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Abstract

Multidimensional projections (MPs) are established tools for exploring the structure of high-dimensional datasets to reveal
groups of similar observations. For optimal usage, MPs can be augmented with mechanisms that explain what such points have
in common that makes them similar. We extend the set of such explanatory instruments by two new techniques. First, we compute
and encode the local dimensionality of the data in the projection, thereby showing areas where the MP can be well explained
by a few latent variables. Secondly, we compute and display local attribute correlations, thereby helping the user to discover
alternative explanations for the underlying phenomenon. We implement our explanatory tools using an image-based approach,
which is efficient to compute, scales well visually for large and dense MP scatterplots, and can handle any projection technique.

We demonstrate our approach using several datasets.
CCS Concepts

o Human-centered computing — Visualization design and evaluation methods;

1. Introduction

Multidimensional Projections (MPs) are used to create scatterplot-
like depictions of high-dimensional data. While quite successful in
showing the data structure (in terms of point clusters and outliers),
MPs do not explain which data aspects (e.g., dimensions, dimension
ranges, or interactions between dimensions) create such structures.
As such, MP visualizations, typically created using 2D or 3D scat-
terplots, need to be enhanced by various explanations to enable the
analyst to understand the observed data patterns.

Several such explanatory mechanisms exist. Color-coding points
is the easiest and most widespread, but requires manual dimension
selection and does not scale well for many dimensions. Global
explanations, such as biplot axes [GrelO, GLR11] and axis leg-
ends [BBT13,CMN*16] are easy to use, but do not provide local
explanations for different subsets of data points. Linked views and
tooltips show local explanations, but require one to manually se-
lect structures of interest. Image-based techniques offer a middle
way: They compute and display local explanations everywhere on
the projection, not requiring the user to select specific point subsets.
Image-based techniques have been also used to analyze projection
errors [Aup07,SvLB10, MCMT14,PPM*15]. They scale well visu-
ally and computationally, are clutter-free, and can generically handle
any (high-dimensional) dataset.

Closest to our aim, da Silva et al. [dSRM™15] proposed an image-
based explanation of MPs that colors every scatterplot point by the
dimension that contributes most to making data points in that neigh-
borhood similar. In this paper, we extend the approach in [dSRM*15]
with explanations that describe the data from additional viewpoints
besides attribute similarity. First, we use principal component analy-
sis (PCA) to analyze point neighborhoods to deduce and encode the
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local (intrinsic) dimensionality of the data. This allows users to sepa-
rate regions of high intrinsic dimensionality in the projection (hard to
explain by just a few dimensions) from low-dimensionality regions
where such explanations are feasible. Secondly, we analyze point
neighborhoods to detect and depict strong linear relationships (not
captured by PCA) between dimensions. Our techniques complement
existing mechanisms for projection explanation, can be computed
efficiently on the GPU, and can be applied generically on any high-
dimensional dataset visualized by any MP technique. We illustrate
our work on both synthetic (ground-truth) and non-synthetic datasets.

2. Explanatory Mechanisms

Let D = {x;} C R" be a n-dimensional dataset with points x; =
(x},...,x7). A projection P maps D to a scatterplot P(D) C R"™,
where typically m € {2,3}. To allow analysts to recover the structure
of D from its visualization P(D), projections typically aim to place
points that are similar in D close to each other in P(D). Similar-
ity can be computed in different ways, e.g. based on R” distances
[TDLOO, DT04,JCC*11] or R" neighborhoods [vH08, MHM18].
Recent surveys provide more details on the technicalities of MPs
[NA18,EMK™*19]. Image-based explanatory techniques exploit pre-
cisely this distance or neighborhood preservation property of MPs:
Let v; C P(D), v; ={y € P(D)||ly —yill < p}, be a neighborhood
of size p of scatterplot point y; € P(D). Since points in v; are, by
construction, close, and since P is expected to (reasonably) preserve
similarities, the points 1; C D that project to v; are expected to be
similar. Hence, it makes sense to compute an explanation of y; and
next visually encode this on all scatterplot points y;.

Da Silva et al. [dSRM*15] propose two such explanations. Let
X}JLX, = ||x/ —x||3/||x — x'||? be the contribution of dimension j
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to the distance between two points x and x’ in D, with || - ||y being
the k-dimensional Euclidean distance. This point-pair contribution is
extended to neighborhoods y; by averaging the local contributions of
x; and all its neighbors, as A, = Yxeu Mox,/|1il, where | - | denotes
set size. Finally, such distance contributions are normalized yielding
. W I
oM )
i (/)

where the normalization factor Yj is the contribution A’ of dimen-
sion j of the whole dataset D with respect to its centroid. Due to
normalization, 7»{ € [0,1], with lower values telling dimensions that
contribute little to distances in y;, i.e., explain well why points in
i are similar. An alternative to Eqn. 1 is to compute the relative
variance v{ of dimension j over the neighborhood y; as

j .
vl = _wijevr )
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where LViJ is the variance of dimension j for all points in y;, normal-
ized by the variance GV’ of the same dimension over all points in
D. Just as k{ , vlJ € [0, 1], with lower values telling dimensions that
change little in a neighborhood. The scatterplot P(D) is explained
by color-coding its points by the C dimensions that have overall low
values of 7\,{ (or v{ , depending on the user’s choice) over all points.
C is set to a low value, e.g. 8, since categorical colormaps should
be small. Luminance is used to encode the confidence in the visual
explanation: If j is the dimension picked to color point i, confidence
K is computed as the sum of 7»{ (or v{ ) values for all points in the
neighborhood y;, normalized by the sum of the same terms over all
dimensions over ;. If neighbors of point i are best explained by the
same dimension j as i, the color will appear bright, and conversely.

Figure 1a shows a dataset of 3000 points spread over three faces
of an axis-aligned cube (with added noise), projected with PCA to
2D, explained by variance (image from [dSRM*15]; explaining by
distance creates a similar image). The image is simple to decode:
Points on each cube face share very similar values of one of the
dimensions, so are bright and colored by the respective dimension.
Points along cube edges are dark, since two (or three, for the cube cor-
ner) dimensions are needed to explain their similarity with neighbors.
It is important to see that these are not the original data dimensions,
but dimensions synthesized by PCA (eigenvectors). Hence, we are
not interested to showing their identities, but only their number.

2.1. Adding Dimensionality Explanation

Da Silva et al.’s explanations (Eqns. 1 and 2) cannot provide full
insights into the structure of high-dimensional data. Take e.g. a non-
axis-aligned cube like in Fig. 1a and embed it into a high-dimensional
space. While the data structure stays the same, both distance contri-
butions and variances cannot select a single dimension to explain the
cube’s faces, since all dimensions contribute to the data structure.

We first propose to improve this by explaining the local (or intrin-
sic) dimensionality. For each neighborhood y; of each point x; € D,
we compute the n eigenvalues o; of its covariance matrix, sorted
decreasingly. From these, we explored computing the local dimen-
sionality & and its confidence ¥ in different ways (see also Tab. 1):

Total variance: We define dimensionality d as the minimal number

Definition Dimensionality & Confidence ¥
. : Zf-’zl o X2, 00
al vs > i
Total variance mmS‘ T 0 1 o

3
Y

n .
i=1 %

Minimal variance H% >6,1<i< n}

j=1%j

Table 1: Definitions of local dimensionality and confidence.

of largest eigenvalues oi; > 0l > ... > 05 needed to explain a user-
set fraction O of the data variance in y;. The confidence k equals how
much the sum of these largest 8 eigenvalues deviates from the mean
of all n eigenvalues.

Minimal variance: The total variance model works well when eigen-
values significantly drop. However, consider the (limit) case where
all eigenvalues are equal. The dimensionality & computed by to-
tal variance equals then 6/n, even though locally the data is truly
n-dimensional. To capture this, we define 8 as the number of eigen-
values larger than a minimal user-set variance 6, and confidence K
as the sum of these divided by total variance, similar to Kaiser’s
criterion used in explanatory factor analysis [Cli88,Jol02].

Figure 1b,c show the total and minimal variance explanations
for the noisy cube data. As in [dSRM™15], the explanations are
color-coded on the projection points are color-coded, as detailed
in a legend next to the projection. The legend bars’ sizes indicate
how many points are assigned a given explanation (dimensionality).
The cube’s faces are colored blue. The legend tells that these points
are locally in § = 2-dimensional neighborhoods embedded in nD.
Close and on the cube edges, the color is green, telling that = 3
dimensions are needed to explain the data here.

2.2. Adding Correlation Explanation

High-dimensional data is often explained by how its dimensions
correlate. Yet, assessing global correlation over an entire dataset
is of limited value when the underlying phenomenon is a mix of
local (linear) patterns. To address this, we compute and depict corre-
lations over local neighborhoods. For each point neighborhood g,
we compute the N = n(n+ 1) /2 Pearson or Spearman correlations
between all dimension-pairs (j,k) € [1,n] x [1,n]. We sort these
pairs in descending correlation-strength order, and select the C top-
ranked pairs that are most frequent over all points i. This resembles
selecting the explaining dimensions in [dSRM*15], but now we
select dimension-pairs rather than individual dimensions. We show
these C pairs via a categorical colormap, using luminance to map the
absolute correlation values. Figure 1c shows this for the noisy cube.
The legend tells that the three faces map to strong correlations of the
three dimensions x, y, and z, as expected. The edges orthogonal to
faces show the same correlation. Indeed, for the face xy, for instance,
the orthogonal edge has near-constant x and y, and strongly varying
z, values, so x and y are correlated along it.

This visualization can only show the C top-ranked, most frequent,
correlations from all possible N ones. However, users may want to
examine the presence (or absence) of specific correlations. For this,
we show the entire set of N dimension-pairs using a matrix view.
Figure 2a shows this view, next to the projection, computed by t-SNE,
for the concrete dataset [Yeh98,Lic13], that has 1030 8-dimensional
samples measuring how 8 ingredients influence concrete strength.
The matrix cells are colored by the same colormap as in the projection.
Here, dark blue tells all dimension-pairs whose correlations have a
frequency higher than zero but lower than the C top-ranked pairs.
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Figure 1: Cube dataset explained by (a) variance; local dimensionality with total (b) and minimal (c) variance; and (d) dimensions correlation.
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Figure 2: Matrix view, concrete dataset. Clicking on the FlyAsh-Caggr cell (a) allocates a color to it, showing where in the projection view
these two variables are strongly correlated. To make room for this, the weakest-correlated pair Water-Caggr is removed from the explanation.

To see where, on the projection plot, such pairs correlate, the user
clicks a dark blue cell, e.g. FlyAsh-Caggr dimension-pair in Fig. 2a.
The color used for the C*" top dimension-pair, i.e. cyan used for
Water-Caggr, is then allocated to the clicked pair and the ch pair is
made dark blue. The result shows a single cyan spot in the projection
plot (Fig. 2b, dashed circle marker). This is the only place where the
dimensions FlyAsh and Caggr strongly correlate.

The matrix view supports two other tasks. First, the cells of the top
C (strongest correlated) dimension-pairs are outlined in white. This
helps one to easily return to the original color allocation after hav-
ing selected some other dimension-pairs for explanation. Secondly,
rows and/or columns having many cells colored by the non-default
(dark blue) color indicate groups of strongly correlated variables. For
instance, the second top row in the matrix view in Fig. 2a, corre-
sponding to the Faggr dimension, shows four such cells, that indicate
its strong correlation with Cement (yellow), BFSlag (green), FlyAsh
(orange), and Caggr (purple), respectively.

3. Applications

We consider the wine dataset, which has 6497 samples of Portuguese
vinho verde [CCA*09], each with n = 12 physicochemical attributes
such as acidity, residual sugar, and alcohol rate. Figure 3a shows
the raw projection of this dataset using LAMP [JCC*11]. Besides a
dense-point cluster bottom-right, there is not much else this image
tells us. While other projection methods, e.g. t-SNE, may show better
separated clusters, the question still remains how to explain these.

Figures 3b-c show the contribution and variance explanations re-
spectively. These are quite similar and split the projection roughly
into four areas, explained by small variations of alcohol (purple),
chlorides (yellow), sugar (red), and acidity (beige), respectively. The
correlation view (Fig. 3d) brings additional insights: We see a large
purple area bottom-right that matches well the area earlier explained
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by small variations of chlorides, alcohol, and acidity. Over this purple
area, the legend of image (d) tells that sugar and density strongly
correlate. Also, we see that the red area in Figs. 3b-c, where sugar
has a low variation, is now roughly split in Fig. 3d into smaller areas
—red (fixed acidity-citric acid correlation), yellow (fixed acidity-pH
correlation), beige (fixed acidity-density correlation), and brown
(chlorides-density correlation). Note that the contribution-variance
and correlation explanations are complementary: They cannot, when
taken separately, split the projection into fine-grained local explana-
tions, but do so when combined. Indeed, the red area in Figs. 3b-c
is further split (explained) by using correlation, as explained above;
conversely, the purple area in Fig. 3d is further split (explained) by
using contribution or variance.

At this point, the analyst may wonder which projection areas are
sufficiently explained by the above views. The dimensionality view
helps here. Figure 3e shows the local dimensionality of the projected
data, computed by total variance (Sec. 2.1). We see how increasingly
more dimensions are needed to capture increasing fractions 0 €
[0.3,0.9] of the total variance — in the limit, we need all n = 12
dimensions to explain 8 = 100% of the variance. More interestingly,
we see in Fig. 3e a gradient of local dimensionality, from highest
in the bottom-right area (red-purple colors for 6 > 0.85) to blue in
the top-left area (blue for 6 < 0.75). Besides color hue, the local
dimensionality gradient is also visible in the brightness, which tells
the confidence k that the color-coded number of dimensions locally
explain 0 percent of the variance. The effect is very similar to the
enridged contour maps used to visualize scalar fields [VWTOI1]:
The visual nesting of the ‘cushions’ created by varying brightness
conveys the absolute value of the encoded signal, i.e., the local
dimensionality. The way we compute these cushions (Sec. 2.1) is,
however, completely different to [vVWTO1].

The local dimensionality view helps interpreting the contribution-
variance and correlation views as follows: As we have seen, local
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Figure 3: Explanation of wine dataset by contribution (b), variance (c), correlation (d), and local dimensionality (e).

dimensionality is high in the bottom-right (red-purple) area, where
we need 7 to 9 dimensions to explain 0 = 0.85 of the data variance. In
this area, the contribution-variance and correlation views jointly give
us information about only five variables — alcohol, chlorides, acidity,
sugar, and density. Hence, these two views do not fully explain this
area, so we need to search for more explanations here. In contrast,
the local dimensionality is low in the top-left (blue) area, where we
can explain 6 = 0.75 of the data variance by a single dimension.
From the contribution-variance views, we see that this area is well
explained by a small variance of sugar. Hence, in this area, sugar’s
low variance is sufficient to explain the data.

4. Discussion and Conclusions

We detail several points on our method, as follows.

Genericity and scalability: Our method can handle any type of
quantitative data projected by any MP technique. Correlations and
PCA are computed with the Eigen library [eig20]. Since explanations
are computed (and rendered) independently on local point neighbor-
hoods, which is easily parallelizable. We did this using NVIDIA’s
CUDA, thereby generating all images in this paper in real time for
datasets up to tens of thousands of points, tens of dimensions, on a
commodity PC (2.4 GHz CPU, GeForce 320M GPU).

Limitations: Like its predecessor [dSRM*15], our method can tech-
nically handle datasets of any dimensionality n. Yet, as the local
intrinsic dimensionality grows, one needs more variables for the
explanation. Also, the correlation is O(nz) in computation and space
needed for the dimension matrix (Fig. 2). Hence, our method works

well up to a few tens of dimensions in practice. Separately, both
our explanation and [dSRM™ 15] rely on the assumption that points
close in P(D) correspond to points close in D. The extent to which
various MP techniques realize that varies [EMK*19]. One way to
address this is to use projection error views [MCMT14] to exclude
neighborhoods which do not respect this condition, or refine their
computation by e.g. using larger radii p. Another option is to com-
pute our explanations using the neighborhoods ; in D rather than v;
in P(D). Investigating all above options, and comparing the results
with our current ones, is an interesting option that we consider for
future work.

Several extensions are next possible. Adding more explanation
types, such as inverse correlation, correlation of more than two dimen-
sions, or the presence of specific nD data patterns, is a low hanging
fruit. We aim to compute, in parallel, a wide range of local explana-
tions based on a pattern library, and next show the most salient ones
in the final view, thereby combining the so far separate contribution,
variance, correlation, and dimensionality views. This would perform
a scagnostics-like [WAGO5] local analysis of the projection, but
using patterns described by the high-dimensional data rather than by
the scatterplot itself. Finally, computing a hierarchical explanation,
where regions are recursively split based on additional explanations,
is another direction we aim to pursue.
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