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Abstract
We present a new method for computing inverse projections from 2D spaces to arbitrary high-dimensional spaces. Given any
projection technique, we train a deep neural network to learn a low-to-high dimensional mapping based on a projected training
set, and next use this mapping to infer the mapping on arbitrary points. We compare our method with two recent inverse projection
techniques on three datasets, and show that our method has similar or higher accuracy, is one to two orders of magnitude faster,
and delivers result that match well known ground-truth information about the respective high-dimensional data.
Visual analytics Unsupervised learning Dimensionality reduction and manifold learning
CCS Concepts
• Visualization → Visualization application domains; •Machine learning → Learning paradigms;

1. Introduction

Multidimensional projections take a high-dimensional dataset D =
{xi} consisting of samples x ∈ Rn and generate a (typically two-
dimensional) scatterplot P(D) = {yi} ⊂R2, P(x) = y. Projections are
frequently used in visual analytics to examine the structure of high-
dimensional data to find outliers, help data clustering, and assist clas-
sifier engineering, with tens of available algorithms [NA18, vP09].
Inverse projections, aim the opposite task: Given a dataset D and its
2D projection P(D)⊂ R2, take any point y ∈ R2 (not necessarily part
of P(D)) and infer a high-dimensional point x ∈ Rn (not necessarily
part of D) that the direct projection function P would have projected,
if given, to y, i.e., P(x) = y. We denote an inverse projection by P−1,
thus, in the above explanation, P−1(y) = x.

Computing inverse projections has received recently increased im-
portance in visual analytics and beyond. The iLAMP [ABD∗12] and
Radial Basis Functions (RBF) [ABMC∗15] inverse projections were
used to interpolate between high-dimensional observations x so that
these vary smoothly in a given projection, for 3D shape morphing
applications. The same methods were adapted to create space-filling
dense maps of decision zones of classifiers to help understanding their
behavior in machine learning engineering [ERT19, RJT18]. Dense
maps are prominently featured in the well-known TensorFlow frame-
work for classifier engineering [SC19]. However, computing inverse
projections is hard: Algorithms like iLAMP and RBF are slow, have
multiple free parameters, and their quality strongly depends on the
dataset D and direct projection technique P being used [ERT19]. In-
verse projections in TensorFlow can only handle 2D datasets D⊂R2.
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To address the above, we propose a new way to compute inverse
projections: Given a dataset D and projection P(D), computed by
any desired, user-chosen, technique P, we learn the inverse mapping
P(D)→ D using deep learning. Next, we use the learned mapping to
project any sample y ∈ R2 to nD. We validate the accuracy, speed,
and ease of use of our technique using both quantitative quality met-
rics and dense maps on a couple of real-world datasets, and compare
our results with iLAMP and RBF.

2. Method

We start with a dataset D ⊂ Rn and a projection technique P. Both
can be freely chosen by users depending e.g. on their application of
interest and the features that P should manifest, e.g., good cluster
segregation, distance preservation, or any other known quality met-
rics [NA18, vP09, XLX17, CG15]. We hypothesize that the way in
which P captures the data structure in D can be used to create an
inverse projection P−1 by using a small training set Ds ⊂ D and
its respective projection P(Ds) ⊂ P(D). We next construct P−1 by
training a neural network on the training set Ts = (Ds,P(Ds)), with
Ds selected by random sampling of D. We use the remaining data
Tp = (D \Ds,P(D) \P(Ds)), unseen during training, for validation.
The cost function aims to generate samples in D that are as close as
possible to the training ones in Ds. Summarizing, our method has three
steps: In step 1, we create the projection P(Ds) of the training sam-
ples Ds using any desired projection technique P. In step 2, we train
a neural network using the training set Ts. In step 3, we validate the
trained network using the test set Tp. The trained network is our in-
verse projection P−1. For any given 2D point y, we can now infer its
high-dimensional counterpart by P−1(y).

After extensive empirical testing, varying the number of layers,
neurons per layer, and activation functions, we set the architecture of
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P−1 to four fully-connected hidden layers, with 2048 units each, us-
ing ReLU activation functions, followed by an n-element layer, which
uses a sigmoid activation to encode the inverse projection, scaled
to the interval [0,1] for implementation simplicity – that is, we as-
sume that our high-dimensional data resides in [0,1]n instead of Rn.
We initialize weights with the He uniform-variance scaling initial-
izer [HZRS15], and bias elements by a constant value 0.01, which
showed good results during testing. We use the Adam [KB14] opti-
mizer to train P−1 for up to 300 epochs. We stop training automati-
cally on convergence, defined as the moment when the validation loss
stops decreasing. In practice, we need 150 epochs on average for con-
vergence (see Sec. 3.1). As cost function, we use mean squared error,
which showed better convergence speed during testing than mean ab-
solute error and log hyperbolic cosine (logcosh). To test quality, we
compare the nD inferred samples P−1(Dp) with ground truth Dp us-
ing the mean squared error metric.

3. Results

We tested our method on the following materials:

Projections: We use for P t-SNE [vdMH08] and UMAP [MH18],
which have high-quality and are well known in the dimensionality
reduction community [NA18]. We also tested other methods such
as PCA and LAMP [JCC∗11], with similar results, omitted here for
space constraints.

Inverse projections: We compare our method with two alternatives:
iLAMP [ABD∗12] and RBF [ABMC∗15]). Besides PCA, these are
the only inverse projection methods we are aware of. PCA shows
poor results as both direct and inverse projections for data of high
intrinisic dimensionality, so we omit this from the presentation.

Datasets: We use one synthetic dataset and two well-known real-
world benchmark datasets in machine learning. The synthetic dataset
(Blobs) has 60K observations sampled from a Gaussian distribution
with 5 different centers (clusters) and 50 dimensions. The MNIST
dataset [LCB10] has 70K observations of handwritten digits from 0
to 9, rendered as 28× 28-pixel grayscale images, flattened to 784-
element vectors. The Fashion MNIST dataset [XRV17] has 70K ob-
servations of 10 types of pieces of clothing, rendered as 28x28-pixel
grayscale images, flattened to 784-element vectors.

We next discuss our method in terms of scalability (Sec. 3.1), quan-
titative assessment of quality (Sec. 3.2), and qualitative assessment of
quality (Sec. 3.3)

3.1. Scalability in training and inference

Scalability implies the effort required to train our method and, sep-
arately, the effort needed to infer P−1(Y ) as function of the size |Y |
of the dataset Y to inversely project. Table 1 shows the number of
training epochs needed to obtain convergence (defined as in Sec. 2) as
function of the training set size |Ds|, for all three considered datasets
and P = t-SNE. The figures for other projections (UMAP, PCA) are
very similar. Columns 2..4 indicate averages for multiple runs that se-
lect Ds by randomly sampling D (see Sec. 2). Overall, we see that
we obtain convergence for roughly 150 epochs for all datasets and
training-set sizes, and also that this number of epochs is quite stable
for training-set sizes |Ds| larger than 1K samples.

Figure 1 shows the inference speed for all three datasets. Note that
speed does not depend on the projection method P, by construction.
Also, in this experiment, we consider any point y ∈ R2, i.e., not only

Table 1: Training effort until convergence.
Average # epochs for each dataset D

training set size |Ds| Blobs Fashion-MNIST MNIST Avg.
500 268.0 214.0 213.5 192.5

1000 190.5 129.0 147.5 149.0
2000 153.0 112.0 111.0 112.5
5000 103.0 120.5 138.0 127.5
7000 127.0 118.5 151.0 144.0
10000 82.0 124.5 142.5 146.5

average |Ds| per D 153.9 136.4 150.6 145.3

points in the test-set Ds, since we don’t need ground truth informa-
tion to assess speed, and since in actual use one would not have such
ground truth available. We see that both RBF and iLAMP have a su-
perlinear behavior, while iNN (our method) is almost linear. More
importantly, iNN is roughly one magnitude order faster than RBF and
nearly two orders of magnitude faster than iLAMP for 40K samples or
more. This speed-up is crucial for applications that need to inversely
project hundreds of thousands of samples (or more), like in the con-
struction of dense maps (see [ERT19, RJT18] and Sec. 3.3 next). In
such cases, iNN allows constructing such maps in seconds, whereas
iLAMP and RBF require (tens of) minutes, which makes human-in-
the-loop usage of such dense maps impossible in visual analytics sce-
narios – which are one of the key reasons why dense maps are built in
the first place.
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Figure 1: Inverse projection speed as function of number of samples.

3.2. Quantitative Assessment of Quality
Besides being fast, we want an inverse projection to be accurate. That
is, given some ground truth pair (x ∈ Rn,y = P(x) ∈ R2), unseen by
training, we want that P−1(y) be as close as possible to x. This follows
the same idea as, on the one hand, normalized stress metrics used to
gauge the quality of projections in the literature [SVPM14,vP09], and
on the other hand classical validation of inference models in machine
learning. We measure quality in our case by computing the average
inverse-projection mean square error MSE = ‖x−P−1(P(x))‖2/|Dp|
over the test set Dp. The closer MSE is to zero, the better P−1 is. Fig-
ure 2 shows MSE for our three datasets, two projections (t-SNE and
UMAP), three tested inverse projections (iLAMP, RBF, and iNN). We
also consider several training-set sizes |Ds| to show how MSE de-
pends on the training amount. For Blobs, a relatively easy-to-project
synthetic data, all methods have basically zero error, except RBF.
MNIST and FashionMNIST show similar behavior: Our method (iNN)
achieves consistently lowest error. The second-best method is iLAMP.
Errors are larger for these real-world complex datasets than for the
synthetic Blob, which is expected.

3.3. Qualitative Assessment of Quality
We now show why having a fast and accurate inverse projection is
important for a concrete application – understanding the decision
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Figure 2: Mean square error of inverse projection (lower=better).

zones of classifiers. In supervised machine learning, a classifier C is
trained on a labeled training-set Ds, which typically sparsely samples
some continuous universe U (U ⊂Rn in our case), and partitions U in
so-called decision zones Zi, so that any x∈ Zi gets label li at inference
time. The classifier accuracy is evaluated using a labeled test-set Dp.
Visualizing the decision zones Zi helps understanding the behavior
of C, as well as areas in U where training may have been suboptimal
and thus may need extra effort. Recently, a method to construct dense
decision maps using inverse projections was proposed [RJT18].
Briefly put, every pixel y in an image is colored by the label assigned
to P−1(y) by a classifier C trained on the same data used to construct
the projection P from which P−1 was derived. The quality of such
decision maps depends on the projection P used, with t-SNE and
UMAP performing better than several other tested methods [ERT19].
However, while acknowledging its importance, the effect on quality
of the inverse projection P−1 used was not tested. We alleviate
the above limitation in [ERT19] and also show why our inverse
projection achieves better results for dense maps visualizing classifier
decision zones. For this, we construct decision maps for projections
P ∈ {tSNE,UMAP}, datasets D ∈ {Blobs,MNIST,FashionMNIST},
inverse projections P−1 ∈ {iLAMP,RBFp,RBFc, iNN}, and clas-
sifiers C ∈ {LR,CNN}. Here, RBFp and RBFc are two versions of
the RBF inverse projection, using fixed control points, respectively
control points defined as centers of clusters obtained from the input
data D (for details, we refer to the original paper [ABMC∗15]). LR is
a simple logistic regression classifier, used since we know it produces
piecewise-linear decision boundaries and hyperpolyhedral decision
zones; and CNN is a convolutional neural network, which we know
it works well for image data like (Fashion)MNIST. All decision
maps are images of 5002 pixels, so |Dp| = 250000 points (Fig. 3).
Importantly, all maps were constructed completely from unseen data
– that is, we do not use any of the data points or their projections
present in the training set Ds. We discuss our results next.

Blobs dataset: As expected, for this simple dataset, both t-SNE and
UMAP separate well the 5 clusters present in the data. The LR trained
on this dataset achieved 100% accuracy. All inverse projections
P−1 appear as compact zones that surround the corresponding
projection scatterplots. For the LR classifier, we know that the
decision boundaries should be piecewise linear. UMAP yields more
concentrated clusters, so the corresponding dense maps resemble
very much Voronoi diagrams of the respective cluster configurations
– which is indeed expected, and a positive sign of the correctness
of the dense maps. For the t-SNE projection, iLAMP and iNN are
closest to such linear boundaries, while RBFp and RBFc create more
jagged boundaries. This is a first hint that iLAMP and iNN are better

inverse projections.

MNIST dataset: The CNN classifier used obtained a 99.6% training-
set accuracy. As the projection (and underlying dataset) is more
complex, the inverse projections are more challenged. Recent studies
have empirically shown that decision zones of such neural networks,
used for natural-image dataset classification, are connected, with
relatively smooth boundaries [FMDFS18]. Hence, we expect our
dense maps to show this. In Fig. 3, we first observe that both iLAMP
and iNN are closest to the above properties, while RBFc generates
highly noisy, sprayed-points-like, disconnected, and complex-shaped
decision zones (see dashed-line annotations in figure). These generate
the false impression that the classifier has difficulties for such
samples, which is not true, given the observed accuracy. RBFp
also generates noisy/disconnected zones, albeit less than RBFc, but
more than iLAMP and iNN. Both RBFp and RBFc also generate
visible ‘false islands’, i.e., significant-size areas in the decision maps
that have a label which does not match any significant number of
points having the same label in the scatterplots (see continuous-line
annotations in figure). These convey the false impression that the
classifier creates certain decision zones in areas where actually
nothing like this happens. While both above phenomena exist also for
iNN, this is to far smaller extents.

FashionMNIST dataset: The CNN classifier used obtained a 98.7%
training-set accuracy. We can make the same observations made
for MNIST’s decision zones, even to stronger extents. RBFc and
RBFp generate highly fragmented, jagged, and disconnected decision
zones, with RBFp being better than RBFc. iLAMP and iNN generate
smoother, more connected, and quite similar zones. This is quite in-
teresting, since the two methods are completely different. However,
iLAMP generates noisier zones and more jagged boundaries (see an-
notations in figure). Given, again, the mentioned insights on how such
zones/boundaries should be [FMDFS18], we find iNN being better
than iLAMP.

4. Discussion and Conclusion

We have presented a new method for computing inverse projections
from 2D to high-dimensional data spaces by learning the behavior of
a direct projection method. Our method is generic (can handle any
direct projection method and type of high-dimensional dataset), au-
tomatic (does not require any user parameters), one to two orders of
magnitude faster than existing inverse projection methods, and sim-
ple to implement using existing out-of-the-box deep learning toolk-
its [C∗15]. We compared our method on three datasets, two state-of-
the-art projections (UMAP and t-SNE), against three inverse projec-
tion methods (iLAMP, RBFc, and RBFp). We found our method to
deliver higher accuracy, and decision zones that match equally well
or better to known properties of such zones for both simple (linear
regression) and more complex (convolutional neural network) classi-
fiers.

Our method can be extended in several directions. First, the design
space of its underlying neural network can be better explored to reach
higher accuracy and/or less training effort. Secondly, different quality
metrics can be used to deliver inverse projections which are specif-
ically suited for specialized tasks such as assessing confusion zones
of classifiers. Finally, we can apply our inverse projection to support
more applications beyond decision map exploration in machine learn-
ing.
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Projection scatterplot P-1 = iLAMP P-1 = RBF clusters (RBFc) P-1 = RBF fixed control points (RBFp) P-1 = Our method (iNN)
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Figure 3: Dense maps constructed for combinations of classifiers C, projections P, inverse projections P−1, and datasets. See Sec. 3.3.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



M. Espadoto & F. C. M. Rodrigues & N. S. T. Hirata & R. Hirata, Jr. & A. C. Telea / Deep Learning Inverse Multidimensional Projections

References
[ABD∗12] AMORIM E., BRAZIL E. V., DANIELS J., JOIA P., NONATO

L. G., SOUSA M. C.: iLAMP: Exploring high-dimensional spacing
through backward multidimensional projection. In Proc. IEEE VAST
(2012), pp. 53–62. 1, 2

[ABMC∗15] AMORIM E., BRAZIL E. V., MENA-CHALCO J., VELHO L.,
NONATO L. G., SAMAVATI F., SOUSA M. C.: Facing the high-dimensions:
Inverse projection with radial basis functions. Computers & Graphics 48
(2015), 35–47. 1, 2, 3

[C∗15] CHOLLET F., ET AL.: Keras. https://keras.io, 2015. 3
[CG15] CUNNINGHAM J., GHAHRAMANI Z.: Linear dimensionality reduc-

tion: Survey, insights, and generalizations. JMLR 16 (2015), 2859–2900. 1
[ERT19] ESPADOTO M., RODRIGUES F., TELEA A.: Visual analytics of

multidimensional projections for constructing classifier decision boundary
maps. In Proc. IVAPP (2019), SciTePress. 1, 2, 3

[FMDFS18] FAWZI A., MOOSAVI-DEZFOOLI S.-M., FROSSARD P.,
SOATTO S.: Empirical study of the topology and geometry of deep net-
works. In Proc. IEEE CVPR (2018), pp. 3762–3770. 3

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proc.
IEEE ICCV (2015), pp. 1026–1034. 2

[JCC∗11] JOIA P., COIMBRA D., CUMINATO J. A., PAULOVICH F. V.,
NONATO L. G.: Local affine multidimensional projection. IEEE TVCG 7,
12 (2011), 2563–2571. 2

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014). 2

[LCB10] LECUN Y., CORTES C., BURGES C.: MNIST hand-
written digit database. AT&T Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010). 2

[MH18] MCINNES L., HEALY J.: UMAP: Uniform manifold ap-
proximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018). 2

[NA18] NONATO L., AUPETIT M.: Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout enrichment.
IEEE TVCG (2018). 1, 2

[RJT18] RODRIGUES F., JR. R. H., TELEA A.: Image-based visualization
of classifier decision boundaries. In Proc. SIBGRAPI (2018). 1, 2, 3

[SC19] SMILKOV D., CARTER S.: TensorFlow Playground, 2019.
playground.tensorflow.org. 1

[SVPM14] SORZANO C., VARGAS J., PASCUAL-MONTANO A.: A survey
of dimensionality reduction techniques, 2014. arXiv:1403.2877 [stat.ML].
2

[vdMH08] VAN DER MAATEN L., HINTON G. E.: Visualizing data using
t-SNE. JMLR 9 (2008), 2579–2605. 2

[vP09] VAN DER MAATEN L., POSTMA E.: Dimensionality Reduction: A
Comparative Review. Tech. rep., Tilburg University, Netherlands, 2009.
Tech. report TiCC TR 2009-005. 1, 2

[XLX17] XIE H., LI J., XUE H.: A survey of dimensionality reduction
techniques based on random projection, 2017. arXiv:1706.04371 [cs.LG].
1

[XRV17] XIAO H., RASUL K., VOLLGRAF R.: Fashion-MNIST: a novel
image dataset for benchmarking machine learning algorithms, 2017. arXiv
1708.07747 [cs.LG]. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://keras.io
playground.tensorflow.org

