helps assessing the average code quality. The metric navigator
view allows smoothly changing the color encoding used in the main file view

evolution time

navigator|——

method average

PELLAS UL [

sorted files (decreasing activity)

,i] average code size (LOC)

Fig. 10. Visualization of software activity and code quality trends in a repository.

between several metrics of interest, by dragging the red ‘observer’ icon between
the respective metric icons, following the preset controller technique [49]. Below
the file view, two graphs show the evolution in time of the selected metrics. We
see, for example, that the average code size (number of lines of code per file)
slightly increases, but the method average complexity first sharply decreases,
then stays constant. The sharp complexity decrease is a good indicator of the
presence of a refactoring event. The stability of the code quality metrics is, in
turn, a good indicator that the software is well maintained.

code version 6

l

%

T

SN

)
Wl

(

=

—
— N\
—
—
E—
F—

Fig. 11. Structural visualization of source code evolution.

The aggregated views in Fig. 10 scale well to show the evolution of industry-
size software at coarse file or folder levels. However, they cannot show relations.
Figure 11 shows two techniques that address this challenge. In image (a), the
hierarchical structures of two different versions of a software system are shown
using the icicle plot technique explained earlier for trace comparison (Fig. 8).
In contrast to traces, where x position encodes call time, the hierarchies are

XVIII

now permuted to place similar subtrees close to each other along the x axis [18].
Next, these subtrees are visually connected by HEB bundles. Asymmetries in the
bundle structure indicate differences between the two hierarchies. The hierarchy
sorting removes unnecessary bundle twists and thus increases readability. This
idea is further extended by the CodeFlows tool (Fig. 11b). Each vertical icicle
plot shows the syntactic structure of a version of a code file with the file start
at top and the file end at the bottom. Similar code elements in consecutive
versions, found using a syntax-aware clone detector, are connected by shaded
tubes, akin to the ones used for trace comparison (Fig. 8). The ‘flows’ along the
tubes indicate code refactoring events — parallel tubes show stable code, diverging
ones show code insertions or deletions, and crossings show code permutations.
Tube colors indicate attributes of interest, such as code element types (function,
class, statement, symbol) for changed code, while gray indicates unchanged code.

removed calls| calls added t

=

e A-B emerging... undle A-B visible

AT EIESELEAAA07 |9 332355399947 9535355895397 /95 3358558354919
©) T oo © T

halfway 1.4.17-1.4.18 approaching 1.4.18 approaching 1.4.18 approaching 1.4.18
1.5.17 wi¥h) (lpp % 1.4.17) bén? i) i)

v TS

=

K

® o) .
(at revision 1.4.18 (passing 1.4.18) (passing 1.4.18 halfway 1.4.18-1.4.19)
shows all calls in 1.4.18 Icalls removed from 1.4.18 removed calls link A-B... [1.4.

Fig. 12. Visualization of call graph change across multiple software versions.

Although effective to show structure change, the above techniques cannot
show association changes. This is next achieved by extending edge-bundling to
cope with dynamic graphs (Fig. 12). The input consists of n compound graphs
mined using static analysis from n revisions in a software repository. Here, as-
sociations are function calls. For each revision, a HEB layout is built using the
associations in that revision and, as structure, the union of all entities from the
n revisions. This guarantees that the radial icicle plot stays fixed for all views.

XIX

Next, a continuous animation is created by smoothly interpolating correspond-
ing edges in consecutive revisions. In parallel, appearing edges are interpolated
towards their bundle, and faded in using blending, while disappearing edges are
interpolated away (unbundled) and faded out. Color coding reinforces this ef-
fect: stable edges are blue; appearing edges are red, and disappearing ones are
green. The images in Fig. 12 show eight frames from this animation between
two consecutive revisions. We first see a red bundle appearing between compo-
nents A and B. During the last four frames, a green bundle connecting A and B
fades out. This indicates an important refactoring event between the considered
revisions, when many calls connecting A and B were changed.

Visualizing changing associations in compound graphs in a single, static, im-
age without animation is proposed by the TimeRadarTrees tool [6] (see Fig. 13).
The top-left image shows three frames GG;..G3, or snapshots, from a time-dependent
compound directed graph. Hierarchy edges are orange, and associations are
black. The top-right image shows the proposed visual encoding: Each node A..F
is represented as both a small thumbnail icon, and the correspondingly aligned
sector in the large central disk. Disks are sliced in concentric rings, each one
encoding a snapshot. Ring sectors in thumbnails encode the presence of an out-
going edge from the respective node ‘revision’ towards the node given by the
sector’s orientation. Similarly, ring sectors in the central disk encode incoming
edges for all nodes, all revisions. Figure 13 (bottom) shows an application. The
data is the folder-file hierarchy in the JEdit code base. Associations between two
files f..fo indicate that f; was changed together (in the same revision) with fo.
Ring sectors are colored to indicate association weights, measured as number
of lines co-changed between two files. Blue shows large co-changes, while gray
shows no co-change. The dark-blue ‘wedges’ visible in the lower-right part of
both the central disk and thumbnails for files TODO.tat and CHANGE.txt
indicate that these two files co-changed over nearly the entire evolution period.

In contrast to the animation shown in Fig. 12, TimeRadarTrees unfolds time
across the space (radial) dimension. As such, observing detailed evolution events
is arguably easier, as all data is captured in one image. On the other hand, this
method is less scalable in terms of number of nodes and relations.

5 Challenges and Future Directions

Summarizing our overview on multivariate graphs in software visualization, the
following observations can be made.

Importance: Software structure, behavior, and evolution maps naturally to
multivariate compound attributed time-dependent graphs. Such graphs have
many attributes per node and edge, and attributes can have many different
types. The type data is crucial to program understanding — for instance, we need
to know whether a node is a function, class, or folder, and whether an edge is a
call, clone, or inheritance relation, to be able to address our analysis goals.

XX

Node-Link Representation Sector Representation

S

-

-.“h ’ x
Incoming ™ i 7 /
i

(T
/}%/// /)

Evolving éssociétion edges in \ / j
: ? a fixed hiearch - .\ j/é/

U,

0 o)

CHANGE txt

Fig. 13. Visualization of file co-change across multiple software versions.

Scalability: Being able to display large graphs with many attributes per node
and/or edge is crucial to software understanding. Scalability in terms of item
counts can be achieved by space-filling and dense-pixel techniques — treemaps,
table lenses, timelines, SeeSoft-like views, and edge bundles. However, scalability
in terms of number of attributes shown per item is quite low — most existing
methods cannot show more than 2 or 3 such attributes. Linked views partially
address this, but require additional user effort. Potential directions for scala-
bility improvements are subsampling (drawing less items) and dimensionality
reduction (drawing less attributes per item). However, both are challenging: For
subsampling, we still do not know how to generically aggregate non-numerical
attributes [11, 26]. Dimensionality reduction is a quite complex process, and can
produce images which are too abstract for typical users. These issues are not
unique to graphs emerging from the software engineering application domain,
but important at large for any multivariate temporal graph, as discussed in
more detail in Chapter 77.

Patterns: A grand open challenge in SoftVis is how to show structural, behav-
ioral, and evolutionary patterns. Patterns are essential to capture (and reason
about) non-trivial events in the software, such as design decisions, execution
bottlenecks, and refactoring and re-architecting. However, current visualization
techniques show such patterns only implicitly, putting the burden of detection on
the user’s vision. Explicitly showing such patterns would significantly guide the

XXI

user towards a faster, and more profound, understanding of the studied software.

Standardization: Software visualization does not exist in a void. Many re-
searchers have stressed that the current lack of toolchain integration (design
tools, compilers, profilers, debuggers, SCM systems, and visualization tools) is
a key adoption blocker of SoftVis tools in the IT industry [22,32,9,5, 34, 33].
Tool communication via shared data formats [43] is helpful but not sufficient.
A certain progress is visible in the last years in terms of SoftVis tools available
as plug-ins to mainstream development environments such as Eclipse and Vi-
sual Studio. However, the largest majority of SoftVis tools does not follow this
pattern. Separately, standardization of visual encodings used in SoftVis solu-
tions, e.g. types of (2D ws 3D) layouts, diagrams, glyphs, and color maps, is an
important, but not yet covered, requirement.

In this chapter, we have presented the role of multivariate graphs in the repre-
sentation and visualization of the structure, behavior, and evolution of software
systems. The presented application and tool examples show that such graphs
play a key role in many program understanding scenarios. Recent research in
software visualization has pushed the scalability limits in terms of number of
items and attributes that can be visualized. However, in the same time, we see
that more challenging analysis scenarios require even more powerful tools able
to display larger and more complex software patterns.

As such, developing efficient and effective techniques and tools for visualizing
large, complex, multivariate, and time-dependent graphs extracted from software
systems remains one of the key open challenges to software visualization. As the
size and importance of the software industry grows, the creation of such tools
and techniques becomes ever more necessary. In the same time, the development
of such solutions for software visualization has a great potential to benefit other
information visualization domains where such graphs also become pervasive.

References

1. J. Abello and F. van Ham. Matrix zoom: A visual interface to semi-external graphs.
In Proc. InfoVis, pages 183-190. IEEE, 2004.

2. R. Baecker. Sorting out sorting, 1981. 30 minute color film (developed with assis-
tance of Dave Sherman, distributed by Morgan Kaufmann, University of Toronto).

3. S. Bassil and R. Keller. Software visualization tools: Survey and analysis. In Proc.
IWPC, page 717, 2001.

4. F. Beck and S. Diehl. Visual comparison of software architectures. In Proc. ACM
SOFTVIS, pages 136-143, 2010.

5. A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. H. Gros, A. Cam-
sky, S. McPeak, and D. Engler. A few billion of lones of code later: Using static
analysis to find bugs in the real world. Comm. of the ACM, 53(2):66-75, 2010.

6. M. Burch and S. Diehl. TimeRadarTrees: Visualizing dynamic compound digraphs.
Comp. Graph. Forum, 27(3):823-830, 2008.

7. M. Burch, S. Diehl, and P. Weissgerber. Visual data mining in software archives.
In Proc. ACM SOFTVIS, pages 3746, 2005.

8. H. Byelas and A. Telea. Visualization of areas of interest in software architecture
diagrams. In Proc. ACM SOFTVIS, pages 105-114, 2006.

XXII

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

S. Charters, N. Thomas, and M. Munro. The end of the line for software visuali-
sation? In Proc. IEEE VISSOF'T, pages 27-35, 2003.

T. Corbi. Program understanding: Challenge for the 1990s. IBM Systems Journal,
28(2):294-306, 1999.

B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen, and J. J.
van Wijk. Execution trace analysis through massive sequence and circular bundle
views. J. Sys. & Software, 81(12):2252-2268, 2008.

S. Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evolu-
tion of Software. Springer, Berlin, 2010.

S. G. Eick, J. L. Steffen, and E. E. Sumner. Seesoft—a tool for visualizing line
oriented software statistics. IEEE TSE, 18(11):957-968, 1992.

R. Ferenc, A. Beszédes, M. Tarkiainen, and T. Gyiméthy. Columbus reverse
engineering tool and schema for C++. In Proc. ICSM, page 172181, 2002.

E. R. Gansner and S. North. An open graph visualization system and its appli-
cations to software engineering. Software - Practice & Experience, 30:1203—-1233,
2000.

H. H. Goldstine and J. von Neumann. Planning and coding of problems for an
electronic computing instrument, 1947. Part II, volume I of a report prepared for
the U.S. Army Ord. Dept., reprinted in [41].

D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hier-
archical data. IEEE TVCG, 12(5):741-748, 2006.

D. Holten and J. J. van Wijk. Visual comparison of hierarchically organized data.
Comp. Graph. Forum, 27(3):759-766, 2008.

H. Hoogendorp, O. Ersoy, D. Reniers, and A. Telea. Extraction and visualization
of call dependencies for large C/C++ code bases: A comparative study. In Proc.
ACM VISSOFT, pages 137-145, 2009.

InfoEdge. Global software industry forecast, 2013. http://www.infoedge.com.

J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to
assist fault localization. In Proc. ICSE, pages 467-477, 2002.

R. Koschke. Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey. J. Soft. Maint. and Ewvol., 15(2):87-109,
2003.

G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The Visual Code Navigator:
An interactive toolset for source code investigation. In Proc. IEEFE InfoVis, pages
4-12, 2005.

J. Maletic, M. Collard, and A. Marcus. Source code files as structured documents.
In Proc. IWPC, pages 87-91, 2002.

T. Mens and S. Demeyer. Software Evolution. Springer, 2008.

S. Moreta and A. Telea. Multiscale visualization of dynamic software logs. In Proc.
Furovis, pages 11-18, 2007.

O. Nierstrasz, S. Ducasse, and T. Girba. The story of Moose: an agile reengineering
environment. In Proc. ACM ESEC/FSE, pages 1-10, 2005.

A. Orso, J. Jones, and M. J. Harrold. Visualization of program-execution data for
deployed software. In Proc. ACM SOFTVIS, pages 67-75, 2003.

W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang. Vi-
sualizing the execution of Java programs. In Proc. Inl. Sem. Revised Lectures on
Software Visualization, pages 151-162. Springer LNCS, 2001.

D. Quinlan. ROSE: Compiler support for object-oriented frameworks. In Proc.
CPC, pages 81-90, 2000. see also http://www.rosecompiler.org.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

XXIII

R. Rao and S. K. Card. The table lens: Merging graphical and symbolic represen-
tations in an interactive focus+context visualization for tabular information. In
Proc. ACM Conference on Human Factors in Computing Systems (CHI), pages
318-322, New York, 1994. ACM Press.

S. P. Reiss. The paradox of software visualizaton. In Proc. IEEE VISSOFT, pages
59-63, 2005.

D. Reniers, L. Voinea, O. Ersoy, and A. Telea. The Solid* toolset for software
visual analytics of program structure and metrics comprehension: From research
prototype to product. Science of Computer Programming, 79(1):224-240, 2014.
T. Schafer and M. Menzini. Towards more flexibility in software visualization tools.
In Proc. VISSOFT, pages 20-26, 2005.

A. E. Scott. Automatic preparation of flow chart listings. Journal of the ACM,
5(1):57-66, 1958.

B. Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proc. IEEE Symposium on Visual Languages, pages 336—343,
1996.

T. A. Standish. An essay on software reuse. IEEE TSE, 10(5):494-497, 1984.

J. Stasko, M. Brown, and B. Price. Software Visualization. MIT Press, 1997.

C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and P. Hanrahan. Rivet: a flexible
environment for computer systems visualization. ACM TOG, 34(1):68-73, 2000.
K. Sugiyama and K. Misue. Visualization of structural information: Automatic
drawing of compound digraphs. IEEE Transactions on Systems, Man and Cyber-
netics, 21(4):876-892, 1991.

A. H. Taub. John von Neumann: Collected Works. Pergamon Press, 1965.

A. Telea and O. Ersoy. Image-based edge bundles: Simplified visualization of large
graphs. Computer Graphics Forum, 29(3):543-551, 2010.

S. Tichelaar, S. Ducasse, and S. Demeyer. FAMIX and XMI. In Proc. WCRE,
pages 296-300, 2000.

J. Triimper, J. Déllner, and A. Telea. Multiscale visual comparison of execution
traces. In Proc. ICPC, pages 262-270, 2013.

J. Triimper, A. Telea, and J. Dollner. ViewFusion: correlating structure and activ-
ity views for execution traces. In Proc. TPCG, pages 45-52. Eurographics, 2012.
USA Today. US healthcare spending, 2009. www.usatoday.com/news/health.

F. vam Ham. Using multilevel call matrices in large software projects. In Proc.
InfoVis, pages 227-232, 2003.

J. J. van Wijk and H. van de Wetering. Cushion treemaps: Visualization of hierar-
chical information. In Proc. IEEE InfoVis, pages 73-78, Los Alamitos, CA, 1999.
IEEE Press.

J. J. van Wijk and C. W. A. M. van Overveld. Preset based interaction with high
dimensional parameter spaces. In F. Post, G. Nielsen, and G. Bonneau, editors,
Data visualization - State of the art, pages 391-406. Kluwer, 2003.

L. Voinea and A. Telea. Visual querying and analysis of large software repositories.
Empirical Software Engineering, 14(3):316-340, 2009.

R. Wettel and M. Lanza. Visualizing software systems as cities. In Proc. IEEE
VISSOFT, pages 92-99, 2007.

