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Abstract
High-dimensional data analysis often uses dimensionality reduction (DR, also called projection) to map data patterns to
human-digestible visual patterns in a 2D scatterplot. Yet, DR methods may fail to show true data patterns and/or create visual
patterns that do not represent any data patterns. Projection Quality Metrics (PQMs) are used as objective measures to gauge the
above process: the higher a projection’s scores in PQMs, the more it is deemed faithful to the data it represents. We show that,
while PQMs can be used as exclusion criteria — low values usually mean poor projections — the converse does not always
hold. For this, we develop a technique to automatically generate projections that score similar or even higher PQM values than
projections created by well-known techniques, but show different, often confusing, visual patterns. Our results show that accepted
PQMs cannot be used as an exclusive way to tell whether a projection yields accurate and interpretable visual patterns — in this
sense, PQMs play a role akin to that of summary statistics in exploratory data analysis. We also show that not all studied metrics
can be fooled equally well, suggesting a ranking of metrics in their ability to reliably capture quality.
CCS Concepts
• Mathematics of computing → Dimensionality reduction; • Computing methodologies → Machine learning; • Human-
centered computing → Information visualization;

1. Introduction

Dimensionality Reduction (DR, also called Projection) is a choice
tool for depicting high-dimensional data, scaling well in the number
of data samples and data dimensions, with ease of use and many
implementations. DR scatterplots encode data so that users can per-
ceive visual patterns — e.g., grouping, spacing, proximity, outliers
— to infer the same aspects for the data distribution.

In general, no DR method can map data with a high intrinsic
dimensionality to a 2D scatterplot while perfectly preserving all
data structure. Projections can both fail to show true data patterns
and also create visual patterns that do not represent data patterns
— that is, at a high level, distort the data depiction [NA18]. Some
authors strongly warn about DR distortions affecting exploration
tasks [CP23] while others support opposite views [LBK24]. This
points to the need for objectively quantifying such aspects in a
projection before it is used in practice.

DR addresses this by so-called Projection Quality Metrics
(PQMs) [JCJ∗23, EMK∗21], each measuring a specific data-pattern
preservation, e.g., neighborhood matching and pairwise distance dis-
tortion. Projections with high PQM values are deemed to faithfully
reflect data patterns, so, are used for visual exploration; projections
with low PQM values are discarded since they can be misleading.

Previous work has provided evidence that some quality metrics
can produce false positives when evaluating projections [STMT12].
In this work, we show that several commonly-used quality metrics
fall short of gauging how well a projection captures data patterns in
this same sense; much like summary statistics in exploratory data
analysis, PQMs are necessary but not sufficient to characterize a
faithful data depiction [Ans73, MF17]. To this end, we develop

an algorithm that generates ‘fake’ projections containing arbitrary
noise-like visual patterns scoring close to, or even higher than, pro-
jections created using standard DR techniques. We post-process
our fake projections to introduce even more controlled visual pat-
terns and still score high in quality metrics. While users can dismiss
noise-like fake projections as unnatural, our post-processed fake
projections have higher potential to mislead users to believe that the
shown visual patterns actually represent data ones. We next show
that it is easier to ‘fool’ certain metrics than others, suggesting a
ranking of PQMs in terms of their ability to gauge a good projection.

2. Background and Related Work

A dataset X = {x1, . . . ,xn} is a collection of n data points in a
D-dimensional space (xi ∈ RD). Points can be optionally paired
with a label ci ∈ {1, . . . ,K}. We denote the label set of X by
C = {c1, . . . ,cn} and the average of a set of m scalars by µ̄ = 1

m ∑i µi.
Let Y = P(X) = {y1, . . . ,yn} be a projection of X, where yi ∈ Rd

with d� D. We next restrict ourselves to d = 2 since we consider
projections visualized as 2D scatterplots. Except where stated other-
wise, our scatterplots show class labels by point colors.

2.1. Dimensionality Reduction

DR techniques create P(X) by aiming to preserve specific aspects
of X that are relevant to understanding this data. For example,
MDS [Kru64] aims to minimize the squared error between pairwise
Euclidean distances computed in RD with respect to those in R2.
Isomap [TSL00] replaces Euclidean with geodesic distances along
an approximation of the manifold containing X. t-SNE [MH08] and
UMAP [MH18] aim to preserve neighborhoods in X and achieve
good results for data with high intrinsic dimensionality.
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Figure 1: Isomap (left) and t-SNE (right) projections of the Fash-
ionMNIST dataset showing contradictory visual patterns. In (A),
Isomap shows same-class points spread out, suggesting they are not
very similar; t-SNE packs these points tightly, suggesting the oppo-
site. In (B), Isomap shows the red and orange classes overlapping;
t-SNE shows these classes clearly separated.

Users typically study P(X), with points optionally enriched
to show a few dimensions via color, size, shape, or annotations,
looking for salient visual patterns. These include (1) clusters of
densely packed points with similar values for a dimension, shown,
e.g., via color coding; (2) clusters with different point densities;
(3) overlaps of clusters with different point colors; (4) clusters
of different elongations or shapes; or (5) outlier points far from
the scatterplot bulk. Such visual patterns have been studied in de-
tail by scagnostics works for selecting informative scatterplots
[TT88, WAG05, WAG06, YWS∗14]. Visual patterns help inferring
data insights, e.g., (1) similar samples sharing a common (dependent)
attribute, e.g., label; (2) data subsets of different internal similarities;
(3) mixed distribution modes yielding different values for a depen-
dent attribute; (4) latent variables along which data has different
variance; and (5) samples not obeying a standard distribution. Many
projection techniques exist with different optimization aims and pa-
rameters, so one can easily create many different scatterplots P(X)
from the same data X [WVJ16, VBF21, CHAS18]; some authors
even proposed to control visual patterns in projections [MTB24].
This has two direct implications for our work, as follows.

Picking a DR technique: To explore a dataset X, we can use sev-
eral techniques Pi, e.g., MDS and t-SNE. For this, we must know
which data patterns (and how well) each Pi preserves. Preserving a
data pattern means mapping it to a specific visual pattern in the scat-
terplot. If we see that visual pattern, we can ‘reverse’ the mapping to
infer the associated data pattern [Mun14,Tel14]. Yet, visual patterns
created by different Pi might contradict each other (see Fig. 1). As
we generally do not know how techniques Pi exactly map all types
of data patterns to visual ones, how to pick a ‘suitable’ Pi?

Validating new techniques: When developing a new projection
technique Pnew, we need to objectively compare Pnew to existing
techniques Pi to tell whether Pnew better maps some data patterns to
visual ones than Pi; how much better that is; and for which patterns.

2.2. Projection Quality Metrics

Projection Quality Metrics (PQMs) are the currently accepted way
to address the above two points. PQMs are functions that measure
how well some data patterns in X are mapped to some visual patterns
in Y = P(X). Global PQMs do this by computing a single score

z =M(X,Y,C). (1)

For example, Normalized Stress [JCC∗11] computes the distortions
in pairwise distances introduced by P vs the same distances in X.

The Procrustes statistic [GR09] measures how well P represents the
data after rescaling, rotating, and translating neighborhoods in Y to
match the corresponding ones in X. Distance Consistency [SNLH09]
assesses visual separation as the fraction of points in Y that are closer
to the centroid of their own class than to that of another class. Local
quality metrics measure how well a specific data pattern at (or close
to) data point xi is preserved by the scatterplot points at, or close to,
the projection yi of xi, outputting per-data point scores as

Z = µ(X,Y,C), Z = {µi} ∈ [0,1]n. (2)

Local metric scores µi can be aggregated to a global average score
µ̄ = 1

n ∑i µi(X,Y,C). Trustworthiness and Continuity [VK06] de-
fine Sk

D and Sk
2 — the k-nearest neighbors of xi ∈ X, respectively

P(xi) ∈ P(X) — and compute how many points in Sk
D are in Sk

2
and how many points in Sk

2 are in Sk
D, respectively. Neighborhood

Hit [PNML08] measures how many points in Sk
2 have the same

label as each xi ∈ X. Other local metrics include projection preci-
sion score [SvLB10], stretching and compression [Aup07, LA11],
cluster separation metrics [SA15, STMT12], and the Shepard dia-
gram [SC88,JCC∗11]. Tens of such metrics exist for projections. For
recent surveys and implementations, we refer to [EMK∗21,JCJ∗23].

We draw a distinction between PQMs and Visual Quality Metrics
(VQMs) [BS06]. While the latter can be used to assess the purely-
visual patterns of a scatterplot — which might represent a projection
P — they are not adequate to judge P itself, since projections need
to preserve patterns from the data; e.g., if the data presents poor
class separation, this should be reflected inP , leading to a low VQM
value for that pattern, even if P has good quality.

2.3. Are Quality Metrics Enough?

PQMs have several advantages for assessing projections: they
are quantitative (and typically deterministic); they evaluate easily,
rapidly, and automatically. They allow a simple ranking of pro-
jections with respect to quality [EMK∗21]: If P1 scores higher
than P2 on several such metrics, then P1 is found better than
P2 (relative assessment); the closer metric values are to the maxi-
mum, the better a projection is (absolute assessment). Such crite-
ria help filter out or rank projections before users examine them
[JJ09, Hub85, WM17] and to holistically evaluate projection tech-
niques [MBC∗23, EMK∗21]. Yet, PQMs do not truly capture the
essence of a good projection, namely its ability to consistently map
given data patterns to given visual patterns, due to several factors:

Level of detail: Current PQMs measure how P works locally or
globally (see Sec. 2.2). Using only such levels is not enough since
humans examine scatterplots (or actually any image) over many
scales [AEM11, SA15, EMK∗21]. Most PQMs model pattern scale
by the size of k-nearest neighborhoods in data or projection spaces;
or by clustering the data or projection, e.g., by k-means and analyz-
ing the resulting so-called motifs [SSB∗16]. Such relatively simple
approaches cannot capture the full richness of pattern shapes that
humans see, and reason about, when viewing a projection scatter-
plot. In fact, finding all such patterns in a plot Y is an open problem.
Also, we lack ways to find which data patterns are missing from a
projection Y. We will show that we can add to a projection salient,
but arbitrary, visual patterns, on different scales, without changing
its computed PQMs. This proves our point that current PQMs are
not enough to fully capture projection quality.

Perception studies: Several studies have been conducted to find
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which quality metrics better align with how humans perceive pro-
jections [SNLH09, SA15]. This typically uses a correlation proxy:
if users are more likely to pick a projection when a given metric is
high, one may infer that such a metric aligns well with the human
processing of projections. Such work is often task-based, i.e., uses
a scatterplot to solve a given problem or answer a given question.
Such tasks include the identification of class clusters and their visual
separation [EMdSP∗15, SA15]. Tatu et al. [TBB∗10] studied the
perceived quality of 2D projections based on cluster separability
and cluster density. Rensink et al. [RB10] studied how correlation is
perceived in similar scatterplots. Other authors studied metrics that
capture scatterplot perceptual similarity [PKF∗16, DW14, AEM11].
While useful to understand how humans interpret visual patterns
in scatterplots, such studies do not answer how well these visual
patterns actually capture data patterns.

Continuity: A metric that aims to rank some phenomenon on
a continuous scale should itself be continuous [AY79]. This
property has been studied earlier under the name ‘stability’
for treemaps [VSC∗20], decision maps [OEJT23], projections
[VGdS∗20, BTT22], and inverse projections [EAS∗23]. In our con-
text, continuity means that small changes ∆ in a projection should
imply small changes in the PQM of that projection:

M(X,P(X)+∆)≈M(X,P(X))+O(‖∆‖).

The further we are from this goal, the less canM tell something
useful about P(X). Indeed, if M strongly changes while P(X)
stays about the same, then its values cannot characterize P(X)
robustly — see the work of Wang et al. [WWL∗20]. Conversely, if
P(X) changes a lot (large ∆), then users will see different visual
patterns in it, and in turn infer different data patterns. However, if
M gives about the same value for the changed projection, then it
will be wrongly labeled as ‘showing the same’. In our work, we will
show that we can achieve the latter for many existing PQMs, which
questions their ability to capture projection quality.

3. Fooling Projection Quality Metrics

While PQMs have several limitations (Sec. 2.3), projections are typi-
cally assessed by using precisely such metrics. Extensive evaluations
have shown that projections scoring low values of PQMs are practi-
cally useless for data exploration [EMK∗21]. Indeed, if a projection
cannot preserve even the basic patterns current PQMs capture, then
it is likely a poor projection. The converse is unclear: Do high values
for PQMs mean that the visual patterns in a projection map data
patterns clearly and accurately? To show this is not the case, we
propose a systematic procedure to create projections that contain a
scale of visual patterns which make them hard to interpret, or are
very likely misleading, and still obtain high PQM values. Just like
summary statistics for data, PQMs do not tell the whole story about
a projection’s ability to map data patterns [MF17, Ans73]. While
PQM’s use as exclusion criteria is justified — low PQM values
mean poor projections — the converse does not generally hold.

Our approach works as follows (see also Fig. 3): Given a dataset
X and its projection Y = P(X) computed by any user-chosen tech-
niqueP , we aim to modify, or ‘fool’,P(X) in random or determined
ways while keeping M(X,P(X)) constant or even increasing it.
This yields ‘fake’ projections of X that show arbitrary visual pat-
terns in Y with no PQM cost decrease; hence, the said PQMs are not
good to gauge how well visual patterns in Y capture data patterns
in X. One way to distort Y while increasing PQMM would be to

use some sort of gradient ascent: compute∇YM(X,Y) and move
points in Y according to it. Yet, many PQMs are not differentiable,
so we cannot directly compute∇YM. To address this, we

1. approximate M with a continuous model differentiable with
respect to Y: a feed-forward neural network Qθ with parameters
θ minimizing a regression loss;

2. use (as approximation target µ) the local version ofM (Eqn.2)
as a proxy, since we need one target value per (xi,yi) pair dur-
ing training, whereas a global metric such as Shepard good-
ness yields one target value for the entire P(X). This limits our
method to target metrics of the type given by Eqn. 2. The loss
function for Qθ then reads

LMetric(θ) =
1
n

n

∑
i=1

(Qθ(xi,yi)−µi(X,Y,C))2 .

This learning setup does not capture a PQM in a way that general-
izes to new projections of the same data. Since PQMs are typically
discontinuous or at least non-differentiable, changes to one yi do
not smoothly change the value ofM. We do not propose, and do
not need, a continuous approximation of PQMs and refrain from
using Qθ as a true approximation toM. Figure 2 shows this for
the µ =Trustworthiness metric. We see that µ and Qθ have different
variations when we change P(X). Despite this, the approximation
Qθ is still useful for our purposes (see Sec. 3.1).

Figure 2: Left: Each pixel p shows theM= Trustworthiness value
of a projection obtained by moving a single point (marked X) of
a reference P(X) to p. Here, P = t-SNE and X = MNIST. Right:
predicted Qθ after training to approximate Trustworthiness for this
projection. While most of the true behavior ofM is not captured by
Qθ, the approximation captures correctly the high/low value zones.

3.1. Pattern-destructive phase

We set out to create projections Ŷ which are evidently poor but still
score well according to a target metric µ by using a modified version
of NNP [EHT19]. NNP outputs a projection Ŷ = Pφ(X) by training
a neural network Pφ to mimic a reference projection P of a subset
X′ ⊂ X. NNP’s loss function is a simple Mean Squared Error

LNNP(φ) =
1
|X′|

|X′|

∑
i=1

∥∥Pφ(x
′
i)−P(x′i)

∥∥2
.

Beyond what NNP does, we wish to create a projection that has
high values of one or more PQMs and remove visual patterns that
exist in Y (thereby creating type-I errors). For this, we pick a metric
µ to fool and use Qθ, trained to approximate µ, as an extra loss
to maximize. This extra loss can destabilize training, likely due
to our approximator inability to fully capture µ. To fix this, we
add an auxiliary learning goal that reconstructs X from the learned
projection Ŷ = Pφ(X), following [MTB24, MSJG15]. For this, we
augment NNP with a network Iψ : R2 → RD with parameters ψ

outputting X̂ = Iψ(Pφ(X)) and minimizing a reconstruction loss.
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Figure 3: Architecture of our projection fooling method. From a given dataset X and a reference projection Y = P(X), we compute a local
quality metric µ and train a neural network Qθ to infer µ at all points P(X). We then freeze Qθ and use it, with X and Y, to train the neural
network Pφ to project X as to maximize Qθ while minimizing a reconstruction error. We also force Pφ to learn the reference projection Y for
the first 10 training epochs. After training, we generate the fooling projection Ŷ = Pφ(X) and discard Pφ,Iψ, and Qθ.
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Figure 4: Fooled projections Ŷ = Pφ(X) for the HAR dataset starting from the same t-SNE projection P (left) for different target metrics µ.
We annotate each projection with its target µ and the difference inM = µ̄ using P as reference (in brackets). We see only slight losses in
Trustworthiness and Continuity despite the projections looking degenerate. We see higher losses in Neighborhood Hit and Jaccard Similarity.
For the latter case, the visual patterns we obtain are more in line with those usually expected in projections.

The complete loss to be minimized reads

LFooler(φ,ψ) =−
1
n

n

∑
i=1

(
Qθ(xi,Pφ(xi))−κ‖Pφ(xi)−yi‖2

− ln(1+‖Iψ(Pφ(xi))−xi‖2)
)
,

(3)

where x 7→ ln(1+x) squashes down high values of the reconstruction
loss. We set κ = 10 for the first 10 training epochs and next set it to
zero. This makes the model first learn the reference projection, much
like NNP; next, the model can freely modify the learned projection
to get higher µ values as predicted by Qθ. This process naturally
generates projections with poor visual patterns, since point positions
are optimized independently, and according to Qθ, an approximation
of limited accuracy. Figure 3 shows our main fooling pipeline.

The differentiability of Qθ with respect to the projection Y en-
ables guiding Pφ towards regions with higher Qθ values. This is be-
cause gradients can flow through Qθ into Pφ; this would not happen
if we used µ (orM= µ̄) instead of Qθ since µ is not differentiable.
Indeed, the first term on the right hand side of

∂µ
∂φ

=
∂µ
∂yi

∣∣∣
yi=Pφ(xi)

∂yi

∂φ

does not exist, while ∂Qθ/∂yi (using Qθ ≈ µ) is always defined.

After training, we run Pφ in inference mode with X as input
to get our object of interest Ŷ and discard all neural networks.
Figure 4 shows examples of our fooled projections Ŷ = Pφ(X) for
the HAR dataset and four quality metrics. The learned projections
for Trustworthiness and Continuity are visually poor (Fig. 4a,c):
Points collapse towards a scatterplot corner; class separation is low;
yet, both target metrics suffer only minor penalties of 0.02 and 0.01,
telling that they are not sensitive to the artificial patterns our fooling
introduces. The learned projection for Neighborhood Hit is also
degenerate (Fig. 4d) but less than (a) or (c); here, the target metric

suffers a heavier penalty. Finally, when aiming to fool the Jaccard
metric, we see the least degenerate projection of all (Fig. 4b); quality
has now a heavy drop of almost 0.2.

3.2. Pattern-constructive phase

Figure 4 shows that Pφ creates projections with random visual pat-
terns but with PQM values close to those of the ground-truth pro-
jection. Yet, one could argue that users might quickly feel that such
projections are fabricated and, even if they have high quality val-
ues, dismiss them from further exploration. We next present three
postprocessing techniques that modify fooled projections to keep
high PQM values and contain visual patterns typically seen in good-
quality projections that do not reflect the underlying data (thereby
creating type-II errors).

Postprocessing aims to counteract what a salient aspect of Ŷ —
the collapse of the scatterplot onto the projection boundaries (Fig. 4).
We cannot change Ŷ arbitrarily since we want to affect PQMs as
little as possible. This suggests some sort of ‘semi-rigid’ scatterplot
transformation that preserves neighborhoods. Our postprocessing
techniques all work by building a graph from the projection Ŷ or
from the dataset X (see Fig. 5) in different ways, as explained next.

Data Nearest Neighbors: We build a weighted k-nearest neighbors
graph GDataNN of X, with weights given by Euclidean distances
between data points — we use k = 7 in our experiments.

Projection Nearest Neighbors: We build the unweighted k-nearest
neighbors graph GProjNN of Ŷ — we use k = 7 in our experiments.
We use an unweighted graph as the distances in projection space are
not necessarily meaningful after the fooling procedure.

Delaunay Triangulation: We build the Delaunay triangulation G4
of the projection Ŷ forcing simplicial output.

On all these graphs, we apply 5 iterations of the standard force-
directed layout [FR91] to tweak point positions in Ŷ = Pφ(X). For

© 2025 The Author(s).
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Input Build Graphs

5 iterations of
Force-Directed

Output

Figure 5: Architecture of our post-processing pipeline. Starting from a given dataset X and fooled projection Ŷ, we build three different
graphs — GProjNN, GDataNN, and G4. Each of those three graphs is then used to perform 5 iterations of a force-directed layout, producing
three different outputs. To avoid clutter, we visualize here only the output using G4.

a) b) c)(ref)

Figure 6: Postprocessing with (a) GProjNN, (b) GDataNN, (c) G4 of
the Continuity-fooling projection of the HAR dataset (ref). Annota-
tions show the difference in Continuity vs the unprocessed output.
While (c) shows a more important loss, (a) shows barely any change
in Continuity. (b) shows an increase in Continuity and visual pat-
terns similar to those typical in good projections.

the first two graphs, we use the default ideal edge length l = 1/
√

n;
for G4, we set l to the 40th-percentile of pairwise projection dis-
tances. Figure 6 shows the results of our three postprocessing meth-
ods for the HAR projection (Fig. 4c). Scatterplot points spread better
as compared to the unprocessed version. The resulting scatterplots
also appear more similar to typical projections in DR literature.
Large-scale visual patterns appear, e.g., circular structures which
could fool users to believe that they are data-driven. Postprocessing
only lightly affects the PQMs (see Fig. 7) and can even increase
these. All in all, we see that introducing significant visual patterns
that are unrelated to the data is not detected by the evaluated PQMs.

Figure 7: Effect of post-processing on studied quality metrics across
our experiments. We measure the difference ∆M = MPost−M† be-
tween metrics learned by our fooling pipeline M† and their values
after post-processing MPost. Points are mostly concentrated around
0, meaning there is no strong (negative or positive) influence in
terms of quality in the constructive phase of the pipeline.

4. Evaluation

We evaluate the ability of our fooling mechanism to create projec-
tions with high values of various PQMs. As many such PQMs exist,
we focus next on metrics which are

• easy to compute: metrics should have few hyperparameters;

• deterministic: for a given X,Y, and C, the metric value should
be the same; non-deterministic metrics are less useful in practice
for assessing the quality of a given study object;
• common: fooling a metric well-established in DR literature has

arguably stronger impact than fooling an infrequently used one.

With these criteria, we selected 17 quality metrics (Tab. 1). Their
definitions, value ranges, and optimal values are listed in the supple-
mentary material.

Table 1: Projection quality metrics used in the evaluation.

Metric Parameters Introduced in

Average Local Error — [MCMT14]
Continuity and Trustworthiness k [VK06]
Class-Aware Continuity and Trustworthiness k [CPA∗20]
Distance Consistency (DSC) — [SNLH09]
Proportion of False (resp. True) Neighbors k [MCMT14]
Jaccard Similarity of Neighbor Sets k [Jac01]
Mean Relative Ranking Errors k [LV09]
Neighborhood Hit k [PNML08]
Normalized Stress — [JCC∗11]
Pearson Correlation of Distances — [GZZ05]
Procrustes Statistic k [GR09]
Scale-Normalized Stress — [SMK24]
Shepard Goodness — [SC88]

4.1. Experiment Setup

Projections: We tested four commonly-used projection techniques,
namely t-SNE [MH08], UMAP [MH18], MDS [Kru64], and
Isomap [TSL00]. These techniques are chosen due to their wide
adoption, readily-available implementation [PVG∗11], and diversity
in terms of mathematical grounding and algorithm design.

Datasets: We used six datasets (Tab. 2) with a stratified subsample
of at most 5000 samples from each dataset in all experiments.

Target metrics: For the local metric to fool (Fig. 3, Sec. 3), we
explore four cases: Continuity, Jaccard set similarity, Neighborhood
hit, and Trustworthiness, and also fooling all four metrics jointly.
All these metrics have one hyperparameter, the neighborhood size k,
which we set to k ∈ {1,7,21,51}. In total, we consider 6 datasets×
4 projections × (4 + 1) fooling targets × 4 hyperparameter settings
= 480 total experiments. For each setting, we measure the 17 chosen
metrics — identically setting k when applicable — leading to 8160
measured values in total. Given this amount, we next show different
kinds of aggregation and focus on specific instances. Further details
are given in the supplementary material. All results can be explored
interactively online [MBT24b] (see also Fig. 9).

Implementation details: We have a large experimentation space,
so computing metrics must be fast. We implement the 17 studied
metrics using TensorFlow [ABC∗16] as a PyPI [MBT24a] package.
Our code is openly available [MBT24c].

© 2025 The Author(s).
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Figure 8: Samples of our fooling pipeline for different projection techniques P , datasets X, and target metricsM. Each projection is annotated
with the value of the target metricM, as well as of CIVM [LLX∗10], a VQM measuring cluster preservation (V in each plot). For further
discussion on the elements marked with glyphs, see Section 4.2.

Hyperparameter settings: All our studies use the same hyperpa-
rameters. We train all our neural networks with a learning rate of
10−3, mini-batches of 256 data points, and the Adam [KB15] op-
timizer, 100 epochs (Qθ), and 1000 epochs (Pφ together with Iψ).
Full architecture details are given in the supplementary material.

Table 2: Datasets used for experimentation.

Dataset # Dimensions (D) # Classes (K)

FashionMNIST [XRV17] 784 10
Human Action Recognition (HAR) [AGO∗12] 561 6
MNIST [LBBH98] 784 10
Reuters [Tho17] 5000 6
Spambase [HRFS99] 57 2
USPS [Hul94] 256 10

4.2. Studying the created projections

We start exploring by looking at the outputs generated by our fooling
pipeline (fooled projections and their quality scores) and compare
these with the reference P . Figure 8 shows a selected subset of such
results. All experiments are available in the online material.

Figure 8a shows the projections Y used as reference by our fool-
ing pipeline, each annotated with the value of the metric targeted
for fooling. Columns (b) show the learned Ŷ = Pφ(X) before post-
processing. These projections have undesirable visual properties
(point overlap, cluster collapse, and points with extreme x and/or y
coordinates), so they clearly cannot preserve any meaningful data
patterns — they actually show no human-digestible visual patterns
overall. Yet, the evaluated metrics score most of these fake projec-
tions highly — see columns (b) — often higher than the reference
projection. Columns (c-e) show the outcomes of our post-processing
G4, GProjNN, and GDataNN. The post-processed projections all look
more plausible, i.e., contain visual patterns one typically sees in
DR scatterplots. Yet, these patterns are misleading: For example,
the plot for Isomap-MNIST-NH created by GProjNN(♣) looks like
a symmetric dumbbell while the ground-truth Y shows there is no
such structure in MNIST; the plot for t-SNE-MNIST-NH created
by GProjNN(�) shows a circular structure which, again, does not

exist in MNIST; the plot for t-SNE-MNIST-NH created by G4(♠)
shows a cloud of outliers top-left which do not exist in MNIST.
Post-processing weakly affects quality values, sometimes positively,
sometimes negatively — another instance of insensitivity of the qual-
ity metrics to introducing arbitrary patterns into a projection. Indeed,
of all post-processing approaches, only GDataNN uses ground-truth
data, and still does not always lead to a gain in quality metrics.

4.3. Correlations in fooling behavior

We next explore all metric values of the fooled projections Ŷ
before post-processing (Sec. 3.2) to find which metrics tend to
move the same way during fooling. For this, we measure all
17 metrics for a reference projection Y = P(X), obtaining M =
[M1(X,Y), . . . ,M17(X,Y)]. We run our fooling pipeline with a
fooling target M† and obtain Ŷ = Pφ(X). We measure again all
17 metrics on Ŷ, obtaining M† = [M1(X, Ŷ), . . . ,M17(X, Ŷ)]. The
value ∆M = M†−M tells us how much fooling the single target
M† affected all 17 metrics. Doing this for all experiment settings
yields a set of 480 different (M,M†,∆M). With these data, we set
out to answer two questions:

1. Which metrics behave similarly across projections? Figure 10a
answers this by showing the correlations in M.

2. Which metrics does our fooling affect as a group, i.e., when fool-
ing someM†, are consistently fooled too. Figure 10b answers
this by showing the correlations in ∆M.

Yet, our 17 metrics have values inconsistent in meaning: Stress
and Procrustes range from 0 (best) to infinity (worst); Trustwor-
thiness and Continuity range in 0 (worst) to 1 (best). This creates
negative correlations where pairs of metrics would agree on im-
provements. To fix this, we re-map all metrics so higher values
mean better quality (Tab. 3). Any increase ∆Mi > 0 now means an
increase in quality. In Figure 10a, blue (resp. red) show positively
(resp. negatively) correlated metric values for the reference projec-
tions. That is, a blue cell for a metric pair tells that these metrics
move in roughly the same way — a projection scoring, say, high for
Trustworthiness also scores high on Continuity. We see that most of

© 2025 The Author(s).
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Figure 9: Exploratory online tool for studying projection fooling results. Top: Results of fooling Continuity (outlined in black) for four
projection techniques (Isomap, MDS, t-SNE, UMAP) on the MNIST dataset. Table cells are colored to show PQM gain resp. loss vs the
reference projection (blue: fooling increases PQM; white: similar values; red: fooling decreases PQM). Fooling yields practically identical
Continuity, but also very similar values for the other 17 metrics, which we did not optimize for. The main losses for these 17 metrics are for
Stress (MDS), Distance Consistency (t-SNE, UMAP), and Pearson R and Shepard (Isomap). Bottom, from left to right: Reference projection
Y, learned projection Ŷ, and post-processed outputs G4, GProjNN, and GDataNN, annotated with the difference in Continuity vs Y. Fooling
produces both random-like patterns (Ŷ) but also salient structures which actually have no meaning (GProjNN, GDataNN).
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Figure 10: Correlations in metric values M (a) and value variations ∆M (b). Blue: metrics that vary in the same direction (a), resp. metrics
showing the same fooling behavior (b). We use remapped values (see Tab. 3) such that positive metric values always mean high quality.

Table 3: Re-mapping metric values for comparison purposes. The
best value in each scenario is shown in bold.

Range of m =M(X,Y) Transformation Range of f (m)

[0,+∞) f (m) =−m (−∞,0]
[a,b] f (m) = (m− a)/(b− a) [0,1]

the metric pairs are positively correlated — meaning that high values
(after re-mapping) consistently indicate high quality. This provides
us the baseline for addressing question 2 as follows. Figure 10b
shows how fooling a single metric affects the other metrics. Blue
(resp. red) cells tell that our fooling produces similar (resp. opposite)
variations in metric values. We see that, even though most experi-
ments target fooling one metric, this affects other metrics as well.
Metrics appear split into two types: The large blue block (top-left in

Fig. 10b) shows metrics that can be easily fooled together – we can
generate fake projections having large values of any metric in this
block by fooling a single metric herein. More interestingly, the light
red cells tell us that Normalized Stress, Pearson Correlation, and
Shepard Goodness decrease when we try to fool any of the other 17
metrics. Conversely, fooling these three metrics will decrease some
of the remaining ones. This means that using metrics from the two
types together can provide a more robust evaluation of projection
quality than using only metrics of a single type.

4.4. Ease of fooling

We next study how well can our fooling yield higher metric values
while creating arbitrary patterns in projections. For all the metrics we
can fool — Continuity, Jaccard, Neighborhood hit, Trustworthiness,

© 2025 The Author(s).
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Figure 11: Effect of fooling (i.e. distribution of ∆M) grouped (see column headers) per target metric (a), per reference projection (b), and per
dataset (c). Metrics are remapped (higher = better). In (a), metrics used as fooling target are highlighted.

and all jointly (Sec. 4.1) — we plot the distribution of the difference
∆M for all measured 17 metrics for all experiments (Fig. 11a). Dis-
tributions concentrated around zero tell that the respective metric
(see names in the left labels) are kept well irrespective which tar-
get metric we fool — e.g., Class-Aware Continuity. Distributions
skewed to right tell that metric values increase after fooling — so,
given our ‘higher is better’ remapping, fooling actually increases
quality measured by that metric — e.g., Trustworthiness and Jac-
card. Left-skewed distributions tell that our fooling slightly loses
quality as measured by that metric — e.g., Distance Consistency and
Normalized Stress. Figure 2 (supplementary material) shows the
same data using box-plots. Overall, these figures tell us that fooling
any of the target metrics is quite successful, not only in the target
values, but also in affecting all other metrics.

Figure 11b shows the same information grouped per projection
technique. We do not see any strong bias of success or failure of
fooling vs a technique. Yet, we see quality losses for stress metrics
for MDS after fooling. This is expected: The MDS cost function
aims to optimize precisely a formulation of stress. Finally, Fig. 11c
shows the same information grouped per dataset. We do not see any
strong bias of success or failure of fooling vs a specific dataset. The
only exception is Spambase, where quality consistently decreases
after fooling. We attribute this to the low dimensionality of the data
(D = 57): the reconstruction head Iψ uses a 3-layer neural network
with 512 neurons in the last hidden layer, almost 10 times larger

than D, leading to an overparameterized regime that causes data
points to collapse to the same place in the projection.

4.5. Defining a set of guardrail metrics for projection quality

Our experiments showed that (a) quality metrics score high on pro-
jections with random or misleading visual patterns and that (b) we
can automatically create such projections. So, how can we still use
metrics to best gauge projection quality? We saw that not all metrics
can be fooled equally well — we can, e.g., often deceive Trustwor-
thiness and Neighborhood Hit but not Shepard Goodness (Fig. 11
and related text). We also saw that many metrics are correlated, both
in their values for different projections (Fig. 10a) as well as in their
increase or decrease due to fooling (Fig. 10b). Metrics that are highly
correlated in both these figures measure, to a degree, the same thing.
This motivates us to select a small set of diverse quality metrics that
cover different aspects of a projection. Scoring well in such metrics
should be a stronger indication of projection quality. To create this
set, we transform the correlation matrix C ∈ [−1,1]17×17 of metric
values (Fig. 10a) into a distance matrix D = 1

2 (1−C), where 1 is a
matrix where all entries are 1, such that low distances correspond to
highly correlated metrics. We then run HDBSCAN [CMS13] with
default parameters using D as input. This produces four clusters of
strongly correlated metrics (Distance Consistency, Neighborhood
Hit, Normalized Stress, and Procrustes Statistic are not assigned to
clusters):

© 2025 The Author(s).
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Table 4: Quality Metric values (high value = high quality) for the subset of metrics found to be least correlated (see Sec. 4.5). Each row
compares the value after fooling with the pre-fooling value (in brackets). We highlight the 2 strongest quality losses per row.

Dataset Fooling target P Cont. Trust. True Neigh. Pearson r DSC Neigh. Hit Procrustes Stress

MNIST Trustworthiness Isomap 0.870
(0.919)

0.910
(0.763)

0.292
(0.151)

0.588
(0.768)

0.272
(0.494)

0.609
(0.419)

-0.963
(-0.990)

-0.921
(-0.929)

UMAP 0.894
(0.931)

0.931
(0.940)

0.348
(0.414)

0.694
(0.700)

0.526
(0.845)

0.669
(0.854)

-0.977
(-0.988)

-0.880
(-0.907)

t-SNE 0.903
(0.934)

0.935
(0.951)

0.338
(0.444)

0.725
(0.711)

0.515
(0.804)

0.675
(0.855)

-0.961
(-0.988)

-0.981
(-0.915)

Spambase Neighborhood Hit Isomap 0.729
(0.872)

0.632
(0.709)

0.130
(0.191)

0.653
(0.817)

0.483
(0.804)

0.619
(0.765)

-0.928
(-0.983)

-0.375
(-0.547)

UMAP 0.658
(0.878)

0.555
(0.851)

0.042
(0.402)

0.598
(0.648)

0.616
(0.782)

0.628
(0.780)

-0.979
(-0.992)

-1.193
(-0.554)

t-SNE 0.640
(0.910)

0.574
(0.873)

0.046
(0.444)

0.591
(0.684)

0.790
(0.790)

0.641
(0.790)

-0.975
(-0.985)

-1.155
(-0.275)

USPS Continuity Isomap 0.921
(0.946)

0.943
(0.855)

0.334
(0.231)

0.631
(0.847)

0.669
(0.627)

0.736
(0.625)

-1.000
(-0.991)

-0.978
(-0.883)

UMAP 0.929
(0.960)

0.933
(0.962)

0.315
(0.461)

0.611
(0.738)

0.465
(0.949)

0.742
(0.928)

-0.963
(-0.995)

-0.863
(-0.837)

t-SNE 0.916
(0.962)

0.926
(0.967)

0.343
(0.486)

0.748
(0.748)

0.604
(0.948)

0.737
(0.932)

-0.960
(-0.989)

-0.791
(-0.849)

1. Jaccard, False Neighbors, True Neighbors;
2. Avg. Local Error, Pearson r of Distances, Shepard Goodness,

and Scale-Normalized Stress;
3. Class-Aware Continuity, Continuity, and MRRE Projection;
4. Class-Aware Trustworthiness, Trustworthiness, and MRRE Data.

Metrics in the same (resp. different) clusters capture similar (resp.
different) quality aspects. We pick one metric per cluster to capture
different quality aspects — specifically, True Neighbors, Scale-
Normalized Stress, Continuity, and Trustworthiness, given their
computing simplicity and/or wide adoption in projection evaluation;
to these, we add the four metrics which could not be clustered. We
next explore how this set of eight ‘guardrail’ metrics can reliably
judge projection quality. Table 4 compares the pre- and post-fooling
values of these metrics, highlighting the two largest losses in each
row. Metrics do not operate on the same scale — smaller losses for
one metric may ‘mean more’ than larger losses in other metrics. We
see that no single metric reliably identifies that a projection is of low
quality by returning a low score. In fact, all metrics can even improve
after our fooling. The metrics showing more dramatic reductions —
signaling fooling — are Distance Consistency (DSC), Neighbor-
hood Hit, the Pearson correlation r, and the True Neighbors rate.
We recommend — within the limitations of our fooling framework —
the adoption of this set of quality metrics as a means to increase the
reliability of data pattern preservation judgment. Although Stress
also signals quality reduction, we do not propose its use due to its
unboundedness and scale-sensitivity [SMK24].

Figure 12: Performance of our metrics library vs ZADU [JCJ∗23]
on 12 metrics common to both. We are 30% slower for datasets
of 100 samples due to Tensorflow’s overhead, but see speedups of
2.5-4.5x for datasets with >1K rows including Tensorflow graph
creation cost (‘tracing’). Larger speedups (2.8-8.8x) occur when
retracing is not needed. Averaged over 7 runs, error bars show±1σ.

4.6. Performance

Generating a fooling projection for a dataset from a given projec-
tion P with a target metric M takes 3-4 minutes on average on
a commodity PC. This includes training Qθ, Pφ, and Iψ, running
all three post-processing algorithms, and computing the 17 quality
metrics for all generated projections. Figure 12 compares our PQM
computing costs with ZADU [JCJ∗23], to our knowledge the best
effort to provide a comprehensive implementation of PQMs. Our
library (Sec. 4.1) is 3 to 9 times faster than ZADU.

5. Discussion

Likelihood: While we can automatically fool PQMs, one may won-
der how likely that is to be done in practice. The chances are slim,
but not negligible: Most projection algorithms must be initialized to
a setting Y0. Say we initialize t-SNE to a Y0 that has been optimized
to fool Trustworthiness/Continuity — measures of neighborhood
preservation, which t-SNE is designed to do well. Such an initial-
ization could make t-SNE get stuck in that local minimum of good
neighborhood preservation, but poor visual quality.

Fooling effect: Our fooled projections have a very different visual
signature than the reference ones, yet high PQM values. While ar-
guably such projections can lead users to different conclusions about
the depicted data than the reference ones, we aim to test this. Since
testing this by user experiments is difficult and of limited cover-
age (in terms of datasets, projections, tasks to be solved, trained
users to recruit as participants), we compare our fooled projections
with the reference ones by the Clustering Internal Validation Mea-
sure [LLX∗10] VQM with the Silhouette coefficient. This VQM
measures aspects such as compactness and cluster separation. Fig-
ures 8 and 14 show the results with the QM and VQM metrics
displayed as annotations. Our fooled projections (both before and af-
ter postprocessing) have very similar QM values; in contrast, VQM
values are very different. This indicates that our fooled projections
would convey different insights to their users as compared to the ref-
erence ones (up to what each VQM measures). We illustrate this in
Fig. 13 where we propose a simple task: assess which class has the
most similar elements — which visually corresponds to finding the
most tightly-packed cluster. Each projection — MDS and a fooling
thereof — shows a different most-dense cluster, illustrating how a
user might be led to distinct conclusions about the same data.

Limitations: While our results show that one can create projections

© 2025 The Author(s).
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Figure 13: Two projections of MNIST (left: MDS; right: our fooling
projection for that input). For the task of finding which cluster
contains the most similar data points, the two images give different
answers — left, the orange cluster (top-middle); right, the dark
blue cluster (bottom-right). Hence, our fooling may lead users to
different conclusions about the same data. The bar plot to the right
shows variation in PQMs, most showing improvements in the fooled
projection; the largest loss is for the Stress metric.

that are unfaithful to the data while scoring high quality metrics, our
findings have some limitations. Firstly, our learning approach has
issues handling datasets with only tens of dimensions. We believe
this is due to our fixed architecture and may be alleviated by adapting
hidden layer sizes when dealing with low-dimensional datasets.
Secondly, there is a key mismatch between the assumptions of the
deep learning method we use and the semantics of quality metrics.
PQMs — even local ones — need access to the entire dataset X and
its projection Y for their computation, since the (point-wise) quality
value depends not only on the point itself but on (many) other data
points. Yet, in our neural networks, each data point xi together with
its projection yi flows through the network independently of all other
data points. This trait of Multi-Layer Perceptrons makes them unable
to truly approximate a quality metric. While our postprocessing
partially fixes this, the problem remains.

We show experimentally that our suggested set of ‘guardrail’
metrics provides more ‘coverage’ of assessing projection qual-
ity. Yet, this conclusion is not final: There is a need to (1) de-
velop further metrics that strongly correlate with the human un-
derstanding of projections by, for example, combining VQMs based
on [HUB∗24, AS16, JQL∗24] (among others) with data-driven met-
rics like Silhouette coefficient [JKA∗24, BKBS24]; (2) see how
well such metrics can resist our fooling (or similar attempts at that);
and (3) develop new DR techniques that score high on such metrics,
extending the approach of Wang et al. [WFC∗18] beyond linear
projections.

6. Conclusions and Future Work

We presented a method to automatically create projections of high-
dimensional data that exhibit data-unrelated visual patterns — both
random and structured ones — which score well on 17 standard
quality metrics (PQMs). This provides evidence of the limitations
of PQMs in assessing projection quality. We also show that 9 of
the studied metrics get fooled even when they are not explicitly
targeted by our fooling pipeline. Hence, we claim that the remaining
8 metrics, which are not implicitly fooled, are a good subset to
consider in projection quality evaluation.

Our work shows the need of better ways to adequately measure
whether/which data patterns a projection preserves. We see several
avenues for future work. Our pipeline relies on the model Qθ which
cannot truly approximate a PQM due to its architecture (Sec. 5). Us-
ing architectures where each (xi,yi) tuple can integrate information

J: 0.132 V:0.260 J: 0.149 V:-0.053 J: 0.120 V:0.082

T: 0.951 V:0.295 T: 0.935 V:-0.017 T: 0.879 V:0.089

C: 0.973 V:0.184 C: 0.948 V:0.002 C: 0.953 V:0.087

J: 0.037 V:0.011 J: 0.069 V:0.119 J: 0.040 V:0.117

C: 0.889 V:0.036 C: 0.921 V:0.145 C: 0.933 V:0.212

NH: 0.331 V:-0.075 NH: 0.643 V:-0.044 NH: 0.459 V:0.015

Figure 14: Behavior of PQM and VQM (CIVM [LLX∗10]) for
reference projections (left column), fooled projections (middle) and
postprocessed outputs (right). Annotations show the PQM used to
create the fooled projection and the value V of the CIVM. The top
three rows show relatively stable PQM values, with clear losses in
CIVM. In the bottom 3 rows, PQMs are stable or even increase, and
V increases after the destructive and constructive phases, so the
arbitrary patterns are not detected by either PQM or CIVM.

on the projection of its neighbors could make Qθ better approxi-
mate a givenM. Transformers [VSP∗17] or Nearest-Neighbor Net-
works [PR18] are potential solutions for this problem. Separately,
the ‘strict’ faithfulness of the projection to the data is not always the
main goal. Examples include very high-dimensional datasets where
volumes of clusters become small — due to the curse of dimension-
ality — and points tend to lie closer to boundaries; showing such
data in a 2D projection would yield highly-clumped data in very
thin clusters, something hardly informative. How to measure what a
‘good’ projection in such cases is open for exploration.

© 2025 The Author(s).
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