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Abstract— Most neurological diseases are associated with
abnormal brain asymmetries. Recent advances in automatic
unsupervised techniques model normal brain asymmetries from
healthy subjects only and treat anomalies as outliers. Outlier
detection is usually done in a common standard coordinate space
that limits its usability. To alleviate the problem, we extend a
recent fully unsupervised supervoxel-based approach (SAAD)
for abnormal asymmetry detection in the native image space of
MR brain images. Experimental results using our new method,
called N-SAAD, show that it can achieve higher accuracy in
detection with considerably less false positives than a method
based on unsupervised deep learning for a large set of MR-T1
images.

I. INTRODUCTION

Several normal hemispheric asymmetries can be found in
many brain regions. Studies have shown that many neurolog-
ical diseases present deviations from the normal asymmetry
pattern, caused by morphological changes in (sub)cortical
structures [1], with shape and size alterations in one or both
hemispheres (Fig. 1). Brain anomalies are usually detected by
visual slice-by-slice inspection by one or multiple specialists.
This is subjective, time-consuming, and prone to error. This
detection can be done in a standard image space (i.e., the
coordinate space of a template) or in the own Native Image
Space (NIS). The former is chosen when considering a group
of reference images from healthy subjects and/or patients for
comparison during the analysis. All images are registered in
the same coordinate, ensuring spatial correlation (position
and shape) among same structures of interest across all
images. NIS is commonly used in clinical routine to provide
diagnosis, quantification of disease severity, and treatment
planning.

Discriminative models (supervised learning) aim to au-
tomatically delineate anomalies (e.g., tumors), trying to
solve detection and segmentation simultaneously, resulting
in segmentation rates still very low on MR-T1 images [2]
but higher on CT, T2, FLAIR, and multimodal images [3],
[4]. Discriminative models make the method specific for de-
tecting anomalies related to disease(s) present in the training
set. Their success on new images is limited by the absence of
large, high-quality, annotated training sets, which motivates
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Fig. 1. (a) Normal asymmetries (white circles) for a healthy subject. (b-c)
Subtle and large abnormal asymmetries (yellow circles) for stroke patients.
Dashed lines show the mid-sagittal planes (MSPs). Arrows show regions in
which MSPs do not symmetrically separate the hemispheres.

research on unsupervised approaches [2], [4], [5], [6], [7].
Unsupervised methods learn a model from control images
of healthy subjects only and treat anomalies as outliers.

Recently, we proposed an unsupervised supervoxel-based
approach, named SAAD, for abnormal asymmetry detection
in MR brain images [7]. By having all images registered to
the same symmetric template, SAAD computes asymmetries
between hemispheres by using their mid-sagittal plane (MSP)
as reference. It then extracts pairs of symmetric supervoxels
from the left and right hemispheres for each test image, so
that each pair generates a one-class classifier. This classifier
is next trained on control images to find supervoxels with
abnormal asymmetries. Despite having high detection accu-
racy, SAAD can be only used in the coordinate space of
the symmetric template. However, as said earlier, specialists
typically use the NIS for their clinical routine work.

We extend SAAD to perform asymmetry detection in
the native image space of 3D MR-T1 brain images of 3T.
The key challenge is finding corresponding regions between
hemispheres, as these differ in shape, size, and positioning in
NIS. Thus, we cannot use MSPs to symmetrically separate
such structures, especially when severe morphological de-
formations exist (Fig. 1). Our approach, Native Supervoxel-
based Abnormal Asymmetry Detection (N-SAAD), automat-
ically segments hemispheres of the test image in its NIS.
Next, it flips and registers one hemisphere to the other to
guarantee spatial correlation between them. Asymmetries are
computed for the correlated hemispheres, and symmetric
supervoxels are extracted and mapped to the same coordinate
space of the control images to train the one-class classifiers.

We compare two versions of N-SAAD with a deep learn-
ing autoencoder (AE) approach derived from [5] and [6] to
detect stroke lesions of the ATLAS dataset [8]. Experimental
results show that N-SAAD has significantly higher detection
rates and considerably less false positives compared to the
AE approach.
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Fig. 2. Pipeline of proposed N-SAAD method. Steps 1 to 4 (blue part) are computed offline. Steps 5 to 10 (yellow part) are computed for each test
image (detection stage). The template (reference image) is used in both stages (Steps 2, 6, and 7). Dashed lines on brain images show their mid-sagittal
planes The output of Step 8 shows the pairs of symmetrical supervoxels in both hemispheres only for illustration purposes, since N-SAAD uses just one
hemisphere for feature extraction.

II. DESCRIPTION OF METHOD

We next describe our approach (see also Fig. 2). All
images in this work are 3D (volumes).

A. Preprocessing, Registration, and Segmentation

First, we preprocess the training control image set and
the test image (Steps 1 and 5). We apply bias field cor-
rection, followed by median filtering for noise reduction,
and linear intensity normalization within [0, 4095]. We then
align images by their mid-sagittal planes (MSPs) which
are extracted by [9]. For control images, we perform reg-
istration (Step 2) to place them in the coordinate space of
the ICBM 2009c Nonlinear Symmetric template [10], whose
hemisphere masks and MSP are well defined.

To cope with differences in brightness and contrast among
images, we use histogram matching on the segmented
hemispheres, as follows. For training images, we use the
predefined segmentation mask that comes with the ICBM
template; histogram matching is done after Step 2. For test
images, we use SOSM-A [11], an effective and efficient
probabilistic atlas-based approach for medical image seg-
mentation; histogram matching is done after Step 6.

B. Asymmetry Computation

Let X be the set of registered training images, I the
test image after preprocessing and segmentation, and T the
template. We obtain the set of asymmetry maps AX for all X
by computing the voxel-wise absolute differences between
left and right hemispheres with respective to their MSPs
(Step 3). We then average the absolute difference values to
create a normal asymmetry map AX (Step 4) which is used
to attenuate the detection of false positive asymmetries in
I in brain regions which are commonly asymmetric (e.g.,
cortex). For this, we register T on I and then map AX

on I by applying the resulting deformation fields (Step 7).
Registration is discussed in detail in Sec. III.

Since hemispheres in the NIS can be very different in
shape, size, and positioning (Figs. 1-2), we cannot solely
rely on the MSP to compute asymmetries for I , as performed
by SAAD [7]. After flipping the left segmented hemisphere
to the right one (using the MSP), we next register both
hemispheres (two registrations), and histogram-match them
to guarantee spatial correlation between them. We compute
voxel-wise absolute differences between the correlated hemi-
spheres and subtract the mapped AX from them. Resulting
positive values form a final asymmetry map AI for the test
image I (Step 7).

C. Symmetric Supervoxel Segmentation on NIS

Directly comparing the flipped, segmented, and registered
hemispheres is not helpful as it will not tell us where small-
scale asymmetries occur. At the other extreme, comparing
every voxel pair in these hemispheres is risky, since such
voxels contain too little information to capture asymmetries.
Hence, we propose to segment hemispheres into supervoxels
which are large enough to capture meaningful asymmetries
but small enough to capture a fine level of detail. We
use SymmISF [7], a recent method based on the Iterative
Spanning Forest framework [12] that extracts symmetrical
supervoxels from left and right brain hemispheres simultane-
ously. It consists of three steps: (i) seed estimation; multiple
iterations of (ii) connected supervoxel delineation; and (iii)
seed recomputation to improve delineation.

Since SymmISF considers that brain hemispheres are
equally separated by their MSP, after registration on a
symmetric template, we adapt it to work in the NIS (Step 8).
To build initial seeds, we select one seed per local maximum
of the asymmetry map AI (Step 6). We compute the local
maxima on the foreground of a binarized AI at 2 times Otsu’s
threshold, also filtering out small connected components by
morphological closing with radius 1. We add a fixed number
(100) of seeds in regions with irrelevant asymmetry by grid



sampling the background of the binarized image.
By stacking the resulting left registered and right hemi-

spheres (Step 7) as the input 2-band volume for the method,
we perform SymmISF only inside the right hemisphere
by using its corresponding mask (Step 6). The result is
a label map in which each supervoxel is assigned to a
distinct label. Finally, we map these supervoxels by using
the deformation fields from the corresponding hemisphere
registration (Step 7) to obtain the symmetrical supervoxels
in the left hemisphere, which yield the final label map L
(Step 8). Note that we could proceed conversely, i.e., apply
SymmISF on the left hemisphere, and map the result to the
right hemisphere.

D. Feature Extraction and Pattern Classification Models

For each test image I , we first need to map its sym-
metric supervoxels L on template T to guarantee spatial
correlation between supervoxels in both coordinate spaces.
For this, we register I on to T and map L by using the
resulting deformation fields. This tends to be better since
the computation of the inverse deformation from T to I
(see Section II-B) is more complicated due to deformable
registrations. Each supervoxel pair is then used to create a
one-class classifier using as feature vector the normalized
histogram of the asymmetry values inside the respective
supervoxels (Step 9). This way, we implicitly consider the
position of the supervoxels in the hemispheres when deciding
upon their asymmetry. We use the one-class linear Support
Vector Machine (OC-SVM) for this task [13]. The classifiers
are trained from control images only and used to find
supervoxels with abnormal asymmetries in the test image
(Step 10).

III. EXPERIMENTS AND RESULTS

We used all 180 MR-T1 images of 3T from the CC359
dataset [14] for training. CC359 is a public dataset with im-
ages of healthy subjects acquired on three different scanners.
For testing, we evaluated N-SAAD on 3T MR-T1 images of
the Anatomical Tracings of Lesions After Stroke (ATLAS)
public dataset Release 1.2 [8]. ATLAS is a very challenging
dataset with a large variety of manually annotated lesions
and images acquired from different scanners. All images
have a mask with the primary stroke. Some images also have
additional masks with other stroke lesions. Current state-of-
the-art segmentation results for ATLAS are inaccurate yet [6].
We are not affected by this problem, since we aim to detect,
and not segment, the lesions. We select 194 images which
only contain lesions in the hemispheres.1

We compared the proposed method against the autoen-
coder approach (AE) used in [7], which in turn is derived
from [5] and [6]. We chose to compare against AE since this
is also an unsupervised method (like ours). We did not com-
pare against supervised methods since these require hard-
to-find, high-quality, large labeled training data (especially
for MR-T1 brain images), and moreover such data typically

1A list with the selected images can be found on https://github.
com/lidsunicamp/EMBC19_N-SAAD

TABLE I
DETECTION ACCURACY OF LESIONS FOR ATLAS DATASET.

N-SAAD AE
Affine Deformable 85th perc. 90th perc.

Primary Stroke 89.89% 86.02% 49.74% 18.65%
All Lesions 70.50% 64.88% 56.04% 27.13%

captures only specific lesions. In contrast, our method aims
to detect any kind of (asymmetric) lesion.

AE was trained from 2D axial slices of all preprocessed
training images (output of Step 1, Fig. 2). Hemispheres were
automatically segmented by SOSM-A [11], then all images
were cropped within their resulting masks and their axial
slices were resized to 256× 256, following [6]. AE contains
three 2D convolutional layers with 16, 8, and 8 filters of
patch size 3 × 3, respectively, followed by ReLU activation
and 2D max-pooling in the encoder, and the corresponding
operations in the decoder. The mean squared error between
reconstructed and expected 2D axial slices was minimized
by the nadam gradient optimizer [15]. Anomalies were found
by thresholding the difference between the input image and
its reconstruction to obtain a binary segmentation mask (see
columns 2 and 3 in Fig. 3), similarly to [5] and [6].

We evaluated N-SAAD using both affine and deformable
registration (Steps 2, 6, and 7 of Fig. 2). All registrations
were performed by Elastix [16]2. For N-SAAD, we used the
same parameters as in [7]: 100 background seeds, α = 0.08,
β = 3.0, asymmetry histograms of 128 bins, and ν = 0.1
for the linear OC-SVM. For AE, we follow [5] and select
two thresholds as the 85th and 90th percentile from the
histogram of reconstruction errors on the considered training
set, resulting the brightness of 70 and 104, respectively.

Table I shows the detection results for primary and all
stroke lesions for ATLAS, based on at least 15% overlap
between supervoxels with abnormal asymmetries and lesions.
Fig. 3 shows some visual results. Both affine and deformable
registration instances of N-SAAD were able to detect many
more lesions than AE. Affine registration was best, finding
89.89% of the primary strokes and 70.50% of all lesions.
For both registration methods, N-SAAD presents higher
accuracies for the primary strokes than the reported one
(82.31%) by SAAD [7]. AE found far fewer lesions (its best
results were 49.74% for primary and 56.04% for all lesions).
It might present better results by using a considerable large
training set and/or some additional post-processing – which
is not considered in [5], [6].

N-SAAD consistently detects well-defined abnormal
asymmetries for visual inspection, which may be related
to lesions (Fig. 3, image 1). It is also able to find small
abnormal asymmetries (Fig. 3, image 2). However, N-SAAD
cannot detect very subtle and/or very small asymmetries
(Fig. 3, image 3) and pairs of similar and symmetric lesions
in the same region in both hemispheres (Fig. 3, image 4).
Deformable registration N-SAAD yields less accentuated

2We used the par0000 files available on http://elastix.bigr.
nl/wiki/index.php/Parameter_file_database
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Fig. 3. Results on ATLAS dataset. Each row is a test image. First column: Ground-truth lesion segmentations. Columns 2–4 and 6: Results of AE and
N-SAAD methods. Columns 5 and 7: N-SAAD asymmetry maps with affine and deformable registration respectively. Arrows indicate undetected lesions.

asymmetry maps than affine registration N-SAAD (Fig. 3,
Columns 5 and 7) since it uses localized deformations
to better align hemispheres. Despite yielding fewer false
positive anomalies in commonly asymmetric regions (e.g.,
the cortex), deformable registration N-SAAD is also slower
and may also suppress true abnormal asymmetries (e.g., the
ventricles of Fig. 3, image 1).

In spite of detecting small and medium lesions when using
a lower threshold, AE outputs drastically more false positive
voxels than N-SAAD mainly when decreasing its threshold
value. Indeed, its high number of false positives makes the
visual inspection less effective (Fig. 3). AE seems to be
more aligned and accurate to detect lesions in other medical
image modalities, such as MR-T2, as originally designed
in [5] and [6]. Lesions are considerably more highlighted in
MR-T2 compared to MR-T1.

All experiments were executed on an Intel i7 3.60GHz PC
with 64GB RAM and a NVIDIA Titan XP 12GB GPU. N-
SAAD with affine registration takes around 3 mins and 45 s.
The deformable version takes around 6 mins and 20 s.

IV. CONCLUSION
We extended the recent fully unsupervised supervoxel-

based approach (SAAD) for abnormal asymmetry detection
in the native image space of MR brain images. Our approach,
named N-SAAD, was validated on 3T MR-T1 images of
stroke patients with annotated lesions, attaining much better
detection accuracy and drastically lower false positives com-
pared to an autoencoder approach. We next intend to improve
N-SAAD by refining its symmetric supervoxel segmentation
to define supervoxels in subtle lesions, evaluate other tech-
niques for feature extraction, improve the normal asymmetry
map computation to reduce false positives without missing
anomalies, and optimize its parameters. We also want to
compare N-SAAD more extensively against a wider set of
competing methods, including supervised ones.

REFERENCES

[1] L. Wang and et al., “Statistical analysis of hippocampal asymmetry in
schizophrenia,” Neuroimage, vol. 14, no. 3, pp. 531–545, 2001.

[2] D. Guo et al., “Automated lesion detection on MRI scans using com-
bined unsupervised and supervised methods,” BMC Medical Imaging,
vol. 15, no. 1, p. 50, 2015.

[3] M. Havaei and et al., “Brain tumor segmentation with deep neural
networks,” Med Image Anal, vol. 35, pp. 18–31, 2017.

[4] D. Sato et al., “A primitive study on unsupervised anomaly detection
with an autoencoder in emergency head ct volumes,” in SPIE Med.
Imag., 2018, p. 105751P.

[5] C. Baur, B. Wiestler, S. Albarqouni, and N. Navab, “Deep autoen-
coding models for unsupervised anomaly segmentation in brain MR
images,” arXiv preprint arXiv:1804.04488, 2018.

[6] X. Chen, N. Pawlowski, M. Rajchl, B. Glocker, and E. Konukoglu,
“Deep generative models in the real-world: An open challenge from
medical imaging,” arXiv preprint arXiv:1806.05452, 2018.

[7] S. B. Martins, G. Ruppert, F. Reis, C. L. Yasuda, and A. X. Falcão,
“A supervoxel-based approach for unsupervised abnormal asymmetry
detection in MR images of the brain,” in Proc. IEEE ISBI, 2019, pp.
882–885.

[8] S.-L. Liew and et al., “A large, open source dataset of stroke anatom-
ical brain images and manual lesion segmentations,” Scientific Data,
vol. 5, p. 180011, 2018.

[9] G. Ruppert and et al., “A new symmetry-based method for mid-sagittal
plane extraction in neuroimages,” in Proc. IEEE ISBI, 2011, pp. 285–
288.

[10] V. S. Fonov and et al., “Unbiased nonlinear average age-appropriate
brain templates from birth to adulthood,” Neuroimage, vol. 47, p. S102,
2009.

[11] S. B. Martins and et al., “A multi-object statistical atlas adaptive for
deformable registration errors in anomalous medical image segmenta-
tion,” in SPIE Med. Imag., 2017, pp. 101 332G–1–8.
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