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Abstract
Projections aim to convey the relationships and similarity of high-dimensional data in a low-dimensional representation. Most
such techniques are designed for static data. When used for time-dependent data, they usually fail to create a stable and suitable
low dimensional representation. We propose two dynamic projection methods (PCD-tSNE and LD-tSNE) that use global guides to
steer projection points. This avoids unstable movement that does not encode data dynamics while keeping t-SNE’s neighborhood
preservation ability. PCD-tSNE scores a good balance between stability, neighborhood preservation, and distance preservation,
while LD-tSNE allows creating stable and customizable projections. We compare our methods to 11 other techniques using
quality metrics and datasets provided by a recent benchmark for dynamic projections.

CCS Concepts
• Computing methodologies → Dimensionality reduction and manifold learning;

1. Introduction

Many domains produce datasets with large numbers of observations
(also called samples or points) and attributes (also called measure-
ments, dimensions, or variables). Dimensionality reduction tech-
niques, also called projections, are an established tool for visualizing
such datasets in a simplified, compact, and scalable way.

The literature on static projections – that address the visualization
of time-independent datasets – is quite rich, with many techniques,
surveys, and benchmarks on the subject [NA19, EMK∗19, SVPM14,
CG15]. In contrast, far fewer techniques and comparisons thereof
exist for projecting time-dependent datasets, in which the sample
values change over time – which is a much harder problem.

Besides faithfully capturing the data structure – a desiderate shared
with static projections – dynamic projections also face the challenge
of maintaining temporal coherence. Failing this will create false
motion artifacts in the projection, which can mislead the user into
thinking there are data changes where none exist, or conversely.
Figure 1 illustrates this: We have a 100-dimensional dataset of 2000
samples covering 10 distinct isotropic Gaussian distributions that
collapse into 10 single points over 10 timesteps [RFaT16]. The
images depict the results of three dynamic projection techniques
(G-PCA, TF-PCA [Jol86], and TF-tSNE [vH08]) for this dataset,
showing the trajectories of all data points over the ten timesteps.
Knowing the dataset, we can tell that G-PCA renders quite faithfully
the data dynamics and structure; TF-PCA creates an artificial amount
of spiraling; and TF-tSNE creates a very large amount of apparently
random and unstable motion that is not present in the data. If such
variability in the projection results is seen for this simple, synthetic
dataset, the choice of a good dynamic projection method for real-
world datasets is clearly very hard.

Motivated by these challenges of understanding and quantifying

the quality of dynamic projections, Vernier et al. [VGd∗20] evaluated
nine such techniques, and came to the conclusion that there is no
perfect method, and that an inherent trade-off between stability and
spatial quality (i.e., neighborhood and distance preservation) exists.
The methods that scored the best on both criteria were autoencoder-
based methods and Global PCA. Neighborhood-based methods, such
as t-SNE and UMAP, strongly showed a lack of stability. At the
same time, these are among the favorite methods for static projection,
given their high capability in preserving data structure.

We aim to cover the above-identified gap by proposing ways to add
stability to the neighborhood preservation ability of static projections,
in particular t-SNE. We propose two approaches that use global in-
fluences to steer projected points: Our first method, LD-tSNE, offers
similar flexibility in steering dynamic projections via landmarks as
known for static projections, and also reaches good quality values.
Our second method, PCD-tSNE, increases neighborhood influences
atop an already stable Global PCA dynamic projection, scoring better
than all compared counterparts in terms of spatial quality combined
with stability. The global influence of both methods can be controlled
via simple user parameters to find the best balance between stability
and spatial quality. We compare our methods with 11 existing dy-
namic projections on a benchmark of 10 high-dimensional datasets
using 12 metrics for both spatial quality and stability.

Section 2 overviews related work on dynamic projections of high-
dimensional data. Section 3 introduces our two new methods. Sec-
tion 4 presents the experimental setup we used in comparing our new
methods with existing ones. Section 5 presents and discusses the
evaluation results. Finally, Section 6 concludes the paper.
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Figure 1: A time-dependent collapsing 100-dimensional 10-Gaussian-distributions dataset (2000 points) is visualized by three projection
methods. Point trails are colored by time (top) and class (bottom). The images show increasing amounts of instability artefacts.

2. Related work
2.1. Preliminaries
We first introduce some notations. Let x ∈ Rn be an n-dimensional
sample (also called data point or observation). A timestep Dt = {xt

i}
of our data consists of a set of N samples xt

i , 1 ≤ i ≤ N, measured
at the same time moment t. A dynamic dataset D is a list of T
timesteps D = (Dt),1 ≤ t ≤ T . For simplicity of exposition and
implementation, but without loss of generality, we consider next that
the sample count N is constant over time. In this case, D can be
represented as a set of T N-by-n matrices, one per timestep t.

A projection technique is a function P : Rn→ Rq, where q� n.
For visualization purposes, q ∈ {2,3}. Since 2D projections are by
far the most commonly used, we next only consider the case q = 2.
We denote the projection of sample x by P(x). For a timestep t, let
P(Dt) = {P(xt)|xt ∈ Dt} be the 2D scatterplot of the projections
of all points in Dt . Finally, let P(D) be the set of T scatterplots
for all timesteps of dataset D. These can be rendered as animations
(see additional material [VCT20]), trail sets (as in Fig. 1), small
multiples [RFaT16], or other visual encodings.

2.2. Visualization of high-dimensional data
Visualization of static high dimensional data [LMW∗17] is a well
studied topic populated with many techniques such as parallel co-
ordinate plots [ID90], table lenses [RC94], scatterplot matrices
[BCS96], and dimensionality reduction (DR) methods or projec-
tions [vPVdH09]. Compared to other methods, projections scale
visually very well, being able to accommodate datasets of millions
of samples and hundreds up to thousands of dimensions in limited
screen space. Several quality metrics have been proposed to gauge
how faithfully projections capture the structure of high-dimensional
data, e.g., trustworthiness and continuity [VK06], normalized stress
and Shepard diagrams [JCC∗11], neighborhood hit [PNML08],
class consistency [TBB∗10], and distance consistency [SNLH09].
Tens of different projection algorithms exist for static data; de-
tailed taxonomies of such methods, benchmarks, and qualitative
and quantitative evaluations are available in a range of surveys
[NA19, EMK∗19, Fod02, CG15, SVPM14, vPVdH09].

2.3. Strategies for dynamic projections

All current dynamic projection techniques that we are aware of are
based on methods that were initially designed for static data. These
base methods are adapted to achieve two goals: (a) obtaining good
spatial quality, measured by the various static projection metrics
outlined earlier in Sec. 2.2; and (b) obtaining good stability, defined
as the ratio between changes, over time, of the projection P(D) vs
changes of the data D [VGd∗20]. Besides projections, similar defini-
tions of stability have been used to quantify dynamic treemapping
algorithms [VSC∗20, VCT18]. We next propose to classify these
techniques as a function of how they ‘adapt’ the underlying base
(static) projection algorithm, denoted further PB, to handle spatial
quality and stability for dynamic data.

Per-timeframe (TF): In this simplest strategy, PB is applied to each
timestep Dt to create an independent projection PB(Dt). Hence,
P(D) = (PB(Dt))1≤t≤T . In other words, the base method PB is not al-
lowed to “look at the past or future” when projecting a given timestep
t – it only sees the data in Dt . Given the popularity of PCA [Jol86],
t-SNE [vH08], and UMAP [MHM18], the per-timeframe strategy is
often used for these base projections, leading to variants we call next
TF-PCA, TF-tSNE, and TF-UMAP, respectively. Several further vari-
ations of this strategy exist. Bach et al. [BSH16] propose time curves
which connect consecutive positions PB(xt

i) of the same point i for
all moments t, using MDS for PB. Similar curves have been used by
Bernard et al. [BWS12] (using PCA for PB). Brich et al. [BSP∗20]
use time curves and argue for the pro’s and con’s of PCA vs MDS for
PB. However, none of the studied base projections was found ideal
concerning stability and spatial quality. At a more general level, the
same strategy was used to connect different 2D scatterplots created
by other means than projections [HKF16]. Jäckle et al. [JFSK16]
use MDS for PB to project all n spatial dimensions of D to a single
dimension and use the second dimension of the screen space to map
time. Overall, the per-timeframe strategy favors spatial quality, which
can be as high as delivered by PB. However, stability can be (very)
low since PB is applied independently to the timeframes.

Global (G): At the other end of the spectrum, global methods apply
PB to the entire dataset, and then separate the projected points based
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on their timesteps, i.e., P(D) = ({yt ∈ PB(D)})1≤t≤T , where yt =

PB(xt) and xt ∈ Dt . Like per-timeframe, this strategy is also simple
to implement. It maximizes stability by construction. As such, many
applications use this strategy, e.g. Hu et al. [HWX∗10] that project
72-dimensional human body keypoints using LLE, or Fujiwara et al.
[FLM∗18] who project entire dimensions (time series) using MDS
and t-SNE for computer performance analysis. The latter method
was also extended to use PCA and UMAP as PB [FSS∗20].

When D is large, either in terms of number of samples or number
of timesteps, computing a single projection PB(D) can be expensive.
Also, the spatial quality of global techniques is typically lower than
for the per-timeframe strategy since PB now has to optimize the rela-
tive placement of points in all timeframes, even if such points never
co-exist at the same time. Out-of-sample projection (OOS) methods
can help with these issues. Simply put, an OOS technique P is con-
structed to optimize the projection of a subset Ds ⊂ D according to
one’s desired quality metrics. Next, P is used to extrapolate the pro-
jection to the entire D. Out-of-sample strategies have been proposed
for many static projection methods [BPV∗03]. Recently, Espadoto et
al. [EHT20] have shown how to use deep learning to construct out-
of-sample approximations of any static projection technique. Hence,
OOS techniques can be used to accelerate and potentially increase
the quality of global projection methods. However, the challenge
is in how to select the small subset Ds so as to represent well the
entire time-dependent dataset D. To our knowledge, no studies of
this aspect exist for dynamic projections.

Continuous (C): This strategy applies to base methods that itera-
tively optimize neighborhood configurations, such as t-SNE and
UMAP. In the following, we call these variants C-tSNE and C-
UMAP, respectively. The projection P(Dt) continues the gradient
descent from the positions of the previous timestep P(Dt−1), with
the updated cost function for t. This reduces significantly the non-
deterministic behavior created by removing consecutive initialization
steps. Still, this can fail to produce stable projections as points are
still allowed to move significantly during optimization. Dynamic
t-SNE (D-tSNE) [RFaT16] aims to alleviate this by adding a penalty
term to the continuous strategy using t-SNE for PB. This limits, up
to a certain extent, too large point movements between consecutive
timesteps. Incremental PCA [RLL∗08] projects points in a streaming
fashion and is therefore amenable to project time-dependent data.
Fujiwara et al. [FSS∗20] further increase incremental PCA’s stabil-
ity by using Procrustes analysis to align consecutive projections, a
method also proposed independently by Joia et al. [JCC∗11]. Neves
et al. [NMC∗20] propose Xtreaming, an incremental technique that
handles streaming high-dimensional data by continuously adapting
UPDis [NFH∗18], a projection with out-of-sample capability, thus,
good stability. Overall, continuous strategies achieve a good balance
between spatial quality and stability. However, this balance can be
hard to tune in practice.

Vernier et al.’s evaluation [VGd∗20] found that PCA and (Varia-
tional) Autoencoders with the global strategy – called next G-PCA,
G-VAE, and G-AE respectively – were the best-suited methods for
projecting temporal data. The global strategy, however, does not
seem to work well with graph or neighborhood-based methods, such
as t-SNE and UMAP – we denote these methods next as G-tSNE and
G-UMAP, respectively.

3. Guided methods for dynamic projection

Many guided methods exist in the static projection literature
[NA19, SVPM14]. Simply put, all these methods select a subset
of samples L⊂ D to create P, by extrapolating P(L) to P(D). Con-
ceptually speaking, the continuous strategy (Sec. 2.3) can be seen as
a type of guidance, where P(Dt+1) is steered by the earlier projection
P(Dt). Similarly, the out-of-sample global strategy (Sec. 2.3) can be
seen as a type of guidance where P(Ds) steers P(D). However, even
though this works for simple datasets, when the data present complex
dynamics and large changes over time, existing continuous strategies
become too restrictive. We propose two new guided methods for dy-
namic projection that use global influences (landmarks or suggested
placements) to steer and stabilize the projection while still accounting
for neighborhood preservation. The two methods use t-SNE as base
projection given (a) t-SNE’s high popularity for the static projection
case; and (b) the difficulty of using t-SNE in a dynamic context (see
Sec. 2.3), which we want to overcome. Importantly, while guided
strategies mainly aim to address scalability for static projections,
our different aim of using guidance is to address spatial quality and
stability.

3.1. Landmark Dynamic t-SNE (LD-tSNE)

One idea that has been successfully used in the static case, and can be
utilized to our advantage for dynamic data, is the use of landmarks.
Landmarks or similar control point-based mechanisms are well
known and have been used to aid different tasks on static data. Exam-
ples include performance improvement [PdRDK99, DT03, DT04,
VCP13, PNML08, KTH17], support of out-of-sample capability
[BFHL17,PSZ19], and projection customization [JCC∗11,NFH∗18].
Yet, we are not aware of any work that combines landmarks or control
points to stabilize dynamic projections. We use landmarks to give the
base projection PB method a sense of global structure, in an attempt
to reduce the instability inherent to neighborhood-based projection
techniques such as t-SNE.

Two main aspects must be considered when using landmarks as
guides: how to generate the landmarks and how to use the landmarks
to steer points, as follows.

Landmark generation: Each landmark l = (ln, lq) consists of a
high-dimensional component ln ∈ Rn and a component lq ∈ Rq in
the projection space. It is important that the set L = {ln} captures
well the structure of the high-dimensional dataset D, otherwise the
“steering” may become uneven. There are different ways of achieving
this goal [DT05]. For simplicity and speed, we opted to create L
by randomly sampling k points from D, where k is a fraction of the
size of D. For most of our tests, we set k = N, i.e., the number of
points in a timeframe (see Appendix in supplementary material). To
generate the low-dimensional points lq, we simply project L using
a user-chosen method. We experimented here with both PCA and
t-SNE, and selected the landmark projection which yielded the best
results (see Appendix in supplementary material).

Landmark steering: The first step towards steering is to select a
neighborhood-based projection technique to use. We chose here t-
SNE due to its popularity and previous good results in extending it
for dynamic data [RFaT16]. To describe how steering takes place, let
us consider the original t-SNE cost function, given by the Kullback-
Leibler (KL) divergence between the joint-probability distributions
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P andQ that describe point-neighborhoods in Rn, respectively Rq

Ctsne = DKL (P||Q) =
N

∑
i=1

∑
j 6=i

pi j log
pi j

qi j
, (1)

where pi j =
pi| j+p j|i

2N models the distance of two points xi and x j in
Rn and

p j|i =
exp
(
−
∥∥xi−x j

∥∥2
/
(

2σ
2
i

))
∑

N
k 6=i exp

(
−‖xi−xk‖2 /

(
2σ2

i
)) .

Here, p j|i can be seen as a relative measure of similarity based
on the local neighborhood of a point xi. The effective number of
neighbors considered for each point is given indirectly by a user-
chosen perplexity value µ: The value of σi is computed so that, for
the user-given µ and each i, µ = 2−∑

N
j p j|i log2 p j|i .

A Student’s t-distribution with one degree of freedom is used to
compute the joint-probability distribution in Rq as

qi j =

(
1+
∥∥yi−y j

∥∥2
)−1

∑k,i 6=k

(
1+‖yi−yk‖2

)−1 .

The gradient of the cost function, given by

∂Ctsne

∂yi
= 4∑

j

(
pi j−qi j

)(
yi−y j

)(
1+
∥∥yi−y j

∥∥2
)−1

(2)

is used to incrementally move the points yi to reduce the cost Ctsne.

To add landmark influence to t-SNE we will, similarly to Rauber
et al. [RFaT16], add a second term to the cost function. In their
work, the extra term was used to penalize any kind of 2D movement.
In our case, we want to guide the placement of points yi based on
the similarity of xi with the landmarks ln. Figure 2 illustrates these
global and local influences. In Fig. 2a, the landmarks in L (light blue)
produce attraction and repulsion forces to guide the placement of the
red point yi. In Fig. 2b, the remaining points y j, j 6= i (gray in the
figure), exert similar forces, influencing and being influenced by yi,
just like in a regular t-SNE projection.

We weigh the global and local influences by a factor λ ∈ [0,1]
giving the total cost function

C = (1−λ)Ctsne +λClandmarks. (3)

In the above, Clandmarks is similar to the original t-SNE cost function
Ctsne. However, instead of considering pi j for all pairs of points in D
or Dt , we let only the landmarks l ∈ L act upon each yi, i.e.

Clandmarks = ∑
i

∑
l∈L

pi|l log
pi|l
qil

. (4)

For these influences to work consistently through all time steps t,
several aspects differ from the original t-SNE. In Eqn. 4, we use
the asymmetric pi|l instead of the symmetric pil used in Eqn. 1.
Indeed, we want the landmarks to influence the points, not the other
way round. Secondly, for the computation of σl for each landmark,
we only take into consideration the landmark points L. These two
modifications ensure that the forces are consistent and do not fluctuate
depending on the local density of points in D or Dt .

From Eqns. 2, 3, and 4, we find the gradient of C as

∂C
∂yi

= (1−λ)

(
4∑

j

(
pi j−qi j

)(
yi−y j

)(
1+
∥∥yi−y j

∥∥2
)−1

)

+λ

(
4 ∑

l∈L

(
pi|l−qi j

)(
yi−y j

)(
1+
∥∥yi−y j

∥∥2
)−1

)
.

To accelerate convergence, improve initialization, and create
tighter clusters, exaggeration terms are used [vH08, van15, LRH∗19,
LS17]. These are scalars that multiply pi j, suggesting greater sim-
ilarity between points than P captures. We do the same by adding
two factors α and β to grant additional influence on how much points
in Dt affect each other (α = local), respectively how much the land-
marks “pull” the projected points (β = global), leading to the final
cost gradient

∂C
∂yi

= (1−λ)

(
4∑

j

(
αpi j−qi j

)(
yi−y j

)(
1+
∥∥yi−y j

∥∥2
)−1

)

+λ

(
4 ∑

l∈L

(
βpi|l−qi j

)(
yi−y j

)(
1+
∥∥yi−y j

∥∥2
)−1

)
.
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Figure 2: Effect of landmarks (a) and regular projection points (b)
upon a point yi in LD-tSNE. See Sec. 3.1.

Regarding algorithmic complexity, the original unoptimized im-
plementation of the t-SNE method is O(n2) for both computation
and memory [vH08]. Our LD-tSNE algorithm has an additional cost
O(ln) given by the interaction of the landmarks with the points in
the projection, where l is the number of landmarks and n the number
of points in the projection. Therefore, the final time and memory
complexity are given as O(n2 + ln), or, since n2 dominates the cost,
LD-tSNE can be considered O(n2).

3.2. Principal Component Dynamic t-SNE (PCD-tSNE)

Our second dynamic projection, PCD-tSNE, is a guided method that
allies the stability of G-PCA with the neighborhood preservation
capabilities of t-SNE. Just like D-tSNE and LD-tSNE, it includes an
additional term to the t-SNE cost function that adds stabilization to
the otherwise unstable C-tSNE.

The first step in PCD-tSNE is to compute a projection matrix W
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constructed from the top-q eigenvectors of the covariance matrix of
D. Simply put, W describes the (two, in our case) orthogonal axes of
largest data variation over the whole dataset. For each point xi ∈ D,
we apply a transformation xiW to map xi to Rq. More specifically,
this places xi exactly as G-PCA would, which was proven earlier
[VGd∗20] to create stable projections.

The placement of each projection point yi is next given by two
factors (see Fig. 3): an attraction to the position xiW , marked in light
blue in Fig. 3a; and the influence of all other points in Dt upon yi,
as given by tSNE, these points being shown in gray in Fig. 3b. With
these elements, the gradient of our cost function is given by:

∂C
∂yi

= (1−λ)
∂Ctsne

∂yi
+λ‖yi−xiW‖. (5)

Here, λ ∈ [0,1], similarly to LD-tSNE, weighs the balance of
local and global influences. More specifically, by adjusting λ, we
can achieve an exact C-tSNE projection (λ = 0), an exact G-PCA
projection (λ = 1), or a projection in between these variants.

  

yi

EIG2

EIG1

xiW

... ...

∂Ctsne

∂yi

|| yi  - xiW ||

(a) Global influence (b) t-SNE

D0 D1 D2 Dt DT

yi

yj

Figure 3: Effect of global influence (a) and regular projection points
(b) upon a point yi in PCD-tSNE. See Sec. 3.2.

Regarding complexity, for PCD-tSNE, the first step is to compute
the top-2 eigenvectors of the original data. There are many numerical
methods designed to efficiently perform this computation with cost
as low as O(kn) for k singular values [Kre05, CD06]. Once the PCD-
tSNE optimization starts, the additional term introduced on Equation
5 represents a simple convex function, which means that convergence
is reached efficiently and PCD-tSNE performs similarly to C-tSNE,
that is, in O(n2) time.

4. Evaluation procedure

We next present our evaluation of the two proposed dynamic pro-
jection methods, LD-tSNE and PCD-tSNE. For the evaluation, we
started with the benchmark in Vernier et al.’ [VGd∗20], which is
to our knowledge the only benchmark dedicated specifically to
dynamic projections. The implementation of per-timeframe and
global methods were provided by [VGd∗20]; D-tSNE was provided
by [RFaT16]; the remaining techniques considered in our evaluation
(Sec. 3) were implemented by ourselves. All source code, datasets,
and obtained results can be found in our online repository [VCT20].

4.1. Methods

Vernier et al.’s [VGd∗20] benchmark contained 9 methods – five
global ones (G-AE, G-VAE, G-tSNE, G-UMAP, G-PCA), three per-
timeframe ones (TF-tSNE, TF-UMAP, TF-PCA), and one continuous
(D-tSNE). Atop of those we added C-tSNE and C-UMAP, and the two
newly proposed methods, LD-tSNE and PCD-tSNE. The parameters
used in the benchmark are available in the supplemental material.

4.2. Quality Metrics

Following Vernier et al. [VGd∗20] and [EMK∗19], we used 8 spatial
and 4 temporal quality metrics, as follows. Temporal metrics measure
the correspondence of movement of projection points in Rq with
regard to their change in the data space Rn space, i.e., stability.

4.2.1. Spatial metrics

Spatial metrics measure how well a projection maps the underlying
high-dimensional data, and can be divided into neighborhood preser-
vation metrics (SNP,SNH ,STrust ,SCont ) and distance preservation
metrics (SStress,SPearson,SSpearman,SKendall ). Note that these do not
necessarily relate to how humans perceive the projection [WFC∗18].

Neighborhood preservation (SNP) is the fraction of the k-nearest
neighbors of x ∈ D whose projections are in the k-nearest neighbors
of P(x).

Trustworthiness (STrust ) measures how well the k nearest neigh-
bors ν

k(P(x)) of a projected point P(x) match the k nearest
neighbors ν

k(x) of a data point x, specifically, how few miss-
ing neighbors [MCMT14] a projected point has. If Uk(x) is
the set of points in D that project in ν

k(P(x)) but are not
in ν

k(x), and rP(x,y) is the rank of y in the ordered set
of nearest neighbors ν

k(P(x)), trustworthiness is defined as
1− 2

Nk(2N−3k−1) ∑
N
x=1 ∑y∈Uk(x)(r

P(x,y)− k).

Continuity (SCont ) measures how many missing neighbors a pro-
jected point has. Let V k(x) be the points that are in ν

k(x) but
do not project in ν

k(P(x)). Let r(x,y) be the rank of y in the
ordered set of neighbors ν

k(x). Continuity is then defined as
1− 2

Nk(2N−3k−1) ∑
N
x=1 ∑y∈V k(x)(r(x,y)− k).

Neighborhood hit (SNH ) is the fraction of the k-nearest neighbors of
a projected point P(x) that have the same class label as P(x). Since
we use labeled datasets with reasonably well-separated classes in Rn

(see next Sec. 4.3), a projection P that is good for class-separation
tasks should have a high SNH value.

All the above metrics range in [0,1], with 1 indicating optimal
value. We compute SNP, STrust , and SCont for multiple (20) neighbor-
hood sizes equally spread between k = 1% and k = 20% of the point
count N. For SNH , we use 20 values for k, ranging from 0.25% to 5%
of N. We next average the results for different neighborhood sizes k,
following [VGd∗20, MMT15].

Normalized stress (SStress) measures the pairwise difference of dis-
tances of points in D and P(D). We define SStress as ∑t ∑i j(d

t
i j −

δ
t
i j)

2/T ∑i j(δ
t
i j)

2, where dt
i j and δ

t
i j are the Euclidean distances be-

tween data points xt
i and xt

j , and between their projections P(xt
i) and

P(xt
j), respectively for every point pair (i, j) and timeframe 1≤ t ≤ T .

To ease analysis, we scale distances using standardization.

Shepard diagram metrics. The Shepard diagram is a scatterplot
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of di j by δi j, for every point pair (i, j) [JCC∗11]. A diagram close
to a diagonal line indicates good distance preservation. Scatterplots
spreading above or below the diagonal indicate distance compression
(potential false neighbors), respectively stretching (potential missing
neighbors) from D to P(D). We use Pearson correlation, Spearman
rank, and Kendall tau to measure the linearity and monotonicity
of the relationship of di j with δi j in Shepard diagrams. The three
resulting metrics SPearson,SSpearman,SKendall range in [−1,1], with 1
being the ideal distance-preservation case.

4.2.2. Temporal stability metrics

We estimate how stable a projection is by studying the relationship
of the data change of a point from xt

i to xt+1
i , measured by ct

i =

‖xt
i−xt+1

i ‖, and the movement of the corresponding projections from
P(xt

i) to P(xt+1
i ), measured by κ

t = ‖P(xt
i)−P(xt+1

i )‖. For stable
P, we ideally would want κ

t
i to be proportional, or at least correlated

with, ct
i . We use the following metrics [VGd∗20] to capture this

notion of stability.

Normalized temporal stress (TStress) is defined as
∑i t (c

t
i−κ

t
i)

2/(ct
i)

2. As for SStress, we normalize distances
using standardization. Low TStress values tell that the Rq changes κ

t
i

reflect closely their Rn counterparts ct
i , which is what we want.

Temporal Shepard diagram metrics: We measure the Pearson and
Spearman correlation and Kendall’s tau (TPearson,TSpearman,TKendall)
between ct

i and κ
t
i for every sample i and timestep t. High values

indicate that the Rq changes κ
t
i are strongly correlated with their Rn

counterparts ct
i , which is desirable.

4.3. Datasets

We used 10 public datasets extracted from different sources and por-
traying a wide range of temporal phenomena, such as videos, sound
recordings, sports statistics, algorithm behavior, and a few synthetic
datasets with easily recognizable dynamics [VCT20]. The collection
also exhibits significant variations in measurable traits such as the
number of samples N, the number of timesteps T , dimensionality n,
intrinsic dimensionality ρn (percentage of dimensions that describe
95% of the data variance), and sparsity ratio σn (percentage of zeros
in the data), as shown by Table 1. These traits have been used ear-
lier [EMK∗19] to indicate that a benchmark captures an as wide as
possible (within the benchmark’s size bounds) spread of phenomena
of different natures.

cartolastd: This dataset has player statistics for the second turn of
the 2017 Brazilian soccer championship. Data was extracted from
an open-source project [GG19] that scrapes the Cartola FC [Glo19]
platform. Each of the 19 timesteps is a tournament round. Samples
are players, with dimensions being per-match performance (number
of goals, assistances, fouls, defenses) and player position (goalkeeper,
right or left-back, defender, midfield, forward).

cifar10cnn: Samples are images classified by a convolutional net-
work trained for the CIFAR10 [Kri09] dataset. Dimensions are ac-
tivations of neurons of the network’s last hidden layers. Timesteps
represent training epochs. This dataset is similar to the one produced
for MNIST [LC10] by [RFFT17], but consider the significantly
harder-to-classify CIFAR10 dataset.

esc50: Sound samples of 8 classes (brushing teeth, chainsaw, crying
baby, engine, laughing, rain, siren, wind) compressed to 128 fre-
quencies and smoothed over time. Extracted from Piczak’s ESC50
dataset [Pic15].

Table 1: Datasets used and their traits (from [VGd∗20]).

dataset samples N timesteps T dimensions n classes intrinsic dim. ρ
n

sparsity ratio σ
n

cartolastd 696 19 17 5 0.6470 0.0000

cifar10cnn 1000 30 10 10 0.6599 0.0000

esc50 320 108 128 8 0.0345 0.0000

fashion 1000 10 784 10 0.4762 0.2971

gaussians 2000 10 100 10 0.3680 0.0000

nnset 80 30 8070 8 0.0057 0.0001

qtables 180 40 1200 9 0.0077 0.0007

quickdraw 600 89 784 6 0.4309 0.9013

sorts 80 100 100 8 0.3505 0.0100

walk 300 50 100 3 0.4783 0.0001

fashion: This is a subsample of 100 images from each of the
10 classes (T-shirt/top, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag, ankle boot) of the FashionMNIST [XRV17] dataset.
Each image is recorded over 10 timesteps, with decreasing amounts
of noise over time.

gaussians: Isotropic gaussian blobs in R100 with diminishing spread
over time. Used originally to evaluate D-tSNE [RFaT16].

nnset: Internal states (weights and biases) of several neural networks
during 30 training epochs to learn classifying the MNIST dataset.
The networks have the same architecture but use different optimizers,
batch sizes, and training-set sizes.

qtables: Internal state of agents learning to move a car up a hill using
the reinforcement learning algorithm Q-learning [Wat89]. The nine
classes represent variations of learning rates and discounts.

quickdraw: Drawing sequences for 600 objects of 6 different classes
drawn by random people. Samples represent the pixels of individ-
ual drawings. Timesteps (89) represent the drawing stage. Data is
extracted from the “Quick, Draw!” Google AI experiment [JRK∗16].

sorts: This dataset was designed to compare eight sorting algorithms.
They sort each different arrays of 100 random values in [0,1]. We
take snapshots of the algorithms’ intermediate states until sorting
completion. A sample is an (algorithm, array) run, its dimensions
being the partially-sorted array values at a given sorting step.

walk: Synthetic dataset similar to gaussians [RFaT16], but with
more complex dynamics. It contains 3 high-dimensional clusters
that oscillate (approach, mingle, cross, and then drift apart) in R100

over 50 timesteps. This dataset tests how well the studied projections
can capture the approaching, mingling, and drifting-away dynamics
mentioned above.

5. Evaluation results

We used each of the selected 13 projection techniques (Sec. 4.1) to
project the 10 datasets in the benchmark (Sec. 4.3). For every (dataset,
method) pair, we compute 12 quality metrics (4 related to distance
presentation, 4 related to neighborhood preservation, and 4 stability
metrics, see Sec. 4.2), and analyze the results at different levels of
aggregation. For a direct impression, the animations of each (dataset,
method) pair can be found in our online repository [VCT20].

5.1. Visual comparison of dynamic projections

We start with a simple, visual comparison of dynamic projection re-
sults. Figure 4 shows the trail-sets – curves linking P(xt

i) for all t – for
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Figure 4: Trails showing the “hidden activity” [RFFT17] of a convolutional neural network trained on the CIFAR10 [Kri09] dataset,
computed by all 13 tested dynamic projections. Red circles show clusters of trail endpoints which indicate training convergence. Images
without red circles show (suboptimal) projection methods where it is not possible to see this training convergence.

the cifar10cnn dataset, created by the 13 tested dynamic projection
methods, organized following the taxonomy in Sec. 2.3. Points repre-
sent the last layer of neural network activations trained to classify the
dataset, over 30 training epochs. Given the problem, we expect that
activations ‘segregate’ into 10 distinct sets, corresponding to the 10
classes of images in the dataset. The trails should start from a roughly
common area (middle of the projection), indicating lack of differen-
tiation at training start, and evolve smoothy, that is, without major
twists and bends, over epochs, to increasingly differentiated clusters,
a phenomenon shown earlier in for the (far) easier-to-classify MNIST
dataset [RFFT17] by C-tSNE. We see that only a few dynamic pro-
jections exhibit this pattern: G-VAE, G-UMAP, and our proposals,
PCD-tSNE and LD-tSNE. All other dynamic projections do not show
the convergence of trails to (ten) distinct clusters (red circles in the
figure). Saliently, all TF variants show far too high dynamics - long
trails turning and twisting, suggesting chaotic dynamics, which we
know it is not the case from [RFFT17]. Other projections (G-AE,
G-PCA, G-tSNE, C-UMAP, D-tSNE) do not show a clear conver-
gence of trails into 10 clusters, which again, we know should be
expected. Overall, we argue that PCD-tSNE and LD-tSNE capture

the (known) ground-truth of the training dynamics better than most
tested counterparts.

5.2. Overview of quality metrics

Figure 5 shows the results for each method separated by metric
class. The three swarm plots [Ekl12] in the figure address each of
the three metric categories outlined above (distance preservation,
neighborhood preservation, temporal stability). Columns in a plot
indicate methods. Each point in a column corresponds to the averaged
result over the four normalized metrics in the respective class for a
(method, dataset) pair. Methods in each plot are ordered by how high
they score for a given metric class, with methods to the left scoring
higher. Methods are categorically color-coded to ease comparison
between the plots.

A method to be considered suitable for dynamic projections must
be stable and achieve good distance and neighborhood preservation.
Vernier et al.’s benchmark [VGd∗20] concluded that, from all their 9
tested methods, G-PCA and Autoencoder-based techniques (G-AE,
G-VAE) struck the best balance between these desiderates. We argue
that, in this light, our new PCD-tSNE method is even more effective at
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projecting dynamic data. Indeed, as Fig. 5 (bottom plot) shows, PCD-
tSNE’s stability is comparable to G-PCA, G-AE, and G-VAE, being
the third-most stable of all tested methods. At the same time, PCD-
tSNE achieves better results in distance preservation, being the best
of all tested methods. Regarding neighborhood preservation (Fig. 5,
middle plot), PCD-tSNE is only surpassed by the TF (timeframe) and
C (continuous) methods. This is not surprising since these methods
do not have temporal constraints. This implies, as Fig. 5 (bottom plot)
confirms, that the TF and C methods score very poorly for stability.

Additionally, PCD-tSNE overcomes two limitations of AE-based
methods and G-PCA: Autoencoders are based on neural networks,
which can be challenging to set up, optimize for the architecture,
and train; PCA based methods are sensitive to outliers and do not
explicitly try to preserve local features.

Concerning LD-tSNE, we see that this method did not achieve
metric results as good as other state-of-the-art methods. Yet, it scores
in the top half of all methods for all three considered metric classes.
Also, its strength lies in its customizability (see next Sec. 5.5): If we
want the projection to adhere to a certain shape, or we have some
prior knowledge over the high-dimensional space and we want areas
of the projections to carry a certain data-related semantic, we can
easily place landmarks to drive the projection to that behavior. This
extends the same flexibility, known earlier for static projections (see
e.g. [JCC∗11, PdRDK99]), to dynamic projections.
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Figure 5: Swarm plot ordering methods from best to worse for each
metric class. Each point corresponds to the average metric result
over the 4 metrics in a given class normalized to [0,1] for each
(method, dataset) pair. Horizontal lines show average metric values
over all datasets for each (method, metric class) pair.

5.3. Stability and spatial quality trade-off

While the swarm plots in Fig. 5 help us see which methods score
best for a given metric class, they do not let us easily compare
methods from the perspective of multiple metrics. To achieve this,
we use two star plots (Fig. 6), as follows. Each image is a scatterplot
having temporal stability as the x axis and distance and neighborhood

preservation, respectively, as the y axis. Each colored point shows the
average metric values for a given technique over all datasets. Spokes
emerging from a point show the average metric values for each of the
10 datasets run by the respective technique. For more insight into the
behavior of the methods, we highlighted the spokes for the two best
methods in each plot, i.e. the points placed closest to the top-right
corner of the plot.

Figure 6a shows that PCD-tSNE and G-VAE are the best methods
for distance preservation and stability, closely followed by G-PCA.
Yet, the spokes of PCD-tSNE (pink) are shorter than those of G-VAE
(blue). That is, PCD-tSNE achieves a consistently higher distance
preservation and stability over all 10 tested datasets than G-VAE,
which has a higher variability. Similarly, Figure 6b shows that PCD-
tSNE scores highest in terms of neighborhood preservation and
stability, closely followed by G-VAE and G-AE. Again, the spokes of
PCD-tSNE are shorter than those of G-VAE, telling that PCD-tSNE
achieves its high scores more consistently than G-VAE. We see that
G-VAE performs worst for the walk, nnset, and fashion datasets,
from both the perspective of distance preservation and neighborhood
preservation (longest blue spokes in Figs. 6a,b for G-VAE, indicated
by a cross, triangle, and check icons); for these datasets, PCD-tSNE
performs quite well (short pink spokes). Also, there seems to be an
inverse correlation between neighborhood and distance preservation
for TF-tSNE, TF-UMAP, and G-UMAP, indicating that these meth-
ods are very good at neighborhood, but not distance, preservation.
Separately, we see that our two methods, PCD-tSNE and LD-tSNE,
are the best methods, stability-wise, from the t-SNE class, and per-
form far better, on all three metrics, than D-tSNE. In other words,
if one wants to leverage t-SNE’s ability for dynamic datasets, our
methods are the best from the considered variants. Finally, we see
that temporal stability and distance preservation appear to be well
correlated over all tested methods (points in Fig. 6a close to the
diagonal), which is to our knowledge a new finding in the projection
literature. In contrast, no similar correlation appears between stability
and neighborhood preservation (Fig. 6b).

5.4. Global vs local influence control

As outlined in Sec. 3.2, the PCD-tSNE method has a parameter λ that
modulates the amount of global influence applied to the points being
projected. When projecting a sample xi ∈ D, this global influence
refers to minimizing the distance of P(xi) to the position given by
the transformation matrix W composed of the top-q eigenvectors of
D. Another way to interpret this global influence is to think of xiW
as the position that G-PCA would generate; and to think about λ as
how much we want PCD-tSNE to approximate G-PCA.

If we use high λ values (close to 1), PCD-tSNE gets very close
to G-PCA, a method that has shown to be very stable, produce
good distance preservation, but has low neighborhood preservation
(Fig. 5). Conversely, with low λ values (close to 0), no global in-
fluences act upon PCD-tSNE, which turns into C-tSNE, a method
that has high neighborhood preservation, but low stability and dis-
tance preservation (Fig. 5). Figure 7 supports and refines this insight.
For each dataset (rows), we compute the mean distance preserva-
tion (MDP), mean neighborhood preservation (MNP), and mean
temporal stability (MTS) over the respective metrics in each class
(see Sec. 4.2). For each table row, we normalize values between
0 and 1, to better see the spread of values of the respective met-
ric for each dataset. The leftmost column shows the metric re-
sults of G-PCA; the rightmost one shows the results of C-tSNE.
The six middle columns show the results of PCD-tSNE with λ in
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Figure 6: Star plots compare dynamic projection methods from the
perspective of stability vs distance (a) and stability vs neighborhood
(b) preservation. A point shows the average values of these metrics for
a given technique over all datasets. Spokes show the average metric
values for each dataset for a given technique. Spokes of PCD-tSNE
and VAE, the two techniques that score best, are in bold. Methods
with big spoke fans show high variation on quality metrics. Short
spokes show consistent results of a method over all 10 datasets.

{10−2,10−3,10−4,10−5,10−6,10−7}. Cells are colored using an
ordinal colormap (dark green=low, bright yellow=high metric values)
on the normalized values. The color gradients show that PCD-tSNE
indeed yields metric values that are very similar, for high, respec-
tively low, λ to those of G-PCA, respectively C-tSNE. Also, we see
that PCD-tSNE can integrate characteristics of both C-tSNE and
G-PCA and achieves the best balance between all quality metrics, as
shown by the overall brightest columns in the middle of the table. In-
terestingly, PCD-tSNE is also often able to achieve the best result for
certain quality metrics (maximum averages, marked bold in Fig. 7).
This shows that PCD-tSNE doesn’t simply interpolate projections
(like, for example, in [KHS∗17]), but uses the characteristics of both
C-tSNE and G-PCA to create a better projection. In Fig. 7, note that
different rows show different trends, which is expected since we
consider different datasets and metrics.

Finally, Figure 7 shows that G-PCA and C-tSNE are not always
optimal – the best projection lies sometimes in between, which is

what PCD-tSNE obtains. Separately, it shows that optimal parame-
ters depend on the dataset. The considered MDP, MNP, and MTS
quality metrics could be used for automatic finding of such optimal
parameters – or good preset values for all datasets – by grid search,
following the approach in [EMK∗19] for static projections.

G-PCA C-tSNEPCD-tSNEhigh λ low λ

low quality high quality

Figure 7: Mean distance preservation (MDP), mean neighborhood
preservation (MNP), and mean temporal stability (MTS) per dataset,
as in Figs. 5 and 6, but normalized over the 8 runs in each subplot.
The leftmost column is for G-PCA. The next 6 columns are for PCD-
tSNE with λ ∈ {10−2,10−3,10−4,10−5,10−6,10−7}. The right-
most column is for C-tSNE. By changing λ, PCD-tSNE generates a
smooth gradient, simulating G-PCA and C-tSNE at the extremes and
producing hybrids in-between (Sec. 3.2). The best balance between
all metric classes is often found in this compromise.

5.5. Using landmarks to steer dynamic projections

The key trait of LD-tSNE is that it allows steering a dynamic pro-
jection by changing the landmark point positions lq. If we monitor a
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high-dimensional process and we know what final and failed states
look like, we can place landmarks indicating these states. As the
process evolves, we will have a clear picture of which samples failed
or succeeded; which samples are on the “right track”; and how simi-
lar samples are in in-between states among themselves and to these
known states. Guiding landmarks are also valuable if we want a
system that is consistent over slightly different datasets.

Landmark-based methods present many challenges in practice:
How to choose a small set of points in Rn that is representative
of D? How many points do we need, and how do we select these
representatives? De Silva et al. [DT05] propose regression models
for picking the best landmarks, while Pezzotti et al. [PHL∗16] use
a hierarchical approach. Another option is to synthesize landmarks
using models that approximate the manifold (e.g. Autoencoders). For
simplicity, we select our landmarks by random sampling D, as in
earlier work considering static projections, e.g. [JCC∗11,PdRDK99].

Figure 8 shows how landmark placement can steer a dynamic
projection. We use the gaussians dataset, as we know its dynamics,
so we can assess how well landmark steering works on the resulting
projections. Points are colored per cluster; landmarks are drawn
white. Figure 8a shows several timesteps of LD-tSNE with landmarks
placed by G-PCA. We see how clusters ‘implode’ over time. While
clusters stay roughly in the same place over time in the projection (a
good indication of stability), their spatial organization is not ideal
for monitoring the phenomenon. Figure 8b shows LD-tSNE for the
same dataset, with the same landmarks ln selected from D, but with
the 2D landmarks lq placed manually into 10 horizontally-aligned,
similar-size, clusters. The images show the same ‘implosion’ effect
over time as in Fig. 8a. We argue that the dynamics of the data is
now much easier to see due to the separation of clusters given by
our 2D landmarks’ placement. The point made is that the freedom of
landmark placement of LD-tSNE allows one to separate the issues
of spatial disentanglement of samples in the projection (done by
the landmark placement) from monitoring the dynamics of the data
(taken care of by LD-tSNE). The Appendix (supplementary material)
shows additional information on this and related experiments.

6. Conclusion

We have presented two projection methods that leverage the good
neighborhood-preservation ability of t-SNE for dynamic (time-
dependent) data. For this, we use guidance in the form of landmarks
(for our first method, LD-tSNE), respectively attractors to principal
vectors (for our second method, PCD-tSNE). We compared our meth-
ods against 11 dynamic projection techniques on 10 datasets using 8
spatial quality and 4 stability metrics. The comparison showed that
PCD-tSNE scores better than all compared methods on the combined
spatial quality and stability criteria. LD-tSNE obtained second-best
scores on neighborhood preservation, allowing flexible placement
of landmarks to drive the shape of the resulting dynamic projection.
While our work – for sure – does not solve the problem of dynamic
projection of high-dimensional data, we argue that our methods bring
added value to users interested in this goal.

We next aim to extend our methods to handle streaming data.
Adapting our work to use deep learning, similar to [EHT20], would
lead to high-quality and computationally scalable dynamic projec-
tions. Additional validation of our methods on more datasets, and
with concrete use-cases and user tasks, is also important. Finally, de-
veloping new metrics to measure the quality of dynamic projections
for specific tasks, thereby extending the insights in [NA19] for the
dynamic case, is a long-term goal we aim to pursue.

(a) (b)

t = 0

t = 2

t = 4

t = 6

Figure 8: Projection of the gaussians dataset with landmarks (gray
points) placed (a) by G-PCA and (b) manually according to cluster
label. Points are colored by cluster label. The implosion dynamics
known to be present in the data is visible in both cases. Yet, the
manual landmark placement creates a less cluttered view.
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