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Abstract

Visual analytics (VA) is an emerging science at the crossroads of data and information visualization, graphics, data min-
ing, and knowledge representation, with many successful applications in engineering, business and finance, security, geo-
sciences, and e-governance and health. Tools using visualization, data mining, and data analysis are also prominently
present in a different field: software maintenance. However, an integrated VA is relatively new for this field. In this paper,
we discuss the specific challenges and particularities of applying VA in software engineering, highlight the added value of
a VA approach, as distilled by us from several large-scale software engineering industrial projects.

1. Introduction

The modern IT industry is confronted with large, complex soft-
ware and increased pressure on delivery time and product qual-
ity. Studies over 15 years estimate that 80% of the software costs
are maintenance, of which 40% goes into program understand-
ing [Sta84, Cor99].

Visual analytics (VA) integrates techniques from graphics, vi-
sualization, interaction, data analysis, and data mining to support
reasoning and sensemaking for complex problem solving in engi-
neering, finances, security, and geosciences [WT04,TCO5]. These
fields share many similarities with software maintenance in terms
of data (databases with millions of records, highly structured text,
and graphs), tasks (making sense of data by hypothesis creation,
refinement, and validation), and fools (combined analysis and vi-
sualization).

However, software visualization (SV) is still only marginally
accepted in the industry. Explanations include the limited matu-
rity, learning ease, and integration of SV tools [Kos03]. Promi-
nent researchers have voiced concerns over this situation [Rei05,
CTMO3], which echoes similar concerns in the field of data visu-
alization [Lor04].

In this paper, we discuss the reasons for limited penetration of
SV tools in the IT industry. We argue that similarities in data,
tasks, and tools between VA and SV advocate for a VA approach
to software understanding in maintenance. We support this claim
by analyzing several industrial maintenance projects involving
SV tools we took part in, and use this insight to better under-
stand the acceptance challenges of SV. In contrast to other studies
on SV tool acceptance, we use an approach based on value and
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waste as perceived by stakeholders, inspired from the lean devel-
opment philosophy [PP06].

This paper is structured as follows. Section 2 provides a back-
ground on software analysis and visualization. Section 3 intro-
duces our value-based model for SV for three user groups: devel-
opers, management, and consultants. Section 4 discusses several
industrial projects in which SV was used, and discusses relations
between VA and software analysis and visualization. Section 5
discusses observed challenges to SV adoption and indicates pos-
sible ways forward. Section 6 concludes the paper.

2. Background

Two types of techniques are present in software understand-
ing for maintenance. Analysis tools extract facts from software,
e.g. syntax trees, dependency graphs, and execution informa-
tion [BF03, TV08a, LHMO03, BPMO04]. Facts can be refined into
quality metrics, e.g. code readability, complexity, cohesion, and
coupling [LMO6], or higher-level artifacts like design patterns or
code smells [Kos03, TWSM94]. Visualization tools present these
facts using techniques such as data-annotated graphs [TWSM94,
Lan04,LKGO07,TMRO02], table lenses and treemaps [TV08a], and
metric-annotated code [ESS92]. An overview of SV is given
by [Die07].

Most studies on the challenges and difficulties of SV adoption
for program understanding in the industry focus on specific SV
tools or techniques [DD06, HDS02, EDO6]. In this paper, we are
interested in understanding the adoption challenges of SV as an
integral technique, at equal level with other technologies such as
software analysis or testing.
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3. Value Model

In the past seven years, we participated in over 20 industry
projects involving SV and analysis tools for software understand-
ing in maintenance in projects of tens of thousands up to 17 mil-
lion lines of code; teams of 10 up to 600 developers; different
programming languages, platforms, and architectures; and devel-
opment methods from agile and extreme programming to strictly
standardized workflows. In nearly all cases, we observed moder-
ate to strong skepticism on SV. Technical issues such as tool scal-
ability, limited visual clutter, details on demand, customizability
were not the main blockers [SOT08, SOT09]. To quote a senior
project manager, the central issue was "what does a SV tool bring
as measurable added value to me?" Precisely the same issue was
recently raised for the adoption of software static analysis by a
major tool vendor [BBC*10].

We try to answer this question by a different approach from
typical tool evaluations. We formulate SV adoption as a lean de-
velopment problem [PP06]: To be accepted, SV must ultimately
yield value and/or diminish waste as perceived by its users.

Obviously, different user groups have different definitions of
value. In our work, we have observed three such groups:

1. Technical users focus mainly on creating a software product,
and include developers, designers, testers, and architects;

2. Managers focus on the integral execution of projects over long
periods of time;

3. Consultants work over relatively short periods of time and as-
sist in integral strategic decision making.

We argue that a VA approach is highly beneficial to increas-
ing value and decreasing waste for all these user groups, but in
different ways. This point is detailed next.

4. Case Studies

To refine our understanding of the challenges and opportunities of
VA in software maintenance, we have gathered insight from three
types of studies over a period of several years. Each study type fo-
cuses on a user type (Sec. 3), tries to elicit perceived value drivers
and translates these to tool and process requirements. These stud-
ies are presented next.

4.1. User group 1: Technical stakeholders

SV tools in corrective maintenance: Four different SV tools
were considered: CodePro Analytix [Ins09], Ispace [I. 09],
Sonar] [Hel09], and SolidSX [Sol10] (Fig. 1). These tools in-
tegrate with IDEs to support corrective maintenance (debug-
ging) by hierarchy-and-dependency visualizations linked with
code views. The tools were pre-selected to meet features deemed
desirable by developers, as identified by earlier studies, e.g. scal-
ability, ease of use, IDE integration, quick learning, and robust-
ness [SOT08,SOT09], and also to have a similar look and feel. 29
professional developers used the tools to debug a known issue in
a Java Mobile application of 10000 lines.

From the collected quantitative and qualitative feed-
back [SOT10], as well as silent user observation, we gathered the
following points:

e all users (except one) ranked the degree of IDE integration
as the most important tool effectiveness aspect. Tools with
stronger integration, e.g. easy search/selection-based naviga-
tion across the dependency and code views, scored better;

e all users required "what-if” scenario support, e.g. have the tool
suggest code areas affected by a certain modification;

e all users required multiple views to correlate code text, struc-
ture, and execution;

In particular, a seamless integration between analysis (e.g. de-
bugging and static source code analysis) and visualization was
found absolutely crucial. Similar statements are made by other
researchers in SV, e.g. [TH02,Kos03, Sto98, CTM03,SMO5]. Yet,
most existing SV tools lack such integration, which we believe to
be a major blocker for their wider adoption.

Program structure comprehension: Ten developers used two
SV tools (Tulip [Aub09] and SolidSX [Sol10]) for program
structure-and-dependency visualization to answer modularity-
related questions on several large C/C++ systems (bison, Mozilla
Firefox, and the C++ parser from [HERT(09]). Both SV tools
score strongly on scalability, speed, robustness, ease of use, inter-
active navigation, and query facilities. Data extraction was done
by a separate static analysis tool [HERT09]. Although the tasks
and data were different, user feedback matched insight from the
previous study. Multiple views and easy cross-view navigation
were highly appreciated. The lack of integration between the
static analysis and visualization was named as the most important
drawback, which seriously reduced the perceived added value of
the visualization.

4.2. User group 2: Project leading and management

Build process optimization: A major hardware company has an
embedded C system of over 17 million lines. In maintenance,
even small changes to some headers can cause huge build (com-
pilation) times. The system is developed by 600 programmers
worldwide, so build bottlenecks significantly delay testing and ul-
timately product releases. The project managers needed to answer
the following questions [TVO8b]:

e what is the exact model of the build impact, i.e. how can one
predict the build cost (time) given a certain code change? This
is a typical *what if” question (what if I modify this file?)

e how is the build cost spread over the entire system? Which are
the main build bottlenecks, now and in the future?

We approached these questions following a VA approach. First,

we measured actual build time upon changing each header. An-

alyzing this data showed that 80% of the headers have small
impacts, so build bottlenecks indeed exist (Fig. 2). Next, we
designed a build cost and build impact model. We first hy-
pothesized that a header’s build impact equals the number of

sources which use it directly or indirectly, and computed this im-

pact using a file dependency graph extracted with static analysis

tools [Spi09,TV08a]. Comparison with actual build times showed
that this model is close, but not exact, to measured build times

(see outliers in Fig. 3. We next refined our hypothesis: a header’s

impact is the sum of the build costs of all sources using it directly

or not. This compound model matched measured costs including

outliers. Further measurements revealed that the build time of a

(© The Eurographics Association 2010.
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Figure 1: Visual tools for corrective maintenance (Sec. 4.1). From left to right: CodePro Analytix [Ins09], Ispace [I. 09],

SonarJ [Hel09], and SolidSX [Soll0]
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Figure 2: Build impact: actual measurements (top), simple model
(middle), compound model (bottom). Headers (x axis entries) are
sorted on increasing build impact in the simple model. The y axis
shows build time

source is dominated by pure file access, and not file sizes, which
supports our compound model.
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Figure 3: Build analysis visual tool (Sec. 4.2)
To answer the posed questions, we designed an interactive
tool [TVOS8b] that integrates our build cost model with several

visualizations (Fig. 3). The archictecture view shows the project
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hierarchy with subsystems colored by total build time. For a se-
lected subsystem, the cost/impact view uses a table lens to show
metrics for all files in that subsystem: the Ple name (A), impact
(B), simple cost (C), and compound cost (D). Sorting this table
quickly helps project managers to quickly locate high impact files
to e.g. plan changes and selectively grant change access to such
files. Sorting the table on build impact times change frequency
(E) further allows finding if high impact files are potential build
bottlenecks in the future. System headers, for instance, have very
high impact, but zero change frequency, so are thus eliminated
from true build bottlenecks.

4.3. User group 3: Consultants

Product and process assessment: A major automotive company
developed an embedded software stack of 3.5 million lines of
code in 15 releases over 6 years with three developer teams in
Western Europe, Eastern Europe, and Asia. Towards the end, it
was seen that the project could not be finished on schedule and
that new features were hard to introduce. The management was
not sure what went wrong. The main questions were: was the fail-
ure caused by bad architecture, coding, or management; and how
to follow up - start from scratch or redesign the existing code. An
external consultant team performed a post-mortem analysis. This
team had only one week to deliver its findings and only the code
repository as information source [VT09a].

The approach involved several steps of data acquisition, hy-
pothesis creation, refinement, and (in)validation, and result ag-
gregation and presentation (see Fig. 4). First, we mined change
requests (CRs), commit authors, static quality metrics, and call
and dependency graphs from the code repository into a SQL fact
database (1). Next, we examined the distribution of CRs over
project structure. Several folders were with many of open CRs
emerged (red treemap cells in Fig. 4 (2)). These correlate quite
well with the team structure: the 'red’ team owns most CRs (3).
To further see if this is a problem, we looked at the CR distri-
bution over files over time. In Fig. 4 (4), files are shown as gray
lines vertically stacked on age (oldest at bottom), and CRs are red
dots (the same layout is used e.g. in [VTO9b]). The gray area’s
shape shows almost no project size increase in the second project
half, but many red dots over al/l files in this phase. These are CRs
involving old files that were never closed. When seeing these im-
ages, the managers recalled that the ‘red’ team (located in Asia)
had communication problems with the European teams, and ac-
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knowledged that it was a mistake to assign so many CRs to this
team.

We next analyzed the evolution of various quality metrics: fan-
in, fan-out, number of functions and function calls, and average
and total McCabe complexity. The graphs in (5) show that these
metrics have a slow or no increase in the second project half.
Hence, the missed deadlines were not caused by code size or
complexity explosion. Yet, the average complexity per function is
high, which implies difficult testing. This was further confirmed
by the project leader.

Finally, to identify possible refactoring problems, we analyzed
the project structure. Fig. 4 (6) shows disallowed dependencies,
i.e. modules that interact bypassing interfaces. Fig. 4 (7) shows
modules related by mutual calls, which violate the product’s de-
sired strict architectural layering. These two views suggest diffi-
cult step-by-step refactoring and also difficult unit testing. Again,
these findings were confirmed by the project leaders.

5. Discussion

During the above studies, we gathered insight both implicitly
(our own observations) and also by explicitly asking stakehold-
ers about what they liked (or not) in the proposed SV tools. Our
overall observations are discussed below (see also Table 1).

5.1. Reasoning and sensemaking patterns

We observed several differences in the way of using software
visualizations to understand software for our three stakeholder

types.

Technical users reason mainly about technical software artifacts,
e.g. bugs, test failures, calls, interfaces, and dependencies. Most
SV and software analysis tools are built around such artifacts.
However, this does not mean that SV is easily adopted by techni-
cal users. The main adoption blocker we found is, as mentioned
in Sec. 4.1, integration of tools across in workflows. Although
analysis tools are increasingly integrated with development tools,
e.g. the highly successful testing, optimization, and quality mea-
surement plug-ins in Visual Studio, KDevelop, and Eclipse, visu-
alization tools lag behind. Unfortunately, this means that highly
scalable and successful techniques such as treemaps, hierarchi-
cal edge bundles, pixel charts, and parallel coordinates are ulti-
mately not valued to their full potential by users. We also noticed
that many software analysis tools are designed to work in batch
(black-box) mode. This does not support what-if, sensemaking,
scenarios. We strongly advocate a finer grained interaction where
users can easily change the queries submitted to such tools so as to
directly support their questions [TV08a]. This poses several chal-
lenges. Our discussions with several static analysis tool builders
indicated resistance to *opening up’ the internals of their engines,
as this is seen as disclosing valuable commercial assets (for com-
mercial tool makers) or involving too much effort (for OSS tool
makers).

Management and project leaders reason about a mix of tech-
nical (product) and non-technical (process) artifacts. Key to their
sensemaking loop is mining information from a wide variety of
sources, e.g. team activity, project structure, change requests, and

architecture quality metrics. Secondly, in all our studies, manage-
ment stressed the importance of SV and analysis tools to handle
large data amounts over long time periods. SV tools that support
evolution analysis are essential for this role. A third key require-
ment was the ability to quickly and easily change viewpoints, e.g.
select which variables are to be tested for correlation.

Several challenges for current SV tools exist here. First
and foremost, software evolution visualization tools, albeit well
known in research, still have to become scalable, customizable,
and robust products as demanded by the industry. Data min-
ing from source control management (SCM) systems, e.g. CVS,
SVN, ClearCase, JIt, CM/Synergy, and SourceSafe, is challeng-
ing. Such systems were designed to perform file check-ins and
check-outs, not massive scale data querying, so they lack the
uniform access protocols, speed, and robustness needed for data
mining. In earlier research [VT09b] and the studies in Secs. 4.2
and 4.3, we noticed that roughly 30% of the repository-wide
data mining requests were aborted by CVS, Subversion, and
CM/Synergy servers. A second problem regards static analysis
of code in repositories. This is very hard to automate, as analysis
tools need to be configured for specific build processes, makefile
types, and languages. Yet, unless this aim is reached, most of the
key quality metrics and dependencies in Secs. 4.2 and 4.3 cannot
be obtained without manual effort, so the perceived value of such
analyses decreases. Attempts have been done to alleviate such
problems by adding analysis tools at the SCM server side, e.g. in
the SoftFab testing framework [SGL*06]. Discussions with the
SoftFab developers outlined that this effort was quite high (over
2 years) and had to be redone for new projects requiring different
analysis tools, which diminished the perceived value and ampli-
fied the feeling of waste.

Consultants reason about the widest, and most heterogeneous,
set of artifacts: technical, product, process, risk, cost, and busi-
ness strategy. Given their high hourly tariffs, data mining, analy-
sis, and presentation must be done in very short timeframes, i.e.
days or even hours [VT09a]. In contrast to managers and techni-
cal users, consultants often deal with non-technical stakeholders
(upper management) so they favor simple, widely familiar visu-
alizations such as business graphics. Also, consultants use visu-
alizations to convey a message to other stakeholders, whereas de-
velopers and project managers are both visualization users and
stakeholders (Fig. 4 (8)). As such, we noticed that visualization
usability factors are much less important for SV acceptance by
the final stakeholders for consultants.

5.2. General findings

Apart from the above differences in working patterns with SV
tools of our three user groups, we note several common aspects,
also typical for VA applications. These findings were distilled
from the three types of studies presented in Sec. 4.

Integration: All studies showed the need of integration of anal-
ysis, knowledge representation, and visualization in coherent so-
lutions (tools). It cannot be stressed often enough that the lack of
integration is a main cause of the limited impact of SV tools in
the software industry.

Value reflection: A SV tool must reflect as directly as possi-

(© The Eurographics Association 2010.
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Technical

Management
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artifacts

code, design, use cases
(mainly product)

plans, schedules, quality models and metrics,
impact dependencies
(product and process)

blockers, risks, cost, schedule,
standards, business rules
(mainly process)

input heterogeneity

relatively low

medium

very high

details on demand;
quick for precise tasks

correlate many aspects
easily define custom quality models
support what-if scenarios

perceived quickly design, debug, test, quickly check product plan conformance deliver answers to integral problems
value optimize, learn new code discover hidden risks upfront communicate them to stakeholders quickly and clearly
value task execution time analysis speed and quality (how quickly and integral solution time (how quickly
measures (how quickly I can do my work) precisely I can analyze a large, long, project) can I give a global answer to customers)
visualizations detailed code text, structure, dependencies evolution plots of aggregated product and simple business graphics (charts,

runtime metric tables (performance, bugs) process metrics vs product structure scattered plots, parallel coordinates)
key tool seamless integration with ability to handle large repositories simple visualizations, one aspect per view
requirements existing workflow and toolchain; freely navigate across levels of details highly adaptable to new data sources

very fast customization

adoption resi
points

stance limited scalability, robustness, speed

hard to integrate, learn, use

limited scalability and customizability
limited repository support
hard to customize data analyses

complex visualizations or interaction
hard to customize on-the-fly
expensive or restrictive licenses

Table 1: Relevant characteristics of SV tools for different stakeholder types in software maintenance

ble the artifacts underlying the value system of its intended user
group, e.g. code-level artifacts for developers, project metrics for
managers, and combined process and product metrics for consul-
tants. Failing to do so will significantly decrease a visualization’s
perceived value, making it a "nice to have’ item, or even a waste
of time.

see quick returns for their invested effort and are less willing to
spend time to tweak tools. Project managers appear to be the most
willing to invest more effort and time into SV tools until obtaining
returns, as they have much longer time frames over which value
can be returned.

L . 6. Conclusions
Value vs cost: Visualizations must demonstrably bring value

within the cost range acceptable to their user groups. Developers
appear to be the most willing to try and tweak new techniques, but
also swiftly discard (visual) tools when these create effort without
quickly visible benefits. Consultants have even higher demands to

In this paper, we have discussed the challenges and opportu-
nities of using visual analytics techniques for software process
and product understanding in software maintenance. Such tech-
niques, i.e. raw data collection, hypothesis creation, refinement,

(© The Eurographics Association 2010.
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and (in)validation, map perfectly to the problems and challenges
of software understanding. We have presented several industrial
case studies in which we observed, or followed, a VA way of
working’, as well as several challenges to current software vi-
sualizations. Overall, these challenges mix technical issues with
less-than-optimal matches of features with the value drivers of
their target user groups. We do not claim universality for our ob-
servations. Still, the size and variety of our sample set makes us
to consider these findings as very relevant.

Wider adoption of VA principles in this industry has huge po-
tentials. IT professionals are well aware of the high cost of pro-
gram understanding [Cor99]. Yet, for increased adoption, soft-
ware visualization designers should focus more on visualization-
analysis integration and designing simple visual metaphors that
convey precisely and directly the value drivers and way of work-
ing of specific user groups. If such aspects are considered, we are
convinced that VA will make a significant impact to the software
industry.
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