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Abstract
Decision boundary maps (DBMs) are image representations of the behavior of trained machine learning classification models.
They are used in examining how the model partitions its data space into decision zones separated by decision boundaries and
how this partition is influenced by the training data. However, all current DBM methods require significant computational
effort, which precludes their use in interactive visual analytics scenarios. We present FastDBM, a set of techniques for the fast
computation of DBMs. Our methods can accelerate any existing DBM algorithm by over one order of magnitude, yield results
very similar to the original DBM methods, have a single parameter to set (with good presets), and are simple to implement. We
demonstrate our method on various combinations of DBM techniques, datasets, and classification models.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods;

1. Introduction

Decision boundary maps (DBMs) are simple but effective instru-
ments for the visual depiction of the behavior of trained classifica-
tion models [TMW24]. Simply put, a DBM maps (a part of) the
high-dimensional data space onto which the model operates to a 2D
image space. Next, image pixels are used to represent the model’s
behavior at samples from the data space, by encoding the labels
inferred by the classifier, and optionally classification confidence,
via color hue, respectively color saturation. This way, the image
shows so-called decision zones, i.e. areas where the classifier infers
the same label; and decision boundaries, i.e., locations in the data
space where the model changes decision.

Several techniques for computing DBMs have been proposed
[RHT18,SHH20,OEHJT22]. However, all these techniques share
the fact that computing the DBM image, even at quite small resolu-
tions of hundreds of pixels squared, is very time consuming (tens of
seconds up to tens of minutes, depending on the DBM technique
[WMT23]. In turn, this precludes the usage of such DBMs in visual
analytics scenarios where users aim to improve a classification model
by e.g. changing its hyperparameters or performing data pseudo-
labeling in active learning settings [BTF18, SHH20, BGTF21]. In-
deed, in such scenarios, users need to iteratively, and ideally interac-
tively, change the classifier, compute a new DBM, visually explore
it, and next decide how to fine-tune their next changes to arrive at the
desired result. As such, the potential of DBMs for helping classifier
engineering is currently limited by their computational scalability.

We address this problem by proposing FastDBM, a set of tech-
niques that accelerate the computation of DBM images. Our tech-
niques introduce only a very low error rate as compared to the

ground-truth DBM computation – in practice, only a few tens of
pixels, located on the decision boundaries, are different. Finally, our
techniques are simple to implement, have no hidden parameters to
be set, and can accelerate any existing DBM computation method
for any classification model in a black-box manner, that is, without
needing access to their internals. We demonstrate our proposal by
speed and accuracy comparisons of FastDBM with ground-truth
DBM computations for several datasets and classifiers.

2. Related work

Let D = {xi} ⊂ Rn be a high-dimensional dataset with samples xi.
A classification model M : Rn→C, trained and/or tested on D, maps
samples from the data space to a categorical (label) domain C. A
decision map is an image I that captures M’s behavior, computed as
follows. Let P : D→R2 be a dimensionality reduction, or projection,
such as t-SNE [vdMH08], UMAP [MH18], PCA [Jol02], or any
other similar methods [NA18, EMK∗21]. Let P(D) be the mapping
of D to a 2D scatterplot computed using P. Using the pair (D,P(D)),
one can compute a so-called inverse projection P−1 : R2 → Rn.
Next, each pixel y ∈ I is mapped to a data sample P−1(y) and
colored to reflect the model’s inferred label M(P−1(y)) and, option-
ally, the classification confidence c(P−1(y)) ∈ [0,1] for that label.
Figure 2a shows such a decision map for the well-known MNIST
dataset [LeC10] with confidence encoded into color saturation. By
examining I, one can reason about how the classifier’s decision
zones relate to its training data [OEHJT22, OEH∗23]; and how far
from these data are its predictions reliable [REJT19, SHH20].

Key to the computation of DBMs are the choice of P and P−1,
since P is used to compute P−1 and P−1 is used to compute the
DBM, as explained above. Several combinations are possible. Early
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on, Rodrigues et al [RHT18] used t-SNE and LAMP [JPC∗11] for
P and iLAMP [dBD∗12] for P−1, respectively. Since iLAMP is
quite slow, Espadoto et al [ERH∗19] proposed the NNInv technique
to compute P−1 via deep learning. This approach was next refined in
terms of quality of the produced DBMs by Self-Supervised Decision
Maps (SDBM, [OEHJT22]) which exploited jointly deep learning P
and P−1 [EHT21], based on an autoencoder approach [HS06]. Sep-
arately, DeepView [SHH20] proposed discriminative dimensionality
reduction to construct DBMs using UMAP for P−1.

Rodrigues et al. [REJT19] have presented a qualitative evaluation
of DBM techniques involving 28 methods for P and two methods
(iLAMP and NNInv) for P−1. Their results showed that, among the
studied techniques, t-SNE and UMAP (for P) and NNInv (for P−1)
produce DBMs which are best in line with the expected behavior
of the visualized models. More recently, Wang et al. [WMT23]
have presented a detailed evaluation of DBM techniques from the
perspective of quality and computational scalability. Similarly to
Rodrigues et al., they found that t-SNE and UMAP (for P) and
NNInv (for P−1) yield very good results, surpassed only by Deep-
View. However, all these techniques are quite slow – on a typical
commodity PC, computing a DBM for resolutions of 2502 pixels
takes about 10 seconds for all tested methods except DeepView;
for DeepView, this took over two hours. As we shall see in Sec. 4,
these costs increase quadratically with the DBM resolution – and
higher resolutions are needed to create DBMs in which users can see
subtle details such as the exact shape of decision boundaries close
to groups of data samples. This makes current DBM methods poorly
suitable for visual analytics scenarios that require fast recomputation
of the DBM upon re-training of the studied model.

3. Fast DBM computation

We start by observing that, for an image I of n× n pixels, the
complexity of the standard DBM method is O(n2K), where K is the
cost of a single M(P−1(·))) operation. Decreasing K is hard if we
allow any generic inverse projections P−1 and classifier models M.
Hence, to improve speed, we first focus on reducing the n2 term.

A classification model M aims to fit its decision boundaries to
surround same-class training points. Training points located close
to each other in data space will typically have the same labels. As
such, (1) decision zones are relatively large and compact subsets of
Rn. In the same time, (2) the boundaries of the decision zones must
be sufficiently smooth so as to allow for generalization without over-
fitting. As a consequence of (1) and (2), a given M has in general
a relatively small number of compact, smooth-boundary, decision
zones (not necessarily one per class). A DBM should preserve the
above properties so that users can infer the actual decision bound-
aries and zones from the visualized ones [OEHJT22, OEH∗23]. As
such, the visualized decision boundaries and zones in the DBM
will also respect the above properties (small number of compact,
smooth-boundary, decision zones). We next use this observation to
devise three acceleration strategies which are presented next.

Binary split: We start by computing the DBM image, using any
desired existing method (Sec. 2), at a resolution of B2 blocks. Each
such block represents a square of n

B ×
n
B pixels from I. For each

block b, we evaluate the label lb = M(P−1(y)) at its central pixel y.
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Figure 1: Binary (a-c) and confidence-based (d) splitting heuristics.

Figure 1a shows this for a binary classifier (cyan and yellow are the
two classes; the current block b is in bold red). Let lu, ld , ll , lr be the
labels computed similarly for the up, down, left, and right neighbor
blocks of b. Let κ be the number of neighbors with labels different
from lb. If κ = 0, then b is surrounded by same-label blocks. If we
assume that a decision zone in the DBM is locally thicker than n

B
pixels, no decision boundary can cross b. Hence, we can assign lb
to all pixels in b. If κ > 0, we split b into four equal smaller blocks
(the resulting block-set is shown in Fig. 1b). We repeat the process,
in an quadtree-like fashion, until we arrive at pixel-sized blocks
or blocks that do not need splitting any more. During this process,
we note that, to ensure an uniform refinement allover the image,
(1) splitting larger blocks first is more advantageous than splitting
smaller ones; and (2) splitting blocks having several neighbors with
different labels is more advantageous than splitting blocks having a
single such neighbor since the former cover more decision boundary
fragments. Following the observations (1) and (2), we keep blocks
to split in a priority queue sorted descendingly on d · d · κ

N where
d is the size of a block, κ its number of different-label neighbors,
and N is its neighbor count, i.e., 4 for blocks inside fhe DBM, 3 for
blocks on the DBM border, and 2 for blocks on the DBM corners.

As Sec. 2 outlines, a DBM can also show at each pixel, apart from
labels, the confidence of the visualized model M. Yet, per block, we
have a single data sample P−1(y), computed at the block’s center
pixel y. This is fine for class labels as these are constant for entire
decision zones, thus also per block, as per our splitting heuristic.
Yet, confidence varies even within a decision zone, being typically
small close to decision boundaries and larger deeper in a zone (see
e.g. Fig. 2a). Hence, confidence varies also within a block. We
avoid computing additional confidence values apart from c at y by
interpolating these values, computed at the blocks’ centers y, using
nearest-neighbor, bilinear, or bicubic schemes.
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Confidence split: The binary split follows a simple bisection idea
to locate, up to pixel precision, the places where decision boundaries
are. We can use the confidence values c at the block centers y to
refine this process as follows. Take the block b configuration shown
in Fig. 1c. Binary splitting would divide this cell along the dashed
lines in the image. Now, consider the confidence values cA and cB
for the inferred classes purple, respectively orange, sampled at the
centers of the cells bl and b, denoted next by cA,l , cB,l , cA,b, and cB,b
(see Fig. 1d). We can next bilinearly interpolate these values over
the image space I and find the point where cA = cB – that is, the red
point in Fig. 1d where the purple and orange lines intersect. This is
on (or close, depending on the precision of our interpolation) the
decision boundary between the orange and purple classes. As such,
it is likely a good point to split cell b. We do this split following
the thick dashed line in Fig. 1d. We proceed in the same way for all
class values with respect to all four boundaries of cell b. This yields
a possible set of 2, 3, 4, 6, or 9 cells that split b as opposed to the
four square cells created by the binary split. The dashed red lines in
Fig. 1d indicate the splitting positions. Confidence over blocks b is
next interpolated as in the binary split method.

Confidence sampling: Interpolating c over the image I allows us
to devise another DBM construction method. Given an initial reso-
lution of B2 blocks, we compute c at block centers y, for all inferred
|C| classes, and next interpolate these over I by nearest-neighbor,
bilinear, or bicubic techniques – as described above, but at the single,
initial, block resolution level. In contrast to binary and confidence
split, we now do not refine the initial blocks. Next, for each pixel
y ∈ I, we sample the interpolated confidences for all |C| classes and
assign to y the class label with highest confidence.

b) binary split (ε
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0.001%) c) confidence split (ε
label
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(brightness = confidence)
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Figure 2: a) Ground-truth DBM with labels (color) and confidence
(saturation), MNIST dataset. b-f) Class assignment errors for Fast-
DBM method variants,

4. Evaluation

We compare our FastDBM results with ground-truth DBMs using
two metrics, as follows.

Label errors: We would like to obtain the same labels for the same
pixels in the FastDBM image I f ast and the ground-truth DBM image
I. We evaluate this by the error

εlabel =
1
n2 ∑

1≤i≤n,1≤ j≤n
δ(I(i, j), I f ast(i, j)),

where δ(a,b) is 0 if a = b and 1 otherwise.

Confidence errors: Also, we would like that our interpolated con-
fidence c f ast is as close as possible to the ground-truth one c. We
evaluate this by the normalized MSE error

εcon f =
∑1≤i≤n,1≤ j≤n(c(i, j)− c f ast(i, j))2

∑1≤i≤n,1≤ j≤n c(i, j)2 .

Figure 2 shows our results for the MNIST dataset [LeC10], clas-
sified with a simple classification deep learning network M (flat-
ten layer, dense 10-unit layer and softmax activation, trained for
20 epochs, 3.5K training samples, 1.5K test samples); t-SNE and
NNInv used for P and P−1; and a DBM image size of n = 256 pix-
els squared, B = 32 blocks along each image dimension. Figure 2a
shows the ground-truth DBM with labels and confidence color- re-
spectively saturation-coded. Images (b-f) show the results of our
binary split, confidence split, and confidence sampling methods,
the latter using nearest neighbors (NN), bilinear, and bicubic inter-
polation. Red points show locations where the ground-truth labels
differ from FastDBM’s results. Values εlabel indicate the fraction
these red pixels are of the total image. As visible, our methods yield
practically the same DBMs, with only a small number of different
pixels. The binary split method is best – only 8 pixels of the 2562

are different. The confidence sampling method is worst; yet, for this
method, all errors appear within 2-3 pixels from the decision bound-
aries. This is most likely since confidence varies smoothly inside
decision zones but more rapidly close to boundaries (see Fig. 2a),
so our interpolation has difficulties in the latter areas.

Figure 3 shows the computation time and label assignment and
confidence errors εlabel and εcon f for the above experiment, eval-
uated for different DBM resolutions n ranging from 250 to 2000
pixels squared. Note that our maximal resolution n = 2000 signifi-
cantly exceeds all reported DBM results in the literature, which only
use images of several hundred pixels squared. For confidence sam-
pling, we only show the cubic method as this yields better accuracy
than the nearest neighbor and bilinear variants – see Fig. 2 and re-
lated text earlier. Figure 3, together with additional results including
more DBM techniques using different (P,P−1) combinations in the
supplementary material, lead to the following observations.

Speed-wise, our binary and confidence-sampling methods show
near-linear behavior in n as opposed to the quadratic behavior of
ground-truth DBM. The confidence-split method is also roughly
linear in n and more than double the speed of the ground-truth DBM.
the confidence-split method in between the two. The acceleration
factors are significant – the binary and confidence-sampling methods
are over one order of magnitude faster than ground-truth DBMs.
Label errors εlabel are larger for the confidence sampling method.
Also, all our three methods do not increase εlabel with the resolution
n, so larger images do not contain more errors. Similarly, confidence
errors εcon f are largely constant with n. However, we see that our

c© 2024 The Authors.
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confidence sampling method fares much better in εcon f than the
binary split and confidence split methods.
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Figure 3: Computation time (a), label errors εlabel (b), and confi-
dence errors εcon f (c) for the FastDBM methods, MNIST dataset.

From the above, we conclude that the two most interesting meth-
ods for practical use are binary split and confidence sampling (bicu-
bic variant). Binary split is the fastest method and also the one
creating the fewest wrong labels in the DBM. Even though this
method has the highest εcon f errors, it is a good default method for
users interested to get a very quick overview of their classification
model’s behavior, a task for which exact confidence values are less
critical. Confidence sampling has roughly the same speed and has
the lowest εcon f errors. However, it creates label errors around the
decision boundaries. As such, this method is more useful when one
wishes to explore a classifier’s behavior – including accurate confi-
dence estimations – close to its training set, i.e., farther away from
decision boundaries.

Initial block size: The single free parameter of our method is the

initial block resolution B, so how to set its value? A high B will
limit the errors due to dense sampling of the image space I, but will
be slow, since many blocks need to be evaluated via M(P−1(·)). A
low B will be fast, but as noted in Sec. 3, DBM details smaller than
n
B pixels may be lost. Figure 4 shows an analysis of this trade-off
regarding the size of B for our maximally considered resolution n.
To generalize our findings, we use for this experiment additional
combinations of P and P−1 to compute our ground-truth DBMs.
These are autoencoders (AE, used for both P and P−1); SSNP (used
for both P and P−1); and PCA, UMAP, and t-SNE (for P) with
NNInv (for P−1).
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Figure 4: FastDBM speed (a,c) and label errors (b,d) as function
of block size n/B for DBMs computed by five (P, P−1) methods,
MNIST dataset.

The binary split method is fastest for a block size of B' 50 pixels
(Fig. 4a). For confidence sampling, no exact B value yields a best
value for computational time for all studied (P,P−1) combinations,
but differences are small (Fig. 4b). Label-error-wise, all block sizes
above roughly 40 pixels yield (very) low errors for both methods
(Fig. 4c,d). Hence, we conclude that a block size n/B = 50 pixels
is a good general preset for FastDBM. We have verified this setting
for several datasets including different sample and class counts.

Additional results: We evaluated the binary split method – which
yields the best label approximation – with extra datasets, classi-
fiers, and (P,P−1) pairs used to compute the ground-truth DBM.
Datasets include FashionMNIST [XRV17], HAR [AGO∗12], and
Iris [Fis88]. Classifiers included logistic regression (LR), support
vector machines (SVM), k-nearest neighbors (kNN), decision trees
(DT), random forests (RF), and the neural network (NN) we used for
MNIST. Note that the accuracy of the trained classifiers used here is
of no concern in this evaluation. Indeed, our aim is to see how well
FastDBM approximates a ground-truth DBM, regardless of what
this DBM shows. If the approximation is good, FastDBM can be
used instead of the original DBM, being however much faster.
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Figure 5: Comparison between ground-truth DBM and our binary split method for three datasets and six classifiers, MNIST dataset.

We created ground-truth DBMs at a resolution of n = 400 pixels
squared by the (t-SNE, NNInv) and (UMAP, NNInv) pairs which
are among the best combination for DBM computation (see again
Sec. 2). Figure 5 shows, for the MNIST, FashionMNIST, and HAR
datasets, the ground-truth DBMs, created with (t-SNE, NNInv); the
DBMs created by our binary splitting; and the pixel-wise differences
between the ground-truth and FastDBM encoded by red dots as in
Fig. 2. In the difference images, we also show the training points
used to construct the ground-truth DBM as green dots. Our method
yields visually almost identical results in labeling as the ground-truth
– there are only few red points in the difference images. This occurs
consistently for quite different DBMs, e.g., the smooth decision-
zone ones created for LR, NN, SVM, and KNN, but also the far
noisier one created for DT, and the overall low-confidence one
created for RF. Additional results for all other tested combinations,
present in the supplementary material, confirm this observation.

Implementation: Our FastDBM method is implemented in Python
using the sklearn package and runs fully on the CPU. The full
source code, including all datasets, ground-truth DBM computation
methods, and experiments presented here, is publicly available for
usage and replication purposes [GWT24].

5. Discussion and conclusion

We have presented FastDBM, a set of techniques that accelerate
the computation of decision boundary maps (DBMs). FastDBM
computes DBMs that are visually almost identical to ground-truth
ones with a speed-up of over one order of magnitude. This allows
the further deployment of such visualizations in interactive visual
analytics workflows for classifier engineering. Our method variants
offer trade-offs between the approximation of the visualized clas-
sifier labels and classifier confidence, and depend on a single free
parameter for which we provide a good preset value. Importantly,
our method can accelerate any current DBM computation technique,
and can be applied to any trained classifier model, as it only re-
quires access to the inverse projection function this technique uses,
respectively to the black-box execution of the trained model.

In future work, we plan to further reduce the approximation errors
of FastDBM while increasing its speed by more advanced sampling
and interpolation schemes as well as GPU execution. In parallel,
we are working on using FastDBM to extend visual active learning
approaches [BTF18, BGTF21] such as to better support users in
pseudo-labeling tasks for classifier engineering.

c© 2024 The Authors.
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