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Abstract
Animated visualizations are one of the methods for finding and understanding complex structures of time-dependent vector fields.
Many visualization designs can be used to this end, such as streamlines, vector glyphs, and image-based techniques. While all
such designs can depict any vector field, their effectiveness in highlighting particular field aspects has not been fully explored. To
fill this gap, we compare three animated vector field visualization techniques, OLIC, IBFV, and particles, for a critical point
detection-and-classification task through a user study. Our results show that the effectiveness of the studied techniques depends
on the nature of the critical points. We use these results to design a new flow visualization technique that combines all studied
techniques in a single view by locally using the most effective technique for the patterns present in the flow data at that location. A
second user study shows that our technique is more efficient and less error prone than the three other techniques used individually
for the critical point detection task.

CCS Concepts
• Human-centered computing → Visualization techniques; Visualization design and evaluation methods;

1. Introduction

Flow visualization has a long history with many techniques pro-
posed to depict various aspects of vector fields [PVH∗03, LHD∗04,
SLWS08, MLP∗10, BCP∗12]. These techniques critically use the hu-
man perception to support the detection and analysis of specific flow
patterns. A subset of such techniques uses animation to show flow
direction and velocity. In the last decades, many such animation tech-
niques have been proposed, ranging from simple density plots [SS89]
to GPU-accelerated 3D texture-based methods [TvW03].

While much effort has been invested in developing new flow vi-
sualization techniques, less was done to assess their effectiveness
in terms of supporting understanding the flow data. Several stud-
ies have looked into comparing existing visualization techniques
in a side-by-side setting to find the advantages and limitations
thereof [LWSH04, LKJ∗05]. Work has also been done to study how
to combine different techniques to produce more insightful, easier to
understand, visualizations [PVH∗03, SK16]. The above two issues
are related: To optimally combine different visualization techniques,
we need to understand the types of flow patterns that each is best for.
To our knowledge, no such study has been done for animation-based
flow visualization techniques.

In this paper, we aim to bridge this gap as follows. First, we
propose and execute a user study aiming to answer how effective
different animation-based techniques are for the perception (visual
detection and assessment) of various flow patterns such as critical
points. The obtained insights show that different techniques perform
differently for the studied flow pattern types. Based on these insights,
we next propose a composition of the studied techniques driven by

the flow data at hand. This way, the optimal technique (as found by
our user study) is used in the flow region that contains the specific
pattern it is best for. We smoothly combine the selected visualization
techniques to yield the final global picture, so as to create an easy to
interpret image where each blended visualization technique stands
out where it is most needed. A second user study suggest that the
composite technique produces less errors, and works faster, than the
three techniques individually in a critical-point finding task.

We organize our work as follows. In Section 2, we overview re-
lated work on animation-based flow visualization. Section 3 presents
the setup, execution, and conclusions of our first user study on the
effectiveness of three animated flow visualizations for the detection
of various types of simple flow patterns. Section 4 presents our ap-
proach to compose the studied visualization techniques based on the
underlying flow data. Section 5 presents our second user study on
assessing the effectiveness of the composite visualization. Section 6
presents several applications of our composite visualization for real-
world flow data. Section 7 discusses the limitations of the composite
visualization and the evaluation. Section 8 concludes the paper.

2. Related Work

Related work covers animation techniques for flow visualization,
evaluating flow visualizations, and combining techniques in a single
visualization, as follows.

2.1. Flow Visualization Techniques

Flow visualization techniques can be classified as direct [LHD∗04],
topology-aware [PVH∗03], texture-based [LHD∗04, LHZP07],
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partition-based [SLWS08], geometric [MLP∗10], and illustrative
[BCP∗12]. Our work relates to both animation-based and topology-
aware techniques, so we discuss these in more detail next.

Animated techniques: Animation maps closely to the moving na-
ture of flow data, so it can intuitively show flow direction, orientation,
and magnitude. Image-based or texture-based techniques generate
patterns that are locally aligned with the flow field and have a high
spatial frequency orthogonally to the field, thus encode well the flow
direction [CL93]. Generating time-dependent patterns by injecting
and advecting noise or dye conveys next the flow speed and orienta-
tion, and can be efficiently implemented on the GPU using textures
or shaders [MB95, vW02, vW03, LJH03, TvW03, LTH08, KSW∗12].
Flow can also be visualized using motion maps that generate cycli-
cal variable-speed animated textures [JL97, LJL04] or streamlines
[JL00]. Several such techniques can also handle time-dependent
flows, such as texture transport [BR98, JEH00, JEH01], IBFV
[vW02], and Dynamic LIC (DLIC) [Sun03].

Besides textures and streamlines, other approaches use particles
that move with the flow [SFL∗04, ELPH19, BW08]. Particles create
a high-contrast visualization that naturally conveys flow direction
and speed (like textures) but create sparse visualizations (like stream-
lines).

Topology aware techniques: By analyzing the underlying vec-
tor field, one can detect special critical points or regions such
as sources, sinks, vortices, laminar regions, and turbulent regions
[HH89, LHZP07]. Such points or regions can be next explicitly visu-
alized, used to decompose the flow field into a set of same-behavior
regions [SS07], or used to control other visualizations such as plac-
ing streamline seed points [PVH∗03, XLS10]. Topology methods,
such as precise tracking of critical points over time, have also been
proposed for time-dependent vector fields [TSH01].

2.2. Evaluating Vector Field Visualizations

Approaches to evaluate vector field visualizations can be divided
into statistical methods and user studies. Statistical methods compare
aspects of the actual (ground-truth) flow data, e.g., orientation, to
corresponding visual variables in the resulting (dense) visualization.
If the latter is orientation, this can be computed by using the image
gradient of the latter [MK13, JWC∗11, PW08]. This approach has
been used to compare different LIC parameter settings [JWC∗11].
However, such measures address so far only static visualizations. In
contrast, user studies compare different flow visualization by asking
users to perform a specific task or to state their preference among
several options. Results are based on control measures such as the
error rate and/or the time needed to perform the task [PW13]. Such
measures can be complemented with additional data such as eye
tracking [HYL∗15]. Earlier studies focus mainly on static visual-
ization techniques [LCE∗12, LKJ∗05]. Ware et al. [WP13] also use
eye-tracking to compare static flow visualizations on four experi-
mental tasks. Interestingly, the tracking data shows that the users’
gaze is mostly focused around critical points – so having a clear
depiction of these is important. Later, Ware et al. [WBM∗16] com-
pared two animated techniques – orthogonal particles and oriented
LIC (OLIC, [WGP97]) – to two static techniques – streamlets and
arrow glyphs. Their results suggest that OLIC is better than the static
techniques and orthogonal particles for some tasks. However, the
two compared animated techniques, orthogonal particles and OLIC,
differ in the information they show, so comparing them may not be
fully fair. To our knowledge, there is no study comparing different

animated techniques that differ in the representation density (sparse
vs dense, that is) and that encode the same information (direction and
orientation) of the vector field.

2.3. Combining Vector Field Visualizations

Flow visualization techniques have been combined to two ends. First,
the earliest techniques already proposed to overlay multiple visu-
alizations of the same flow data to show specific flow features (in
focus) in the context of a more general, background-like visual-
ization [TvW99, PVH∗03]. This approach also helps visualizing
multivariate flow-related data. Kirby et al. [KML99] show differ-
ent flow attributes simultaneously using inspiration from painting.
Schroeder et al. [SK16] propose an interface where users can overlay
different visualizations interactively by sketching the region where
the visualizations should be combined. Urness et al. [UIL∗06] ex-
plore overlaying and embossing approaches to combine multiple
vector fields. Verma and Pang [VP04] propose a visualization for
the differences of two or more flow fields. Similar to some of these
techniques, we also combine multiple visualizations to display a flow
field. In contrast to them, however, we combine these locally and
automatically based on where each is best suited to show the actual
flow data, and use to this end animation-based techniques.

3. First User Study: Comparing Selected Visualizations

As outlined in Sec. 1, our first goal is to find out which animation
techniques are best for common tasks related to vector field visual
exploration. We first present the selection of considered techniques
(Sec. 3.1). Next, we describe the evaluated tasks, study set-up, and
obtained results (Sec. 3.2).

3.1. Chosen Visualization Techniques

Given Ware et al.’s study [WBM∗16] that suggested that animated
techniques are more effective than static ones for steady vector flows,
we focus on animated techniques based on streamlines that can
encode flow direction, orientation, and speed. For the case of time-
dependent flows, these techniques will visualize the flow’s streamline-
oriented topology which is different from its pathline-oriented topol-
ogy.

Additionally, we consider only techniques that can be computed
in real time, to facilitate their usage in the user study described next.
Following this search, we settled with three techniques, which are
described next.

Image Based Flow Visualization (IBFV): This technique blends
and deforms noise images in the flow direction [vW02]. Tuning its
parameters can achieve a wide range of effects. IBFV is very simple
to implement and works real-time using only plain OpenGL, which
arguably contributes to its popularity. We render IBFV at 30 frames
per second using WebGL. After experimentation, we found that the
following parameters give good visualizations: 32 noise patterns
of 2562 pixels resolution; visualization resolution: 5122 pixels; and
maximum displacement at each iteration: 2 pixels. These values are
quite close to those proposed originally [vW02].

Oriented Line Integral Convolution (OLIC): OLIC [WGP97] is a
variant of LIC [CL93] where a noise texture is convolved in the flow
direction. While IBFV uses dense noise, OLIC uses a sparse noise
texture and a ramp-like kernel describing noise injection, producing
variable-intensity ‘droplets’ that follow the flow. OLIC also proposed
cycling through the kernel to produce an animation where the lighter
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Figure 1: Rendering each pattern with the three studied techniques. See Sec. 3.2.

point of the droplet moves in the direction and orientation of the
flow. OLIC was extended by FROLIC [WG97] to use a color table
approach to speed up the animation. Our implementation, written
in Javascript Canvas, follows FROLIC. We seed 2000 droplets by
randomly jittering seed positions given by an uniform grid covering
the visualization area. We trace forward and backward streamlines
seeded at each droplet position and render them with a basis length
of 50 pixels, scaled next by flow magnitude [WGP97], and thickness
of 2 pixels. We decrease the droplets’ opacities linearly along stream-
lines from a maximum value that maps the flow magnitude, so more
opacity and/or longer droplets indicate faster flow.

Particle Systems (PS): This technique is one of the oldest in flow
visualization [Bun89]. Yet, it is attractive as it creates high-contrast
images with limited clutter, allows precise control of where infor-
mation (particles) is drawn, is simple to implement, and is very
fast [KKKW05]. A set of particles is advected over time in the flow
field and drawn as a point cloud. Each particle has an initial position
and a lifetime. When a particle exceeds its lifetime, stops moving
(because it reaches a critical point), or exits the dataset domain, we
re-seed its position at a random location. To obtain a roughly uniform
particle density over similar-divergence areas of the flow domain, we
seed more particles in high-speed flow areas. For this, we define the
probability p(v) for a particle to be seeded at a location having the
vector value v as

p(v) = (2pt −1)
‖v‖
‖vmax‖

+1− pt , (1)

where vmax is the largest vector in the field. Next, we release particles
according to these probabilities. The factor pt ∈ [0,1] controls the
overall particle density – higher values generate denser particle plots.
Note that this does not aim to create an overall uniform particle
density (as in e.g. DLIC [Sun03]). For that, more complex and
expensive schemes would be needed to estimate the particle density
and adjust it locally by adding or removing particles. Also, such an
uniform seeding would not be ideal for our usage of PS, as finding
certain patterns such as attracting and repelling foci (discussed in the
next section, and shown in Fig. 1, bottom row).

3.2. User Study

To compare the effectiveness of the three selected visualization meth-
ods (IBFV, OLIC, PS), we next designed and executed an user study.

Tasks: Previous work has shown that detecting and understanding
critical points is an important requirement of flow visualizations
[WP13]. Hence, our tasks in the study cover finding and classifying
various types of critical points present in the flow data. This task
has been widely used in the literature to compare flow visualization
techniques [LKJ∗05, LCE∗12, WP13] because it requires inspecting
the flow both globally and locally [LCE∗12] and thus represents well
any task that requires this type of understanding.

Data: As ground-truth for critical point finding and classification,
we use a synthetic vector field. Following [LCE∗12], we want to
explicitly define the number and type of critical points present in a
field so as to remove potential biases due to using only one vector
field, but keep complexity across vector fields similar. We synthesize
vector fields v : R2→ R2 with a potential model [vW02] given by

v(x) = k
[

a b
c d

]
d
‖d‖2 , (2)

where d = x− c is the position of point x with respect to the visu-
alization center c and k controls the overall vector field speed. The
coefficients a,b,c,d control the creation of different flow patterns
(Tab. 1). We randomly choose clockwise or anticlockwise rotations
for CENTER, ATTRACTING FOCUS, and REPELLING FOCUS for each
trial. We compose the effects of multiple critical points by summing
up their corresponding fields given by Eqn. 2. We synthesize fields
using 5 types of generators (instances of Eqn. 2) for centers, attract-
ing and repelling nodes, and attracting and repelling foci respectively.
Saddles are created implicitly by the interaction of the other gener-
ators. Figure 1 shows all generators rendered by OLIC, IBFV, and
PS.

To create the fields, we define a 5×5 grid that divides the domain
in equally sized cells. In each vector field, we add 3 instances of each
of the 5 generator types by randomly picking a grid cell and adding
the corresponding generator to its center, followed by a random jitter
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Pattern type Parameter settings
Center a = d = 0, b = c
Attracting node a =−d, a < 0, b = c = 0
Repelling node a =−d, a > 0, b = c = 0
Saddle a = d, b = c = 0
Attracting focus (anticlockwise) a = b = c−d, a < 0
Attracting focus (clockwise) −a = b = c = d, a < 0
Repelling focus (anticlockwise) a = b = c =−d, a > 0
Repelling focus (clockwise) −a = b = c = d, a > 0

Table 1: Parameters for generating the different flow patterns.

of half a cell size. We add only one generator per cell to spread critical
points over the visualization. Next, we use a standard fixed-point
classification algorithm (for details, see Sec. 4) to find if saddles were
created by these generators. If so, we count these up. We repeat the
process until exactly 10 saddles have been created. This yields thus a
total of 3×5+10 = 25 critical points per field, one in each grid cell.

Participants: Fifteen unpaid volunteers (3 females, 12 males), daily
computer users, aged 23 to 56 (mean 32.6, median 27), not involved
in this research, participated in the study. All had normal or corrected-
to-normal vision, did not suffer from color blindness, and had previ-
ous knowledge of vector fields.

Hypotheses: An earlier related study [LCE∗12] showed that En-
hancedLIC, a texture-based static visualization technique for flow
data, outperformed OLIC for critical point recognition and classifi-
cation. The study also suggests that the higher density of Enhanced
LIC was of important added value in better understanding the flow
topology. Following this, we hypothesize in our case that:

H1: Since the sparse visualizations (OLIC, PS) are less dense
around positive-divergence points (REPELLING FOCUS and RE-
PELLING NODE) than elsewhere, detecting these two kinds of points
will be harder with OLIC and PS than with IBFV (which has an
uniform and high density everywhere).

H2: For the same reason, critical points that attract flow
(ATTRACTING FOCUS and ATTRACTING NODE) will be easier to find
using the two sparse techniques (OLIC, PS) than with IBFV, since
OLIC and PS generate higher-density patterns around ATTRACTING
FOCUS and ATTRACTING NODE than elsewhere.

H3: As SADDLE points both repel and attract flow, they should
be easier to find using OLIC because this technique maps both orien-
tation and direction explicitly into its high-contrast droplets. At the
other end, PS encodes direction via the harder-to-gauge points ani-
mation, so it will be the least suitable technique for finding saddles.
IBFV encodes direction in texture patterns which are lower-contrast
than OLIC’s droplets, but more explicit than the implicit point-
movement direction of PS. Hence, IBFV should score in-between
OLIC and PS for finding saddles.

Procedure: We follow a 3×7 within-subject design with 2 factors:
technique and pattern. Technique covers IBFV, OLIC, and PS. Pat-
tern covers the 5 generator types CENTER, REPELLING FOCUS,
ATTRACTING FOCUS, REPELLING NODE, ATTRACTING NODE, plus
the implicitly created SADDLEs. Each condition was repeated three
times. Trials were grouped by technique and pattern blocks. The
presentation order of techniques was counterbalanced across partici-
pants. For each block, the order of patterns was randomized. For each
pattern, a training trial preceded the 3 actual trials. We generated
9 synthetic fields as described earlier, with normalized speed, plus
one for the first training. Each subset of three fields from these 9 was

used for every pattern and for each technique combination, for the
three actual trials. For the second and third training, we re-used one
of the previous fields. We presented the fields in the same order to
each participant, since the order of the other factors was randomized.
Visualizations were shown at 5122 pixel resolution in a web browser.

For each trial, participants were asked to click on locations where
they see the three critical points for the indicated pattern. Upon click-
ing within a tolerance under half a cell size to the correct location,
a green square was shown at the actual critical-point location to tell
that the answer was correct. Clicking at an incorrect location (not
corresponding to the target pattern) had no effects, thereby indicating
the need to retry. Upon finding all three target points, or when a 40
seconds timeout elapsed, the trial ended and the next one started.

Results: We base our analysis on 95% bias-corrected and accelerated
(BCa) bootstrap confidence intervals [Dra16], using 10000 replica-
tions. Confidence intervals have been used in many recent HCI and
visualization studies [BBB∗19, PAPB19], and have been preferred
over p-values as the latter may lead to dichotomous thinking [BD17].
We compare techniques by calculating the confidence intervals of
their pairwise difference [Cum14] adjusted for multiple comparisons
using Bonferroni correction. We say that there is strong evidence for
a difference when the confidence interval does not contain the zero
value. All material (data logs, R scripts) is available online [The19].

Figures 2 and 3 show the number of errors (critical points wrongly
classified), respectively the mean time for finding a correct critical
point, per pattern and per technique, using 95% confidence inter-
vals. For completion time, we excluded trials where participants did
not find at least one critical point before the timeout. Overall, the
three techniques appear to have comparable performance. However,
looking at each (technique, pattern) condition, several differences be-
come visible, as follows. For some patterns, there is strong evidence
that techniques perform quite differently: For ATTRACTING FOCUS
and ATTRACTING NODE, OLIC and PS outperform IBFV roughly
equally. For REPELLING NODE, PS and IBFV outperform OLIC,
for REPELLING FOCUS IBFV seems to be the fastest technique. For
SADDLE both OLIC and IBFV outperform PS, and for CENTER
there is evidence that IBFV is fastest than OLIC. A correlated pattern
is visible in the number of errors: For SADDLE, IBFV and OLIC
outperform PS; and for CENTER, IBFV seems to be better than PS,
and PS outperforms OLIC. For REPELLING FOCUS there is strong
evidence that IBFV outperforms OLIC and PS.

The results of this study, both considering error rates and com-
pletion times, show that some techniques work better for detecting
some critical point types than others. Our first hypothesis (H1) is
thus supported: IBFV seems to be the most effective to detect RE-
PELLING NODE and REPELLING FOCUS. Our second hypothesis
(H2) is also supported, as OLIC and PS are more efficient for finding
ATTRACTING NODE and ATTRACTING FOCUS points than IBFV, and
there is no significant difference between them. Our third hypothesis
(H3) is only partially supported: OLIC is better than PS for finding
SADDLE points, but so is IBFV. This suggests that the density of the
visual representation is a more important factor than displaying both
orientation and direction both statically and dynamically.

4. Compositing flow visualizations

Our first study (Sec. 3.2) suggests that some of the studied techniques
(IBFV, OLIC, Particles) better convey certain critical point types
than others. Hence, it is defensible to consider a visualization that
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Figure 2: Mean time, error count, and pairwise differences per TECHNIQUE and PATTERN. Bootstraped 95% confidence intervals.
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composes these techniques so that they become prominent in areas
where they work best, based on the presence of those patterns they
can best depict. We explore this design next (see also Fig. 4).

4.1. Composition design for static vector fields

Given an arbitrary steady 2D vector field v(x) = (u(x),v(x)), we
first find critical points looking for locations where the u and v
components change signs. We next classify the found points using
the eigenvalues of the Jacobian matrix of v

J(x) =

[
∂u
∂x (x)

∂u
∂y (x)

∂v
∂x (x)

∂v
∂y (x)

]
. (3)

Following [HH89], the real (R1,R2) and imaginary (I1, I2) parts of
the two eigenvalues can discriminate between critical points (Tab. 2).
For numerical robustness, we perform all above comparisons with
a tolerance ε = 0.1. To choose this value, we tested values from
0.01 to 0.2 and chose the one that resulted in the most accurate
detection. This simple critical point detection is very fast, which
is essential to create animated visualizations for time-dependent

Point type Real part Imaginary part
Saddle R1 < 0,R2 > 0 I1 = I2 = 0
Repelling Node R1 > 0,R2 > 0 I1 = I2 = 0
Attracting Node R1 < 0,R2 < 0 I1 = I2 = 0
Attracting Focus R1 = R2 < 0 I1 =−I2 6= 0
Repelling Focus R1 = R2 > 0 I1 =−I2 6= 0
Center R1 = R2 = 0 I1 =−I2 6= 0

Table 2: Classifying critical points.

vector fields. More advanced methods can be used, if desired, for
critical point detection [LHZP07]. Note that our method is robust
with respect to this step: If some critical points are not detected,
the composite visualization will still show all the field data, though
possibly using a suboptimal technique in areas where detection failed.
This is in contrast to vector field topological analysis where accurate
and complete detection of such points is paramount.

After detecting N critical points at locations x1, . . . ,xN , we create
the N visualizations (images) V1, . . . ,VN that best match the types of
xi following Sec. 3. Next, we compose these in a final image V by
weighting them, at each pixel x, by the distance from x to xi, i.e.

V (x) =

{
∑

N
i=1 wi(x)·Vi(x)
∑

N
i=1 wi(x)

if ‖x−xi‖ 6= 0 for all i

Vi(x) if ‖x−xi‖= 0 for some i
(4)

Here, wi(x) = 1/(‖x− xi‖ · f (ti))p + f ′(ti) are inverse-distance
(Shepard [She68]) weight functions (weight maps). The term f ′(ti)
ensures that all visualizations Vi are still partially visible even far
away from their respective critical points xi. The power p controls
the weighting function decay. We tested different p values for the
Shepard interpolation. Higher values result in a more clear distinction
between the different critical point areas, but the transition between
visualizations is less smooth. We settled for p = 2 as this provides
a good trade-off between the smoothness of the visualization and
the visibility of the different visualization regions. The term f (ti)
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Figure 4: Pipeline for the visualization compositing process. See Sec. 4.

V1: IBFV V2: OLIC V3: Particles

w1: IBFV weight map w2: OLIC weight map w3: Particles weight map
Saddle
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focus

SaddleSaddleAttracting
focus

Center Center
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SaddleSaddle

Figure 5: Visualizations Vi and corresponding weight maps wi com-
puted from a real vector field. Bottom row also shows the location
and type of critical points. See Sec. 4.1.

controls the salience of the visualization Vi. Figure 6 is generated
using the default settings f ′(ti) = 1, p = 2, f (ti) = 1 that we propose
for the composition. The corresponding visualizations Vi and weight
maps wi for this figure are shown in Fig. 5. For presentation simplic-
ity, we merged here all visualizations of the same type (IBFV, OLIC,
and Particles), assigned to the N = 25 found critical points, into three
images (top row in Fig. 5). Comparing the composite result (Fig. 6)
with the three individual visualizations (Fig. 5, top row), we argue
that the composition shows the structure of the underlying field much
more clearly.

Changing the parameter f ′, p, and f allows (de)emphasizing cer-
tain visualizations so as to reduce the visual disparity between them
and make them equally salient for the user: For example, IBFV has
an overall higher brightness than OLIC or Particles, so one would
arguably like to de-emphasize the former and/or emphasize the latter
two. Figure 4 illustrates this. Here, we weaken the visual salience
of saddles (assigned to IBFV) by using a higher factor f ( SADDLE)
than for the other critical points.

Figure 6: Composite visualization created by assigning IBFV to
REPELLING FOCUS and REPELLING NODE, OLIC to ATTRACTING
FOCUS and SADDLE, and PS to CENTER and ATTRACTING NODE.
See the individual IBFV, OLIC, and PS visualizations in Fig. 5

After composition, we can use the so-far unexploited color chan-
nel to encode supplementary data. Figure 4 (rightmost image) il-
lustrates this by adding the flow magnitude color-coded using a
blue-yellow-red colormap. The same technique is used when generat-
ing the visualizations discussed next in the application part (Sec. 6).
Our implementation uses Javascript and WebGL. On a MacBook
Pro Retina 15" equipped with an NVIDIA GeForce GT 750M 2048
MB, it can render 30 frames per second at a resolution of 1024*1024
pixels.

Time titi-1 ti+1

Fade in

Fade in

Fade out

Fade out

v(x,ti) v(x,ti+1)v(x,ti-1)

Figure 7: Compositing visualizations for time-dependent flow fields.
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4.2. Visualizing time-dependent fields

Our visualization compositing can be adapted to handle time-
dependent flow data. We consider such datasets as sequences of 2D
vector fields v(x, t j) recorded at time moments t j . For each sequence
frame, we construct its composite visualization V (x, t j) following
Eqn. 4.

Directly drawing the sequence V (x, t j) however yields a distract-
ing animation since, at each ti, the weights of the three individual
visualization techniques Vi in Eqn. 4 can change significantly, and
so does the vector field itself. To address this, we create a tempo-
ral blending that linearly fades out the current frame V (x, t j) while
fading in the new frame V (x, t j+1) over a user-set duration of τ = 3
seconds (Fig. 7, see also the companion video). The parameter τ

controls the speed of the animation. Similar techniques have been
used to create smooth transitions in time-dependent visualizations
for various data such as time-dependent graphs [HET13], scalar data
cubes [HTCT14], and – closest to our scope – vector fields depicted
by dense textures [vW02].

5. Second User Study: Assessing Visualization Composition

The compositing idea in Sec. 4 hypothesizes that combining different
visualizations of vector data according to underlying critical points
is more effective than visualizing the same data by each technique
individually. To test this, we conducted a second user study that
compared the OLIC, IBFV, and PS techniques to the compositing
technique (called next MIX).

Tasks: Our task is the same as in the first user study (Sec. 3.2), i.e.,
finding critical points in a visualized flow field.

Design: We also follow the design of the first study. We generate 16
vector fields using the potential model (4 for training and 12 for actual
trials), with the same restrictions for critical points. We next use the
results of the first study to choose which visualization to assign to a
critical point, as follows. To have a balance between the composited
visualizations, we assign two types of critical points to each of them.
For this, we look at each pattern individually. If the first study found
that a technique Vi is more effective or efficient than another one
V j, we use Vi for that pattern. Otherwise, we choose the technique
that produced the lowest error count. This results in using OLIC for
ATTRACTING FOCUS and SADDLE, IBFV for REPELLING FOCUS
and REPELLING NODE, and PS for ATTRACTING NODE. Since we
want to have two patterns per technique, we use PS for CENTER,
since PS produces similar results to the other techniques, even if
IBFV produces a lower error count. Figure 8 shows a visualization
created using this mapping of techniques to patterns.

Hypothesis: MIX assigns the techniques that work best for each
pattern, so we expect this MIX to be both more efficient and effective
than the individual techniques (OLIC, IBFV, PS) for the critical point
finding task, i.e., yield a lower error count and mean time.

Participants: Sixteen unpaid volunteers (3 females, 13 males), daily
computer users, aged 21 to 45 (mean 30.8, median 27), not involved
in this research, participated in the study. All had normal or corrected-
to-normal vision, did not suffer from color blindness, and were fa-
miliar with general tasks in vector field visualization.

Procedure: We followed a 4× 6 within-subject design with 2 fac-
tors: technique and pattern. Technique covers, again, IBFV, OLIC,
Particles, and MIX. Pattern covers, again, the 5 generator types CEN-
TER, REPELLING FOCUS, ATTRACTING FOCUS, REPELLING NODE,

Figure 8: Composite visualization from the second study (Sec. 5).

ATTRACTING NODE, plus the implicitly created SADDLEs. We fol-
low the same procedure as in the first study, using now 16 vector
fields (4 for training and 12 for trials). For this study, we also asked
participants to rank the perceived difficulty of each TECHNIQUE *
PATTERN combination after each trial block.

Results: Figure 10 shows the time and number of errors per TECH-
NIQUE, with their 95% bootstraped confidence intervals. The differ-
ences between technique-pairs provide strong evidence that MIX is
faster than the three other techniques (64 % faster than PS, 68 % than
IBFV and 78 % than PS), because the three confidence intervals of
the differences do not contain the zero value. Also, we see evidence
that MIX produces fewer errors than OLIC and PS (140 % fewer
errors than PS, 50 % fewer errors than IBFV, and 135% fewer errors
than OLIC). Hence, our hypothesis is confirmed. We see similar
results for the perceived difficulty of each technique (Fig. 10).

Figure 9 depicts the results per pattern. The pairs for which there
is strong evidence of a difference between techniques have bold
names. These results match the previous one: IBFV performs worst
than the other techniques for ATTRACTING NODE and ATTRACTING
FOCUS; PS is slower than IBFV and OLIC for SADDLE; and OLIC
is slower than PS for REPELLING NODE. We also find evidence that
MIX is faster than IBFV for all patterns except CENTER; faster than
OLIC for REPELLING NODE, REPELLING FOCUS and SADDLE;
and faster than PS for REPELLING NODE, REPELLING FOCUS and
SADDLE. Looking at the error count, we see that MIX produces fewer
errors than OLIC when finding ATTRACTING NODE, REPELLING
NODE, CENTER and REPELLING FOCUS; fewer errors than IBFV
when finding ATTRACTING FOCUS and REPELLING FOCUS; and
fewer errors than PS when finding REPELLING FOCUS and SADDLE.

6. Applications

We now demonstrate our composite visualization on two real-world
datasets and use-cases.

6.1. Use case 1: Scientific Visualization

We first consider a wind-flow dataset containing actual measured
wind direction and magnitude (speed), measured at different times
and altitudes. The dataset, provided by Météo-France, is 587×625
nautical miles (NM), covering the French territory, with altitudes
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Figure 9: Mean error count, time, and pairwise differences per PATTERN per TECHNIQUE. Bootstraped 95% confidence intervals.
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Figure 10: Time, error count, and rated difficulty per TECHNIQUE.
Bootstraped 95% confidence intervals.

ranging from 110.6 meters to 10363 meters. Data consists of 8 time
steps, each measured every 3 hours. Per timestep, data is spatially
sampled over an uniform grid of 150 (x)× 100 (y)× 10 (height)
cells. 2D slices of such (and similar) datasets are used to under-
stand how wind direction evolves over time, how it varies from
lower to higher altitudes and to find patters such as cyclones and
anticyclones [WP13], as required for weather analysis and fore-
casting [MSIMI∗08]. We present next two uses of our composite
visualization for this dataset.

Wind layer exploration: Exploring this wind dataset has been previ-
ously done with small multiples, each for a specific layer [HAG∗14].

The problem with this approach is that vertical or horizontal mov-
ing patterns are not easy to see or trace. Another possibility is to
use 3D streamlines, isosurfaces, and/or volume rendering [RGG19].
However, this brings well-known problems of choosing suitable
viewpoints, occlusion, and many parameters to tune. In contrast, our
technique shows a single (animated) dense 2D visualization (Fig. 13).
To achieve this, given a user-chosen time-of-the day t0, we take the
2D time-dependent field v(x,y,h) where v(x,y, t) is a slice at height
z in the original field v(x,y,z, t0), and next visualize it with the time-
dependent composite technique described in Sec. 4.2. Thanks to this
technique, we can smoothly transition between layers to see how the
wind data gradually changes with altitude, to form a mental view of
the weather patterns. Figure 13 and the accompanying video show
that low altitude flow is more complex with many local flow pattern
types; high altitude flow is sparser but with stronger wind magnitude.
Our animation also shows how the wind’s main direction turns when
altitude changes, rotating clockwise in the Northern hemisphere (our
case) and anticlockwise in the Southern one, a phenomenon known
as the Bernoulli effect [Tru84]. Standard slice-based visualizations
as well as static 3D flow visualizations fail to emphasize this effect.

Time-dependent exploration: In this second scenario, we are inter-
ested to examine data over time. Since our composite visualization is
2D, we limit ourselves to a single altitude layer (4 km height), but
consider all time frames. An important task for this type of weather
data is to find out where, and when, do specific patterns (such as
critical points) appear or disappear. Doing this using a standard ani-
mation based on a single visualization technique may be hard, since
the strength and spatial extent of such changes can be limited. Our
composite technique helps here since, as critical points appear or
disappear, this triggers the blending (or removal) of a different type of
visualization around those locations. Figure 11 and the accompany-
ing video illustrate this. In the first frame, taken at 6 AM, we spot an
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6 AM 9 AM 12 PM
Wind strength low high

Figure 11: Wind field at 4 km altitude from 6 AM to 12 AM. Emerging patterns are highlighted. See also companion video.

ATTRACTING FOCUS in the top left, depicted using IBFV. At 9 AM,
this critical point disappears and an ATTRACTING NODE emerges
at the bottom of the field, depicted using PS. The corresponding
fading out of IBFV, and the fading in of PS, attracts attention to these
regions and thus makes it easier to detect the changes. A similar
situation happens between the second and third frame where the PS
at the bottom fade out and an ATTRACTING FOCUS region appears to
the right, depicted with PS. The appearance of a new PS area at this
place attracts the viewer’s attention, making its discovery easier.

6.2. Use case 2: Information Visualization

Simplified visualization of spatial trails has a long history in informa-
tion visualization [LHT17, Hur15]. One of the techniques for this is
bundling, which groups spatially-close trails into simpler structures
to reduce clutter and expose key patterns in the input trails. State-of-
the-art bundling techniques model bundling as an advection of the
trails in a suitably designed vector field v. Setting v to different fields
yields variations such as isotropic bundling [HET12] or the more
powerful attribute-driven edge bundling (ADEB, [PHT15]). Control-
ling such techniques to yield the desired number of bundles and/or
separation of different bundles, is very challenging [vdZCT16].

We next show how visualizing the field v helps this process for
ADEB. We first outline how v is generated. Let T = {ei}1≤i≤N ⊂R2

be a set of N 2D trails, each being represented as a sampled curve.
A trail density map ρ : R2 → R+ is computed by kernel density
estimation as

ρ(x ∈ R2) =
1
h2

N

∑
i=1

∫
y∈ei

K
(
‖x−y‖

h

)
, (5)

where K : R2→ R+ is a symmetric 1D non-negative kernel of band-
width h> 0, e.g., Gaussian or Epanechnikov. ADEB [PHT15] defines
a flow direction map θ : R2→ R2

θ(x ∈ R2) =
1
h2

N

∑
i=1

∫
y∈ei

d(y)K
(
‖x−y‖

h

)
. (6)

which is a vector field that extrapolates the tangent vectors d(x) at
all edge sampling points ei(x) to the entire 2D domain. Using θ , we
define at each point x ∈ T a subspace of compatible directions as

Ωx,c =

{
y ∈ R2 \ker(θ)

∣∣∣∣d(x) ·θ(y)‖θ(y)‖
≥ c
}
⊂ R2. (7)

The ADEB bundling of T is now the fixed point of the ordinary

differential equation

dx
dt

=
h(t)∇Ωx,c ρ(x, t)

max(‖∇Ωx,c ρ(x, t)‖,ε)
, x ∈ T. (8)

Controlling isotropic bundling is well understood, as detailed anal-
yses of all its parameters exist [HET12,vdZCT16]. ADEB (Eqn. 8) is
much harder to control to obtain the desired bundles, and no similar
parameter analysis exists for it. The key problem here is to understand
how the tangent field θ (Eqn. 6) influences the gradient ∇Ωx,c ρ used
in Eqn. 8 to advect trails. To help this understanding, we visualize θ

with our composite method. Using animation makes sense here since
θ is a vector field in which the trail-set T is literally advected during
bundling. Also, we know that sources and sinks of such advection
fields strongly influence bundling results [EHP∗11]. Hence, we argue
that studying such points for the complex field θ will give us insights
into the behavior of ADEB.

Figure 12 shows four visualizations of the field θ , with flow mag-
nitude encoded by color, and the trail-set drawn atop. We first show
the original, unbundled, trail set (a). This contains 22720 flight paths
of airplanes during February 8, 2009, over the French air space (for
details, see [PHT15]). Here, the flow is strongest over a concentrated
area over the Paris region. The main trail-groups are also visible
(orange bands in the image). This is an important hint that bundling
can handle well this dataset. Indeed, if these trail-groups had a sim-
ilar field magnitude surrounding them, there would be too weak
advection to bundle them. Image (b) shows the effect of 10 ADEB
bundling iterations with an average kernel h = 10 pixels. The ob-
tained bundling shows a good balance of details vs simplification, and
a field θ that is much more complex than the original one. We see how
θ drives bundling – inset shows how the main bundles align with the
white ‘trails’ formed by OLIC droplets. Besides being well aligned
with bundles, θ is also strong along these and weak elsewhere. This
tells that bundling has converged, so no more bundling iterations are
needed. Image (c) shows the effect of using a large kernel h = 60: θ

changes drastically – it is simpler, smoother, and has some large vor-
tices inside empty areas surrounded by the emerging bundles. Indeed,
a larger kernel extrapolates the trails’ tangent directions far away in
space (Eqn. 6), so it is natural for such vortices to appear between
bundles. This field creates however a too simplified bundling. At the
other extreme, image (d) uses a small kernel h = 6. Now θ is almost
zero outside the unbundled trail set. The resulting bundling is very
weak being actually similar to the original unbundled trails (a). We
also verified that further decreasing the kernel immediately creates
convergence problems for the advection (Eqn. 8). The direction fields
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a) Unbundled dataset b) Good bundling parameters
(good kernel size h = 10)

c) Bad bundling parameters
(too big kernel h = 60)

d) Bad bundling parameters
(too small kernel h = 6)

OLIC droplets align well
with bundle direction

droplets (blue) bundle (white)

field contains strong vortices
and is too smooth

field is too weak (concentrated 
along input trails) and noisy

Figure 12: Flow direction field visualization for ADEB. (a) Original (unbundled) trail set and corresponding field at the beginning of the
bundling. (b) Result of 10 bundling iterations with a good kernel size. (c,d) Result of bundling for badly chosen (too large, respectively too
small) kernel sizes. Note how the bundling level-of-detail is well reflected in the complexity of the direction flow field.

Figure 13: Wind flow at different altitudes at 6 AM. Top: flow magnitude (grayscale colormap). Bottom: Our composite visualization encoding
flow direction and magnitude. While this small-multiple visualization shows how wind evolves over altitude, one still needs some effort to
understand such dynamics.

obtained for such smaller kernels look practically identical to the one
in Fig. 12. Hence, seeing this type of pattern in the direction field is
a strong signal of bundling convergence problems.

Concluding, visualizing the field θ is a good predictor of how
bundling will work for a given kernel size h. Note that this is an a
priori instrument: We can visualize θ starting at the first bundling
iteration, and in real time, as bundling progresses. Once we see
undesired patterns, like the ones outlined above, we know that (1)
bundling will not progress as desired (so we can stop it right away)
and (2) how to change h to fix this. This contrasts the standard a
posteriori assessment currently used in all bundling literature, where
users run the entire bundling process, and when results are not good,
must (1) change parameters (but it is not clear in which way) and
(2) re-run the entire bundling process (which takes time). This also
explains why two of the three bundling images in Fig. 12 appear

suboptimal: They are, indeed, poor bundling results, which we detect
early on by our visualization of θ .

7. Discussion

We now discuss our user study and composite visualization proposal.

Composition and user study: The compositing technique is based
on the results of the user study, that has a limited number of users
(15), datasets (9), tasks (1), flow features (7) and techniques (3).
The evaluation of the compositing design has the same limitations.
Yet, the two parts of our contribution can be separated: One can
e.g. study more tasks or more visualization techniques, such as flow
transport assessment, or more visualization techniques. We kept
our scope limited, as outlined above, to be able to provide a more
detailed quantitative evaluation. The same holds for the use of color:
In our two studies, we did not measure the effect of color has for
the tested tasks (critical point detection). Doing so would have been
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possible, but would have significantly complicated the study, e.g., by
needing to choose various types of colormaps, what quantities these
encode, and which tasks the final visualization should now answer.
Finding which perception effects has color addition to the composite
visualization is, however, an important question, which can be solved
by a separate study.

Based on the obtained results, our compositing method (Sec. 4)
can be directly used to design new visualization methods and/or
mappings from feature types to optimal visualization methods: Any
visualization method can be directly used by considering its output
image. Furthermore, other parameters could be considered for the
compositing, and different techniques assignments. Finally, even
if the critical points are not optimally found, the distance-based
blending ensures that the result still is a meaningful visualization.

Concerning the limited number of participants, one could have
considered using e.g. crowdsourcing to improve it. We chose to use a
controlled study to be able to control the experiment setup, something
much harder to do with crowdsourcing [GMN∗17]. For instance,
having control over the study allowed us to ensure all participants did
indeed follow the training and instructions, had access to identical
computers for the experiments, and identical room conditions. Also,
note that the participants in the first and second user studies were
not the same. Furthermore, we wanted to keep the between-subject
structure in the second user study, to make the comparison between
the techniques possible, given also our number of participants.

Flow features and weighting: We targeted only basic flow fea-
tures (7 types of critical points), for simplicity of implementation
and presentation. Yet, any other flow feature detection method
[PVH∗03, GLL91] that outputs a location x can be directly used
in Eqn. 4. If the method outputs a scalar field w, e.g., the divergence
of the input field v, we can simply use w as weight map instead
of the Shepard weights wi (Sec. 4.1). For example, we could con-
sider Helmholtz-Hodge decompositions [BNaPTB13] that separate
any vector field into divergence-free, curl-free, and laminar compo-
nents, or the algebraic multigrid based vector field decomposition
in [GRP∗04]. The magnitude of these components could be directly
used as weight maps wi in Eqn. 4, since they satisfy the partition-of-
unity property required by weights. This may create better weight
maps than the isotropic (Shepard-based) ones we currently use, hav-
ing weights better aligned with the flow features. However, exploring
this design space is not trivial, given the many methods (and their
parameters) available for flow decomposition. We leave this topic as
an important extension for future work.

Use cases: We showed the usefulness of our compositing technique
to better understand wind and "bundling" flow map. Our technique
usage is not limited to these specific flow data-sets and is appli-
cable to any flow data with other application areas. Regarding our
information visualization use case, we show how we can use our visu-
alization technique to improve algorithm transparency, with a better
understanding of complex parameters, and thus opens up some inter-
esting direction for future work. For example, other algorithms, such
as Optical Flow [HS81], also rely on vector field calculations, and
could benefit from flow visualizations to produce a more transparent
algorithm output.

Ease of use: Our compositing technique (Sec. 4) works automatically
(no user parameter settings) for any 2D (time-dependent) vector field,
and achieves 60 frames per second for fields up to 10242 data points,
due to the high scalability of the considered visualizations (IBFV,
OLIC, PS) and the critical point detection.

8. Conclusion

We have presented a two-part approach for visualizing vector fields
using a data-driven combination of visualization methods. First, we
performed a study that maps three mainstream visualization methods
to types of vector field features that these can best assist in find-
ing. Using the obtained insights, we propose a method to compose
visualization methods locally, based on detected field patterns and
optimal methods for these patterns. A second user study shows that
this technique is faster and less error-prone than the original methods
for critical-point finding and classification tasks. Finally, we demon-
strate our method with two real-world datasets from both scientific
and information visualization.

We next aim to study additional visualization methods, tasks, and
flow field patterns to enrich the optimal mapping scheme from the
last to the first. The extension of our approach to 3D vector fields is
technically trivial, and to be pursued. Ultimately, we hope to create a
framework that significantly simplifies the creation of effective vector
field visualizations for a wide range or users, tasks, and problems.
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