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Abstract

We present a new approach aimed at understanding the structure of connections in edge-bundling layouts. We
combine the advantages of edge bundles with a bundle-centric simplified visual representation of a graph’s struc-
ture. For this, we first compute a hierarchical edge clustering of a given graph layout which groups similar edges
together. Next, we render clusters at a user-selected level of detail using a new image-based technique that com-
bines distance-based splatting and shape skeletonization. The overall result displays a given graph as a small set
of overlapping shaded edge bundles. Luminance, saturation, hue, and shading encode edge density, edge types,
and edge similarity. Finally, we add brushing and a new type of semantic lens to help navigation where local
structures overlap. We illustrate the proposed method on several real-world graph datasets.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation 1.3.5 [Computer Graphics]: Picture/Image Generation—Computational

Geometry and Object Modeling

1. Introduction

Graphs are used to represent entity-relationship datasets in
many application areas, such as network analysis, software
understanding, life sciences, and the world wide web. Many
visualization methods exist for large graphs, such as scalable
node-link diagrams, matrix plots [VHO3], and combinations
of the two [HF07]. Node-link diagrams are often considered
more intuitive, and are arguably the most popular [GFCO04].

However, node-link layouts can produce significant visual
clutter, which shows up as overlapping edges or nodes. Clut-
ter impairs tasks such as finding the nodes that a given edge
(or edge set) connect, and at a higher level, understanding the
coarse-scale graph structure.

Several approaches exist to reduce clutter in graph visual-
izations for the above, and similar, tasks. First, the graph can
be simplified prior to visualization, e.g. by extracting struc-
tures such as spanning trees or strongly connected compo-
nents. Secondly, the layout of nodes and/or edges can be ad-
justed. Both methods can be applied globally, based on clut-
ter estimation metrics, or locally, based e.g. on user interac-
tion [WCGO03, WCO05].

When node positions encode information, they should
not be changed. Also, clutter is related most often to edge
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crossings [Pur97, HMMOO]. Recent research targets clutter
reduction and structure emphasis by geometrically group-
ing, or bundling, edges that follow close paths. Edge-
bundling layouts (EBLs) exist for general graphs [CZQ™08,
HvW09, PXY *05], circular layouts [GK06], hierarchical di-
graphs [Hol06], and parallel coordinates [MMO08,ZYQ*08]

In this paper, we approach the goal of visualizing the
coarse-scale structure of an EBL and clarifying edge clutter
caused by bundle overlaps. Given a bundling layout, which
we do not change, we hierarchically cluster edges seen as
similar from the viewpoint of the layout and, optionally, un-
derlying attribute data. Next, we construct simple shapes that
encode both geometric attributes of clusters (form, position,
topology) and underlying edge data (spatial density and at-
tributes). We render these shapes with an image-based tech-
nique that maps their attributes to shading and color on one or
more scales. While keeping EBL advantages, our simplified
visualization clarifies coarse-scale bundle overlaps by explic-
itly drawing each bundle as a separate shape, and assists the
task of finding nodes connected by a bundle. The simplifi-
cation level is user controlled. Finally, we add interaction to
further clarify overlaps in desired areas and to offer details
on demand.
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This paper is structured as follows. Section 2 reviews re-
lated methods. Section 3 details our technique. Section 4
presents several results. Section 5 discusses our proposal.
Section 6 concludes the paper with future work directions.

2. Related work

Reducing edge clutter can be approached by different types
of methods, as follows.

1. Edge bundling layouts (EBLs) spatially group edges ¢; € E
for a graph G(V,E) using a metric d(e;,e;) that models
closeness in either graph space, layout space, or both. Edges
ei = {pi j}?]: 1» where N = |¢;|, are discretized into points
pij which are positioned so as to minimize d. In hierarchi-
cal edge bundles (HEBs) d reflects closeness of edge end-
nodes in a hierarchy associated with G [Hol06]. In force-
directed bundling (FDB), d models geometric proximity of
edge points p;;, and is minimized by a self-organizing ap-
proach [HYWO09]. Flow maps hierarchically cluster nodes
and edges in a flow graph and yield bundles that empha-
size source-sink routes [PXY*05]. Geometry-based edge
bundling groups edges using a control mesh generated by
edge clustering [CZQ*08]. Parallel coordinates use a metric
d that encodes curvature and geometric distance to bundle
edges [ZYQ™08].

Overall, EBLs trade clutter for overlap. Similar edges
are routed close to, or atop of, each other, so less indi-
vidual edges may be visible. Coarse graph structure be-
comes visible, but visually disambiguating close or over-
lapping bundles, i.e. seeing nodes these connect, can be
hard [GK06, HERT09]. Bundles are typically implicit: it is
hard to exactly say which are the main bundles in an EBL
and what sub-graphs these relate, since bundles do not have
a distinct visual identity.

2. Image-based techniques avoid edge clutter by not explic-
itly rendering edges. Graph splatting convolves nodes and
(optionally) edges of a node-link layout with a Gaussian fil-
ter [vLdLO3] into a height or intensity map. Dense edge re-
gions, which can cause clutter in node-link renderings, show
up as compact high-value splats. The filter width controls the
scale at which overlap is perceived. However producing sim-
plified views, splatting makes it hard to follow edges. Also,
the filter width needs careful tuning to avoid creating discon-
nected, thus misleading, splats.

Shaded cushions are effective for showing hierar-
chies, and have been used for rectangular and Voronoi
treemaps [VWvdW99,BDLO05] and icicle plots and edge bun-
dles [TAO8]. However, we are not aware of cushions and
EBL combinations for more general graphs.

3. Graph simplification techniques replace sub-structures by
simpler ones, or wholly eliminate them, if not essential for
the task at hand [AvHKO06, ACJMO03, vHWOS]. This reduces
overlap and also emphasizes the overall graph structure.
Graph clustering identifies similar sub-structures which can

next be simplified. Simplification is not restricted to a unique
hierarchy. For example, GrouseFlocks allows users to inter-
actively explore a set of alternative hierarchical simplifica-
tions on large graphs, as well as adapt the simplification
level, or ’cut’ in the hierarchy, dynamically to parts of the
graph [AMAOS]. A recent review of clustering techniques is
given in [Sch07]. In this paper, we use edge clustering, a sub-
class of graph clustering, to identify and separate edge bun-
dles. However, we do not explicitly simplify the input graph.

3. Method

We aim to simplify a bundled edge visualization by empha-
sizing the coarse-level bundle structure to help users to visu-
ally trace such bundles to the nodes they connect. For this, we
make bundles a first-class visualization object using splatting
and shaded cushions, hence the name of our method: Image-

Based Edge Bundles (IBEB). We use a six-step approach, as

follows (see also Fig. 1).

1. We apply a given edge bundling layout (Sec. 3.1).

2. We explicitly group laid out edges into a cluster hierar-
chy, using a distance that reflects edge positions and data
attributes (Sec. 3.2).

3. We choose a set of clusters from the hierarchy at a user-
selected level of detail. For each cluster, we create a com-
pact shape around its edges (Sec. 3.3).

4. For each shape, we construct a cushion-like shading pro-
file that also encodes data attributes (Sec. 3.4).

5. We render all shapes in a suitable order to minimize oc-
clusion (Sec. 3.5).

6. We add a new semantic lens method to help visual explo-
ration (Sec. 3.6).

These steps are detailed next.

3.1. Layout

We start with an edge bundling layout L : G — R? for the
input graph G(V,E). The next steps (Sec. 3.2 and further)
are fully independent on this layout. The only assumptions
made are that

1. each edge ¢; € E is mapped to a set of points p;; € R?;
different edges can have different amounts of points;
2. the layout does create edge bundles;

As an example, we use the HEB layout [Hol06]. Yet, we
use absolutely no hierarchical information beyond the layout.
Other bundling layouts can be readily used (Sec. 4).

3.2. Clustering

As a pre-processing step to produce our simplified vi-
sualization, we explicitly group related edges. Each
edge ¢ = {pj}lji1 is modeled as a feature vector v =

(X110 XN YN -ty € RPVAT . The first 2N ele-
ments of v are regularly sampled points along the polyline

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.



A. Telea & O. Ersoy / Image-Based Edge Bundles

input
graph

edge bundle layout L clusters C;

[{
= 'Eﬁa@

interaction

splats S; shaded images |;

Figure 1: Image-based edge bundle (IBEB) visualization pipeline

{pj}. N should be large enough to capture complex edge
shapes. N € [50,100] gives good results on different EBLs
and datasets, in line with [HvW09, Hol06, GK06]. Some lay-
outs do not encode semantic edge similarity into positions
(assumption 2, Sec. 3.1): The HEB groups edges solely on
their ends’ hierarchy position; the FDB uses solely edge
points’ positions. In some cases, e.g. visualizing a software
system graph, we want to distinguish edge types (e.g. inher-
itance, call, uses) [HERT09]. To separate edges of different
typest € N, we add von 41 =t. Multiple type dimensions can
be encoded in #q,..., 7, although in our experiments so far
we have used a single type component (7' = 1).

Next, we cluster all edges e; with a well-known cluster-
ing framework for gene data [HINMO4]. Intuitively, we re-
place genes by our vectors v. We have tested several algo-
rithms: Hierarchical bottom-up agglomerative (HBA) using
full, centroid, single, and average linkage; and k-means clus-
tering, both with Euclidean and statistical correlation (Pear-
son, Spearman’s rank, Kendall’s t) distances. HBA with
average or full linkage and Euclidean distance d(v,w) =
vaflT [|lvi —wil|? give the best results, i.e. clusters with edges
being close both geometrically and type-wise. To keep edges
of different types separated, we bias ¢; € v with a large value
k = max, . cg Zf’zl d(e,e’). Similar techniques are used to
handle gene components with different semantics, which
also allows users to set weights to the different feature vec-
tor components [HINMO4]. However, mixing positions and
types in one distance metric could in some cases lead to un-
desired results, e.g. having one kind of data dominate the
other, depending on the values of N, T, and value ranges of
position and type attributes. If we want to allow that only
edges of the same type get clustered together, we define
dvw) = YN |lvi —wil|* if v; = wj,Vj € [N+ 1,N+T],
else d(v,w) = k. Implementing this in [HINMO4] is straight-
forward.

HBA delivers a dendrogram T = {C} with the edge set E
as leaves and distances d(C) decreasing from root to leaves.
We now select a partition P = {C;} of E so that ¢, c,ep = @
and Uc,ep = E. For example, a similarity-based P contains
all clusters with a d(C) < dyser below a user-given value.
Larger dyser values give more numerous, and more similar,
clusters. Smaller dyser values give less, more dissimilar, clus-
ters. Other methods can be used, e.g. select P for a given
cluster count.
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We stress that the clustering method choice is not the core
of this paper, but only a tool to create explicit edge groups.
Any clustering can be used, as long as it groups edges log-
ically related from an application viewpoint and spatially
close. For example, the ink-minimizing clustering in [GK06]
is a good option if the aim is to generate tight bundles which
never cross and use a circular layout. The hierarchical clus-
tering in [CZCEOQ8], although proposed for tensor fibers, may
also deliver good results. Also, it is very important to note
that our partition is just a single level, or ’cut’, in the graph,
which we subsequently visualize.

3.3. Shape construction

Given a user-selected partition P (Sec. 3.2), we now con-
struct a shape to visualize each edge set C = {¢;} € P. Due
to bundling and clustering, e; typically follow a small set of
directions (paths).

We use splatting to show bundles in a compact way
(Fig. 3). We convolve each edge ¢ € C with a kernel &
which linearly decreases from a maximum K to zero at a
distance & from the edge, and accumulate results, similar
to [VLdLO3]. For this, we sample k in a 64x64 pixels al-
pha texture and additively blend textured polygons along all
pi € e € C (GL_SRC_ALPHA, GI_ONE). We tried both ra-
dial and linear profiles for k& (Fig. 3 bottom-right). Radial
profiles are splatted centered at p;. Linear profiles are splat-
ted on two polygon strips built by offsetting edge segmenst
pipi+1 in vertex normal directions n;,—n; with §, like stream
ribbons in flow visualization. Linear profiles are better: they
allow freely choosing the edge resolution (number of p;) and
splat size 8, while these values must be carefully tuned for
radial profiles to avoid splatting gaps.

N —

Figure 3: Splatting algorithm details

Splatting yields an edge density D(x) =}, ,e¢ ccc k(p—x)
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a) edge layout

b) splatted image

c) binary shape

Figure 2: Shape construction. Edge bundles (a) are splatted into a density image (b), next thresholded into a binary shape (c).

(Fig. 2 b). Next, we threshold D to obtain a binary shape /
(Fig. 2 ¢)

[ 1, Dx)>n=
’(x)—{ 0, D(x)<rt M

For illustration simplicity, Fig. 2 shows a single cluster (the
tree root). In practice, we create one shape /; for each cluster
C; in the user-selected partition P. Each /; is, by construction,
compact, and surrounds the edge bundle(s) in C;, with a max-
imal offset 8(K — t)/K. In practice, we always set T = 0.7K
and K = 0.2. § is user-controlled, ranging between 1% and
5% of the viewport (see Sec. 3.4).

Additionally, we modulate § to thin shapes half-way be-
tween their ends. For this, we use, at each point p;,i € [1,N],
i—N/2

N/2
§ at their ends to (1 —¢€)d in the middle. Good values for €
range around 0.5, which was used for the examples in this pa-
per. Shrinking reduces bundle overlaps, as we shall see next
in Sec. 3.5.

a value §; = & (S‘ ’+ 1- e), i.e. shrink shapes from

3.4. Shading

For each binary image / created from clustered edge bun-
dles, we now create a shaded shape that compactly conveys
the underlying bundle structure Following the original bun-
dle metaphor, we want to encode several aspects in a shape:

e bundling: The shape should suggest the branching struc-
ture of a set of bundled curves in a simplified way;

e structure: Finer-level groups of edges, or even individual
edges, should be visible;

e density: High edge-density regions should be visible.
These are cues for strong couplings, relevant to many ap-
plications;

e data: The shape should be able to encode bundle at-
tributes, e.g. edge types.

For this, we generalize rectangular shaded cush-
ions [VWvdW99] to our more complex shapes /, as follows.
We compute the skeleton Sk(7) of each shape 7. Sk(7) is a 1D
structure locally centered with respect to the shape’s bound-

Style S a
Convex 1-H 1
Density-luminance | 1—HD | 1
Density-saturation | HD 1

Cores H 1-H°
Outline 0 1-HD

Table 1: Shape shading styles (see Secs. 3.4,3.5)

ary o/
Sk(I) ={xel]3pedl,qcdl,p#q,|lx—pl = |x—ql}

Next, we compute a shading profile

H= % {min (%7 1) + max (1 — gggg 70)} 2)

where DT (9I) and DT (Sk) are the distance transforms of the
boundary dI and skeleton Sk respectively. We compute both
DT and Sk using the implementation described in [TvWO02].
For any shape topology or geometry, H smoothly varies be-
tween 0 on 9 and 1 on Sk(I), as shown for a different ap-
plication in [RTO02]. Figure 4 b,c show Sk and H (the latter
on a blue-to-red colormap) of the shape given by splatting
Fig. 4 a.

We now set the hue, saturation, value, and transparency
h,s,v,a at each pixel of I using the profile H, splatting den-
sity D (Sec. 3.3), and edge types, following the aims listed
earlier in this section. We set v = H*, with o = 0.5. This
darkens shapes close to their border and brightens them close
to the skeleton. The factor 0.5 smooths out H (Eqn. 2), cre-
ating a look akin to classical shaded cushions [vWvdW99].
Next, we map edge types to hue 4. Two options were ex-
plored: each shape has a different hue, or hues map edge
types. The second option is relevant when clusters contain
only same-type edges (Sec. 3.2). Finally, we use s and a to
create different visual styles (Table 1).

The convex style renders opaque shapes dark and sat-
urated at the border and bright and white in the middle
(Fig. 4 d). In contrast to Phong shading H as a true height
signal, as in [vWvdW99, BHVWO00], this style emphasizes
the skeletal structure (branching pattern). We see now the
effect of the splat size & (Sec. 3.3). Higher values yield

(© 2010 The Author(s)
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d) convex shading
(large splat size)

e) convex shading
(small splat size)

f) convex shading
(thin shapes)

Figure 4: Shading pipeline (Sec. 3.4). Edges in a cluster (a) and their binary shape I and skeleton Sk (b) and shading profile H
(c¢). Convex shading with shape thickness as function of the splat size (d,e) and shading profile thresholding (f)

thicker, simpler, shapes (Fig. 4 d). Smaller values yield thin-
ner shapes with individual edges better visible (Fig. 4 e). We
can further emphasize a bundle’s branching structure by us-
ing max [0, (H — Hypin)/(1 — Hpin)] instead of H in Table 1.
H'’s isolines continuously change from the shape’s bound-
ary to its skeleton, being halfway at H = 0.5 (see Fig. 4 ¢
and [RTO02]). Hy,;;, = 0.5 yields shapes which are thinner and
also further emphasize the bundle structure, as in Fig. 4 f.

The last four shading styles in Table 1 are effective when
visualizing several clusters, as discussed next.

3.5. Rendering

For a given clustering partition P, we now render one shape
I for each cluster in back to front order, i.e. sorted on shape
size (foreground pixel count |/]). Placing small shapes in
front of larger ones reduces occlusions and makes small bun-
dles visible.

Figure 5 illustrates this. Image (a) shows a dependency
graph of 419 nodes and 988 relations extracted from a C#
software system, laid out with the HEB. Nodes are .NET as-
semblies, packages, classes, and methods. Several bundles
show up, but it is hard to determine (even with interaction)
which subsystems they connect. Overlaps make it hard to vi-
sually follow a bundle end-to-end. Image (b) shows the result
of our method, on a level-of-detail with 18 clusters, using the
convex style (Sec. 3.4). For illustration only, clusters were

(© 2010 The Author(s)
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given different random hues from a hand-crafted colormap.
Using a gray rather than white background emphasizes the
coarse-scale bundles. Image (c) shows the density-luminance
style (Table 1). Brightness emphasizes clusters with many
edges. Figure 5 d serves the same goal, but uses saturation:
High-density areas are colorful, low-density areas are gray.
Image (d) shows the cores style. Areas close to bundle skele-
tons are opaque, the rest is transparent. This reduces overlaps
and stresses graph structural aspects, similar in aims to the
opacity bands in clustered parallel coordinates [FWR99].

To better visually separate overlapping bundles, we can
use a halo effect conceptually similar to the technique pre-
sented in [EBRI09] for tensor fibers. For every bundle shape
1, we create a white, opaque border of fixed size ¢ (a few
pixels) around /. Doing this is simple: all pixels x in the halo
band are characterized by DT (dI) < o. Since DT is com-
puted in pixel space, the halos will be the same width &, in
pixels, regardless of the bundles’ widths. If we desire ha-
los of width proportional to the bundles thicknesses, we can
use H instead of DT'. An advantage of using H is that halos
are guaranteed to never ‘erase’ very thin bundles completely.
Figure 6 shows H-based halos, with a zoomed-in detail in the
inset. Halos are most effective for images showing a limited
number of bundles. Denser images, e.g. Fig. 5, benefit less
from halos as these always take a certain amount of screen
space.

Figure 5 shows the outline style. Here, we modulate al-
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Figure 5: Rendering styles: convex shapes (b), density-luminance (c), density-saturation (d), bi-level (e), and outlines (f).

Figure 6: Bundle visual separation using halos

pha, to create transparent outlined tubes (Table 1). To reduce
clutter caused by transparency, we use grayscale images. Al-
though less salient than the previous styles, outlines are an
useful visual cue of overall structure, especially when com-
bined with interaction techniques.

Finally, we explored the possibility to add more visual

detail to a bundle. For a user-chosen level d,,;, and parti-
tion P = {C}, we first compute H as in Sec. 3.4. Next, we
re-partition C (Sec. 3.2) for a higher d.,,, = uduin, Where
u = 1.2 gives good results. Third, we add the profiles H’
of each C’ in its refined partition P/, scaled to a lower
range [0,4], to the coarse-scale H;. We normalize the result
H+Ycrep hH " and use it for shading (Sec. 3.4). Finer-scale
bundles create luminance ridges within their parent clusters.
From discussions with the users, we noted that bi-level im-
ages are perceived as more suggestive than single-level ones,
as the second level acts as a detail texture suggesting the bun-
dled edges, and also eliminate the undesired luminance peaks
created by skeleton branches reaching to the corners of the
bundle shapes (compare Figs. 5 (c) and (e)). However, our
thin and long shapes preclude adding more levels to actually
show bundle hierarchies like e.g. in cushion treemaps.

3.6. Interaction

By construction, EBLs favor edge overlaps (Sec. 2), so oc-
clusion cannot be fully avoided. We alleviate this by sev-
eral interaction techniques. First, we use classical brushing
to render pixel-thin edges in the shape under the mouse. This
shows the nodes linked by a given bundle, even if only a
small part of the bundle is visible. Clicking on a shape brings
it to front, sends it to back, or hides it. This helps bringing
bundles of interest into focus.

We add a new interaction tool to further explore over-
lapping bundles: the digging lens. Given a focus point x

(© 2010 The Author(s)
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Figure 7: The digging lens is used to interactively explore areas where shapes overlap. Insets show zoomed-in details.

(the mouse pointer), and a pixel p within the lens radius
R, ||p — x|| < R, we upper threshold the profiles H(p) with
Hyin = t[1 — (||p—x||/R)?] for all visible shapes, where
t = 0.8 gives the maximal thinning in the lens center. This
smoothly shrinks shapes closer to the lens center, along the
idea shown in Fig. 4 f (Sec. 3.4). We set the shapes’ satura-
tion to 1 in the lens and 0 outside. As the lens moves, shapes
inside it get thinner (thus have less overlap) and also color-
ful (thus easy to focus on without distraction from outside
shapes). As the user moves the mouse inside the lens, we au-
tomatically bring to front the shapes touched by the mouse.

Figure 7 shows the digging lens. At the thin circle location
(a), we see bundle overlaps. This cue triggers further explo-
ration. For example, we want to see what is behind the blue
bundle (A, inset). Activating the lens (by pressing Control)
shows eight clusters, made distinct by shrinking and color-
ing (b). Moving the mouse over e.g. the red bundle (B, see
inset) brings it to front, so we now see that it connects the
node groups Ni,N> and N3 (c). The entire process takes a
few seconds and requires one key and one mouse click. Al-
though useful, the digging lens cannot fully handle all possi-
ble overlaps: Where long bundles of same thickness overlap
nearly completely, the lens will shrink them equally, and thus
not reveal the hidden bundles. The lens is effective in places
where bundles overlap but have slightly different directions
and/or thicknesses.

4. Results
Figure 8 shows the IBEB applied to the software dependency

graph from Sec. 3.5. As a use-case, we consider analyzing
type usage, i.e. inheriting from a class or using its type (func-
tionality) in client code. This is one of the hardest kinds
of dependencies to refactor in software. To analyze differ-
ent coupling types, we first use the HEB with type-colored
edges (calls=yellow, class member reads/writes=blue, type
usage=red) (Fig. 8 a). We see a thick red bundle that links
subsystems A and B. However, without iterative node selec-
tion, we cannot see which parts of A connect to which parts
of B. Also, edge color blending makes it hard to see edge
types at overlaps (arrow in the figure).

Next, we use the IBEB with convex shading and bi-level

(© 2010 The Author(s)
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rendering (Fig. 8 b). Clusters contain only same-type edges
(Sec. 3.2) and are colored on this type. We see now that mem-
ber read/write relations form localized bundles not extend-
ing across classes (small light blue bumps, see e.g. the light
blue arrow in (b)). This is a good sign for information hid-
ing. Also, two red bundles appear. With two clicks, we bring
these to front (b). We now see two separate subsystems in
A connected to two separate subsystems in B. For illustra-
tion, we click on one of the two bundles (A1B) and change
its color to blue (Fig. 8 c). We have now split the original
red bundle into two relation sets: A{B; and A;B;. Fig. 8 d
shows further insight in the clustering: all bundles colored
with different hues and overlaid with the actual pixel-thin
edges. Albeit brief for space limitations, this example illus-
trates one main point: Classical edge bundles, like HEB, ef-
fectively show coarse-scale subsystem connections, but do
not expose the finer-scale coupling structure within bundles.
IBEB further reveals this structure, by showing where actual
edges that “enter’ the bundle will ’exit’.

IBEB can be used with other layouts than the HEB. Fig-
ure 9 shows its usage with the FDB on the *US migrations’
graph from [HvWO09] (9780 edges). As a small addition to
the edge splatting (Sec. 3.3), we now splat two extra ra-
dial profiles on both endpoints of an edge. This yields nicely
rounded (capped) bundle shapes.

Compared to the original FDB (Fig 'reffig:ho09 a), IBEB
exposes several bundles, e.g. the green one (West Coast mi-
grations), yellow one (coast-to-coast migrations), a high-
density small purple one (East Coast NY area), and an in-
teresting high-density, high-coherence blue one (NY area
to midwest migration). Figure 9 c uses the alternative thin
shapes technique (cf. Sec. 3.4 Fig. 4 f) to further empha-
size coarse graph structure. Here, we brought the coast-to-
coast bundle (purple) in front. Finally, Fig. 9 d uses the cores
style to emphasize structure and also reduce occlusion. All in
all, we argue that the IBEB helps exposing coarse-scale bun-
dle patterns, and seeing which nodes these bundles connect,
while the original FEB is better at exposing fine-scale details
in regions with little or no overlaps.

To further understand the IBEB strong and weak points,
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Figure 9: Image-based visualization of force-directed bundling (FDB) layouts

we performed a formative user study. Twenty 3" d year CS
students at the Univ. of Groningen, the Netherlands, were
given the IBEB implemented atop of a software analysis tool
using the HEB [Sol09]. The tool imports dependency graphs
(inheritance, class field usage, function calls, and contain-
ment hierarchy) from Visual C++, .NET/C#, and Java. The
C# software discussed earlier was provided by the tool de-
velopers as an interesting use-case. Participants were asked
to find dependencies between several indicated modules; list
the four most important call and field usage paths in the sys-
tem; and comment on the overall system modularity. Search,
filter, and node selection (available in the original tool) were
disabled, so the tasks had to be completed mainly focusing
on edges. One week was given to familiarize with the tool
(which has a detailed manual) and execute the tasks. Effec-
tive usage time was 5 to 8 hours. The images in Fig. 8 come
from this study.

Besides the actual answers, the following points were
mentioned by all users (except two who did not complete
the study):

e Classical HEB is very effective when (a) there are few
bundle overlaps, or (b) one does not need to visually de-
termine which parts of a large bundle go to which specific
node groups;

e Although overlap exists, IBEB reveals several end-to-end
(node-to-node) coarse-scale bundles which are not visible
with classical HEB;

e The digging lens is effective in locally unraveling oc-
cluded bundles at a location of interest;

e The IBEB has an ’organic’ look which is pleasing and in-
vites exploration.

Overall, the IBEB combines the advantages of HEB with
an easier understanding of dense bundles. In the traditional
HEB, a thick, dense, bundle is seen as such but one cannot di-
rectly see whether there is finer-level structure, e.g. the bun-
dle actually consists of several sub-bundles which connect
different node groups, like in Fig. 8. This can be done by
a trial-and-error selection of individual nodes to see if their
edges indeed pass through the bundle of interest. Such se-
lection is easily done in the HEB, but harder in layouts that
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draw nodes as small points, e.g. the FDB. In contrast, IBEB
makes bundles explicitly, and individually, visible, so users
can easier relate bundles to the nodes they connect. The fact
that IBEB shows less fine-scale detail than the HEB does not
seem to be a major problem, as individual edges are mainly
explored once one has decided which few node(s) one wants
to inspect. When this is known, both the HEB and IBEB are
equally effective - in IBEB, brushing over a node and/or bun-
dle highlights its edges, drawn as individual lines, just like in
the HEB. For the several selection and brushing features we
support, we refer to [Sol09].

Our users also mentioned several desirable additions.
First, although shading and back-to-front rendering were
seen as effective, overlaps still exist. The digging lens helps
to analyze overlaps, but only locally. Secondly, edge direc-
tion cues are required. We tried several methods for this, e.g.
luminance or saturation modulation of our bundle shapes, but
this was found to darken images too much. Further work in
this area is needed.

5. Discussion
We next discuss several technical aspects of our method.

Generality: The only assumption made is that of a graph
layout that delivers points along edges, and that edges are
spatially bundled in a meaningful way. The layout and/or in-
put graph do not need to obey other constraints, e.g. to be
hierarchic or acyclic.

Parameters: The user has to set only a few values: level of
detail d,;, (Sec. 3.2), splatting radius & (Sec. 3.3), and ren-
dering style (Sec. 3.4). Here, only the level of detail does not
have, so far, a preset usable for most datasets.

Performance: We ran the IBEB, implemented in C++ and
OpenGL 1.1, on several systems running Windows Vista/XP,
1.5 to 3.5 GHz, and 2 GB to 4 GB RAM. The clustering
used [HINMO4] handles 10..20K edges in under 0.1 seconds.
Splatting, shading, rendering, and interaction (OpenGL-
based) run in real-time on consumer graphics cards. We ob-
tained real-time response even with Windows Remote Desk-
top rendering, which uses software-only OpenGL. Skele-
tonization, whose complexity is NlogN for a binary shape /
of N pixels (Sec. 3.4), takes 90% of the entire time. For sim-
plicity, we used a software-only implementation [TvWO02]
which takes 0.1 seconds/shape at 8002 resolution, i.e. 1..2
seconds for a typical full frame. If desired, OpenGL-based
skeletonization [STO3] can be readily used, which would de-
liver subsecond/frame speed. Memory needs are around 100
MB for e.g. a graph with 10K edges discretized to a total
200K points.

Image-based vs geometric implementation: After edge
clustering, IBEB works fully image-based. We also imple-
mented a point cloud-based (geometric) version. We build
the shapes 7 (Sec. 3.3) as alpha shapes from points p;; on all
edges ¢; in a cluster C;, using the CGAL library [CGA09],
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similarly to [CZCEO8]. We compute distances for the shad-
ing profiles H (Sec. 3.3) with a fast spatial search struc-
ture [AMO93]. Speed is similar to the image-based variant.
However, the alpha value (of alpha shapes) is hard to con-
trol [EM94]: High values fill in all gaps between bundle
branches, low values yield holes inside what would be a com-
pact branch. Resulting alpha shapes are rendered as shaded
triangulated meshes. To yield the level-of-detail in / and H
achieved by the image-based variant, we need a very high
mesh resolution. All in all, we thus prefer the image-based
approach.

Visual metaphor: The IBEB convex rendering style resem-
bles the shaded edge bundles in illustrative parallel coordi-
nates (IPC) [MMO8], with some differences. Our shapes have
a much higher variability, depending on the EBL used. We
use hierarchical agglomerative clustering, while IPC uses k-
means. We use skeletons in shading to emphasize the bun-
dles’ branching structure, to reduce overlaps (shrink shapes
globally or locally by the digging lens), and for the cores ren-
dering style. IPC uses different shapes and a shading style
that mainly emphasizes line density.

Open points: The IBEB’s main limitation is visual scalabil-
ity. Using 10..30 shapes shows the coarse graph structure.
More shapes create too many overlaps. However, we aim to
provide a simplified view, not a full-blown replacement for
bundled edges.

A useful result implies meaningful bundle shapes. This im-
plies an edge bundling layout (EBL) that spatially groups
related edges, and a clustering method (and edge similar-
ity metric d) that yields meaningful edge clusters. The EBL
and clustering used are generic, e.g. the HEB or FDB (lay-
out) and hierarchical agglomerative or k-means (clustering).
However, d is application and task dependent. So far, we only
considered edge types in d. Attributes such as edge weights
or node types are open to exploration.

Finally, we stress that we select the visualization level-of-
detail globally, and, so far, use only a single ’cut’ in the clus-
ter tree, purely based on similarity (Sec. 3.2). Locally refin-
ing bundles of interest, e.g. on user input, thus changing the
shape of the cut, is a direction of further study. Here, we can
draw inspiration from the interactive navigation techniques
from [AMAOS8] for exploration of graphs structured along
multiple hierarchies.

Acknowledgements

We are grateful to Dennie Reniers and Lucian Voinea for the
code of the SolidSX tool [Sol09], datasets, and use-cases,
and to Danny Holten for the force-directed bundling layout
data (Sec. 4) and many insightful comments.

6. Conclusions

We have presented an image-based simplified visualization
for edge bundles (IBEB). Given a layout that creates spa-



A. Telea & O. Ersoy / Image-Based Edge Bundles

tially close edge bundles, we visualize bundles using shaded
overlapping compact shapes. We reduce the visual complex-
ity of classical bundle visualizations, emphasize coarse-scale
structure, and help navigating from bundles to the connected
nodes. We make bundle overlaps explicit, and add interac-
tion to locally disambiguate these. Level-of-detail techniques
help to select the visualization granularity and further ex-
plore overlaps.

Many extensions are possible. Different shading and edge
clustering strategies can be used to address additional use
cases, e.g. emphasize connections of particular types and/or
topologies in a graph. New techniques can be designed to
convey additional edge data such as direction or metrics atop
of our metaphor. Finally, the IBEB can be extended to other
fields, such as flow or tensor visualization. We plan to ex-
plore these avenues in future work.
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