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Figure 1: Gradient descent traversing the metric landscape of viewpoints of a 3D graph drawing. (a) and (e) show metric landscapes of the
same 3D drawing with different paths to an optimum of uniform edge lengths. (b), (c), (d), and (f), (g), (h), show the starting, intermediate, and
final viewpoint drawings found by gradient descent of (a) and (e), respectively.

Abstract
Graph drawings using a node-link metaphor and straight edges are widely used to represent and understand relational data. While
such drawings are typically created in 2D, 3D representations have also gained popularity. When exploring 3D drawings, finding
viewpoints that help understanding the graph’s structure is crucial. Finding good viewpoints also allows using the 3D drawings
to generate good 2D graph drawings. In this work, we tackle the problem of automatically finding high-quality viewpoints
for 3D graph drawings. We propose and evaluate strategies based on sampling, gradient descent, and evolutionary-inspired
meta-heuristics. Our results show that most strategies quickly converge to high-quality viewpoints within a few dozen function
evaluations, with meta-heuristic approaches showing robust performance regardless of the quality metric.

CCS Concepts
• Human-centered computing → Graph drawings; • Computing methodologies → Genetic algorithms; Neural networks;

1. Introduction

Graph drawings, also known as node-link diagrams, are common
visualizations used to understand relational data. As the quality of
such a drawing goes up, so does user task performance and data
understanding [PCJ96], so a key goal in this field is the creation
of drawings of the highest quality. To measure the quality of such
drawings, many metrics have been developed that try to capture
various aesthetic preferences of users [PCJ96, Hua07].

Graph drawings are most commonly created and explored in 2D.
Although 3D graph drawing is not new – one of the first graph
drawing algorithms actually supported 3D outputs [FR91] – it is still
far less popular than 2D graph drawing due to limited evidence for
its advantages [WF96, WM08, FPK∗23]. Unlike 2D drawings, 3D
drawings require finding good viewpoints to explore the drawing
from. In our previous work [vWMT24], we measured the quality
of viewpoint drawings – that is, 2D views of a 3D graph drawing
obtained from a given viewpoint – considering attributes like node
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positions, edge lengths and angles, node/edge occlusion, and edge
crossings. We have shown that viewpoint drawings can yield higher
quality than when directly drawing the same graphs in 2D. This
brings additional value to 3D graph drawings as tools for generating
good 2D drawings (rather than being an end product by themselves):
As 3D drawings can be computed as easily (and quickly) as 2D
drawings, if we can automatically find 2D views of 3D drawings
that have higher quality than using 2D layout algorithms, it means
we can ultimately generate better 2D graph drawings.

Finding such high-quality viewpoints is a relatively unexplored
problem. Only a few studies have attempted it resulting in heuris-
tics with large time complexities [EHW97, HW98]. These heuris-
tics have varying definitions of quality which influence what is
a good (viewpoint) drawing. In our work [vWMT24], we used
a brute-force sampling of the 3D viewpoint space to find high-
quality viewpoints, which is slow and of limited accuracy. View-
point optimization is more prevalent in other fields, e.g., in graph-
ics, where it is also known as camera optimization. Many strate-
gies [KK88, PB96, FCOL99, VFSH01] have been used to efficiently
search for the best viewpoint of a graphics scene with respect to
some predefined quality measure such as object occlusion. However,
such algorithms do not directly apply to 3D graph drawing.

In this work, we aim to design algorithms that find such high-
quality viewpoints for 3D straight-line graph drawings using a node-
link metaphor – that is, graph drawings in which nodes are repre-
sented as 3D points and edges are straight-line segments between
such points – efficiently and accurately. We measure viewpoint
quality using several quality metrics commonly found in 2D graph
drawing literature. Our contributions are as follows:

• We propose several optimization algorithms to find such view-
points and compare their efficiency and accuracy.

• Our results show that we can find high-quality viewpoints fully
automatically, for a wide family of graphs and metrics, within a
few seconds.

Combined with the findings in [vWMT24], this means we can
create 2D straight-line, node-link type graph drawings with quality
that can exceed that given by 2D straight-line, node-link type layout
algorithms fully automatically and with a low cost.

The structure of the paper is as follows. Section 2 details related
work. Section 3 details our optimization methods. Sections 4 and 5
describe and discuss the results obtained by our methods. Finally,
Section 6 concludes the paper.

2. Related Work

2.1. 3D graph drawing

Many algorithms can create straight-line graph drawings in 3D,
starting with the early force-directed Fruchterman-Reingold algo-
rithm [FR91]. Later on, algorithms using simulated annealing tar-
geted both 2D and 3D drawing [MRS96, CT96, JVHB14]. More
recently, dimensionality reduction was used to draw graphs in both
2D and 3D [GKN05, BP07, KRM∗17].

A few studies have examined the (dis)advantages of 3D graph
drawing. Ware and Franck [WF96] performed a study in which users
had to find connections in a 3D graph drawing. Users who could

navigate these 3D drawings had fewer error rates but longer decision
times compared to using 2D drawings. For path length tasks, the
users’ error rate was much lower for 3D drawings when using motion
and/or stereoscopic depth cues [WM08]. User studies performed
in Virtual Reality show mixed results [FPK∗23], with best user
performances depending on the task type and number of dimensions
(2D vs 2.5D vs 3D) used for display. Such mixed findings were
also found in other visualization types, with 3D outperforming
2D [AWR18] and conversely [BGP∗11].

Greffard et al. [GPK11] studied the task performance for commu-
nity detection across 2D, 3D, and 3D with stereoscopic depth cues
displays. Good results were found for stereo 3D for larger graphs;
for smaller graphs, 2D showed a lower error rate. Interestingly, the
average response time was always lowest for 2D drawings, regard-
less of graph complexity and size. These response-time findings
mirror Eades et al. [EHW97] who conjectured that this trade-off
occurs due to users trying to find favorable viewpoints. This further
supports a need for automatic search of good viewpoints.

2.2. Viewpoint optimization

Graph drawing: Early works that looked into viewpoint opti-
mization for graph drawing measured viewpoint quality via the
amount of vertex and/or edge occlusions [EHW97, HW98]. Eades
et al. [EHW97] proposed a Voronoi-based algorithm which moves a
starting viewpoint away from near bad viewpoints to find the the-
oretical best viewpoint. Houle and Webber [HW98] improved on
this by approximating, rather than finding the exact, best viewpoint.
Such methods were created for specific measures of what is a good
viewpoint, and cannot be easily extended to other quality metrics.

In our previous work [vWMT24], we measured the quality of
a large sample of viewpoints of a 3D graph drawing by standard
quality metrics for 2D graph drawings. We found that such view-
points – or, more precisely, the 2D perspective projections of the 3D
drawing taken from those viewpoints – can yield higher quality than
drawing the same graphs using the same layout algorithms run in 2D.
Castelein et al. [CTMT23] used a related approach to find good view-
points of 3D scatterplots obtained via dimensionality reduction; and
reported higher quality than when projecting the high-dimensional
data directly in 2D. Both above works find high-quality viewpoints
by uniformly and densely sampling the viewpoint space, evaluating
quality metrics, and returning the highest value(s) obtained. This
brute-force method is obviously slow as thousands of viewpoints
must be used for good results. To our knowledge, no method exists
that efficiently and accurately approximates the best viewpoint of a
3D graph drawing w.r.t. conventional quality metrics.

Computer graphics – quality metrics: Various metrics have been
proposed to define optimal viewpoints for a 3D scene rendering.
Kamada and Kawai [KK88] aimed to find the general position,
that is, the viewpoint from which a 2D image of a 3D scene re-
tains the most shape information present in the scene. Plemenos
and Benayada [PB96] aimed to maximize the number of faces and
the surface area of a 3D scene’s projection to 2D. Fleishman et
al. [FCOL99] studied scene visibility using reference views. Mea-
sures such as entropy [VFSH01] and the Kullback-Leibler diver-
gence [SPFG05, MSC24] were also used to find the best viewpoint
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for 3D scenes. Bonaventura et al. [BFS∗18] neatly summarize the
many measures used for viewpoint selection in computer graphics.

Computer graphics – optimization strategies: Several methods
have been proposed to find high-quality viewpoints given by the
metrics outlined above. In all cases, viewpoints lie on a sphere
surrounding the viewed 3D scene, and look at the sphere’s center,
following the well-known ‘world in hand’ metaphor. Kamada and
Kawai [KK88] proposed, among others, a uniform covering sam-
pling approach which was also used by Vazquez et al. [VFSH01].
Plemenos and Benayada [PB96] proposed a refined sampling which
splits the sphere into eight spherical triangles. The best triangle is
then selected and the procedure is repeated recursively.

Finding good-quality viewpoints can also be seen as optimizing
a quality function whose parameters model the viewpoint. To find
the global optimum, methods such as simulated annealing [Stü98],
particle swarm optimization (PSO) [WZZ∗07, YZY18], and genetic
algorithms [ZY22] have been used. Simulated annealing relies on
a global temperature, initial viewpoint, and a cooling factor, to
search for the optimum. PSO searches by using a set of particles
that communicate with each other to share information about the
solution space. A genetic algorithm has multiple individuals in
its population, similar to PSO particles, but ‘shares’ information
with other individuals only via mutation, selection, and crossover
operations. While all these strategies have some advantages, e.g.,
not requiring the target function to be differentiable, they all are
metaheuristics which are not guaranteed to find the global optimum.

Machine learning techniques can also be used for viewpoint op-
timization. Gradient descent has been used to travel to the best
viewpoint [LVJ05, WW22, HG24]. This method, however, can get
stuck into local optima. To alleviate this, a random starting view-
point [LVJ05] and/or multiple runs with various starting viewpoints
can be used [WW22, HG24]. Vieira et al. [VBP∗09] used support
vector machines to classify areas to find more suitable viewpoints.
Yang et al. trained a Convolutional Neural Network (CNN) on im-
ages of viewpoint samples of volume data. After training, the model
can recommend good viewpoints. Zhang et al. [ZFY20] used a
CNN with the inclusion of ground truth data. They fed the model
an aesthetic reference image and a 3D scene and trained it to find
viewpoints of a 3D scene that match the reference image.

3. Method

As discussed so far, many strategies have been used to approximate
the highest-quality viewpoint in computer graphics. To our knowl-
edge, none of these has been used for viewpoint optimization in
graph drawing – a task which we address next.

We start by introducing a few notations and concepts follow-
ing [vWMT24]. An undirected graph G = (V,E) is a set of
nodes V = {v1, . . . ,vn} and a set of undirected unweighted edges
E = {e1,e2, . . . ,em} ⊆V ×V . A graph drawing, or layout, Γ of G
assigns k-dimensional coordinates, k ∈ {2,3}, to nodes in V , and
can be represented as a matrix Xk ∈ Rn×k where row Xi ∈ R1×k

gives the coordinates of node vi. Edges are drawn as straight-lines.
Let D ∈ Rn×n denote the shortest-path matrix of graph-theoretic
distances di j between all node-pairs (vi,v j) in V ×V .

We next refer to the Euclidean distance ∥Xi −X j∥ between nodes
vi and v j simply as distance. Let deg(v) be the degree of node v, i.e.,
the number of edges incident to v; let L(e) denote the length of edge
e, i.e., distance of its endpoints in Γ. Finally, a quality metric is a
function Q(Γ) ∈ [0,1] that assigns a value to the drawing Γ of G,
with low (resp. high) values denoting poorer (resp. better) drawings.

From any 3D drawing Γ of a graph G, we can generate 2D
drawings as follows. Consider a sphere S enclosing Γ. A viewpoint
p = (θ,φ) is a location on S given by spherical coordinates, angles
θ and φ. The viewpoint drawing Γ(p) is the perspective projection
of Γ with camera placed at p and looking at the sphere center.

3.1. Quality Metrics

To gauge the quality of a 2D graph drawing Γ, we use several quality
metrics Q following their popularity in related work, their usefulness
in assessing the quality of viewpoints of 3D drawings [EHW97],
and user studies showing their ability to gauge quality as perceived
by humans [PCJ96, Hua07].

Stress: This metric [KK89] has been shown to correlate with users’
preferences [CEE∗14] and measures how much all node-pair dis-
tances in a drawing deviate from their shortest path distances as

ST(Γ) = 1− 1
n(n−1)/2

n

∑
i< j

(∥Zi −Z j∥−di j)
2

d2
i j

, (1)

where Zi scales the coordinate Xi by the shortest path distances as

Zi =
∑i̸= j ∥Xi −X j∥/di j

∑i ̸= j ∥Xi −X j∥2/d2
i j

Xi. (2)

Edge length deviation: Users favor consistent edge lengths in a
drawing [CP96]. We thus compute an Edge length deviation to
gauge the average deviation of edge lengths from the mean µ of all
such lengths in a drawing as

ELD(Γ) = 1−

√
1
m

m

∑
i=1

(L(ei)−µ)2. (3)

Crossing number: Purchase et al. [PCJ96] show that the number
of crossings affects how well a drawing can be understood. We
measure the number of crossings Ccnt normalized by its maximum
possible value Cposs by

CN(Γ) = 1− Ccnt

Cposs
, (4)

where the maximum possible number of crossings Cposs is given by

Cposs =
m(m−1)

2
− 1

2

n

∑
i=1

(deg(vi)(deg(vi)−1)). (5)

As Ccnt is discrete, CN(Γ) is also discrete. This discreteness is in-
compatible with gradient-based optimization strategies we will next
use (Sec. 3.3). To solve this, we replace Ccnt by the differentiable
proxy computed by the Neural Aesthete [TCG22,ALD∗22], a Multi-
layer Perceptron (MLP) trained on edge crossing classification with
a reported 97% accuracy. We use the exact architecture in [TCG22].
We optimize hyperparameters by grid search and find that a learning
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rate of 0.05 and a momentum of 0.9 increase accuracy to 98.5%.
The model is trained for 20 epochs with a batch size of 1024 on a
randomly generated dataset of 1e6 edge coordinates.

Node-node occlusion: The original occlusion metrics in [EHW97]
measure how often nodes and edges perfectly overlap. We slightly
alter this metric by computing the closeness of pairs of nodes as

NN(Γ) = 1− 1
n(n−1)/2 ∑

i ̸= j

∥Xi −X j∥−d −
∣∣∥Xi −X j∥−d

∣∣
2d

,

(6)
where d is the diameter of a node set to a default of 1√

n . When all
nodes are stacked atop each other, NN(Γ) = 0. When all nodes are
at a distance of at least d from every other node, NN(Γ) = 1.

Node-edge occlusion: We treat node-edge occlusion similarly to
NN. We measure the closeness of all compatible node-edge pairs as

NE(Γ)= 1− 1
nm−∑

n
i=1 deg(vi)

n

∑
i

m

∑
j

∥Xi −Y j∥−d −
∣∣∥Xi −Y j∥−d

∣∣
2d

,

(7)
where Y j is the point on edge j to which node i is closest to.

Combinations: High-quality drawings can be produced by opti-
mizing several quality metrics [HEHL13]. Quality metrics for graph
drawings tend to correlate indicating that not all metrics need be
jointly optimized [MPWK24]. To find suitable combinations we
first perform a simple linear and non-linear correlation analysis of
the metrics over the viewpoints and graphs in [vWMT24]. This
analysis shows that only the Node-node occlusion and Node-edge
occlusion strongly correlate (Figure 2). We therefore propose a lin-
ear combination LC of Stress (ST), Edge length deviation (ELD),
Node-node occlusion (NN), and the Crossing number (CN). Figure 2
also indicates that the sole optimization of one metric, such as ST,
may lead to worse values of other metrics, such as NN.

3.2. Viewpoint Landscape

We next use viewpoint landscape spheres to get an intuition of how
quality metrics vary over viewpoints. Consider the sphere S used
to construct viewpoint drawings (Sec. 3). For each point p ∈ S, we
color p with the value of Q(Γ(p)), i.e. encode there the quality of
the 2D viewpoint drawing Γ(p) measured by a quality metric Q. For
implementation details, we refer to [CTMT23, vWMT24]. Figure 3
shows the spheres for the five quality metrics in Sec. 3.1. We see
that ST, ELD, NN, and NE have quite smooth variations from their
minima to their maxima; in contrast, CN is less smooth, showing
many local extrema. Hence, an optimization strategy should consider
the type of metric. For instance, we conjecture that local search
optimizations like gradient descent may work better for ST, ELD,
and NE; while global search optimizations, e.g. random sampling
and evolutionary inspired meta-heuristics, may perform better on
CN. We explore this conjecture in Sec. 4.

3.3. Viewpoint Optimization

We next present the optimization strategies we designed to auto-
matically find high-quality viewpoints, inspired by commonly used

Figure 2: Density plots of pairs of normalized quality metrics (lower
triangular matrix; purple: low density; yellow: high density). Pear-
son’s R correlation (linear) and distance correlation D (non-linear)
of pairs of quality metrics (upper triangular matrix).

ST ELD CN NN NE

Figure 3: Viewpoint landscapes of 5 metrics for 3D drawings cre-
ated by ForceAtlas2. The graphs being drawn are, from left to right:
Sierpinski3D, grafo10229, grafo10228, grafo10226 and netscience.

strategies. Pseudocode and parameter values are given in the supple-
mentary material – see next references marked with ⋆. Source code
of all strategies, datasets, and analysis is available online.

The search space for all techniques only covers half of the view-
point sphere given the symmetry of the 2D projection operation.
We measure the effectiveness of our strategies by comparing their
results with ground-truth values (discussed later in this section). We
measure strategy efficiency by counting the number N of needed
metric evaluations, where we cap N ≤ Nmax, with Nmax = 500.

Uniform Sample: We use Fibonacci sampling to create N view-
points P = {p1, . . . , pN} that uniformly cover the half-sphere. Other
strategies can be used to create similar uniform results e.g. icosahe-
dral subdivision often met in light field computations [OTWO17].
We measure their quality and keep the best one (Alg. 1⋆).

Iterative Resampling: We propose a new iterative sampling strat-
egy inspired by existing heuristics [PB96, HW98]. We start like
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UNIFORM SAMPLE by computing an initial set of N viewpoints P0.
From P0, we take the best viewpoint pbest and set it as the center of a
new region of interest. We then find the closest viewpoint pnext ∈ P0
to pbest in terms of Euclidean distance. We create a rectangular sam-
pling grid P1 on the sphere centered at pbest and of half-diagonal size
∥pnext − pbest∥ containing N samples. We repeat this sampling for
L iterations, yielding the viewpoint-sets PS = {P0, . . . ,PL} of size
(N +N ∗L) = Nmax (Alg. 2⋆). UNIFORM SAMPLE and ITERATIVE

RESAMPLING are jointly called sampling strategies.

Simulated Annealing-1/5: This strategy uses a global temperature
and a cooling effect to stochastically find an optimum. Simulated
annealing iteratively searches for viewpoints p′ close to the current
one p. It then accepts or rejects p′ depending on the quality of
both p and p′, the global temperature, and a random probability. By
including randomness, the strategy may accept viewpoints with a
worse quality, which can be good in the long run as we escape local
minima. We use a more modern approach named dual annealing,
implemented in SciPy [VGO∗20], which combines classical and
fast simulated annealing. Five strategy-specific parameters exist;
of these, the starting viewpoint is the most important for finding
a local or the global optimum. Given the starting viewpoint influ-
ence, we test two versions: SIMULATED ANNEALING-1, where we
use a random starting viewpoint, and SIMULATED ANNEALING-
5, where we do simulated annealing from five starting viewpoints
p5 : {0,0},{ π

4 ,0},{0, π

4},{0,− π

4}, and {− π

4 ,0}.

Differential Evolution: Similar to genetic algorithms, DIFFEREN-
TIAL EVOLUTION uses several (random) starting viewpoints as a
population. Via crossover and a differential weight (mutation) it
creates new candidate solutions that replace solutions in the starting
population if they have the same or higher quality. During crossover,
a viewpoint’s angles can be replaced by a linear combination of
the corresponding angles of three other distinct random viewpoints.
This strategy has six parameters of which the size of the population,
the crossover rate, and the differential weight are most important.
We use the SciPy [VGO∗20] implementation.

Particle Swarm Optimization: Individual solutions/particles are
used to search for an optimum. Each particle’s velocity is com-
puted by using, with a random probability, the particle’s best solu-
tion found so far and the best solution found by the entire swarm.
With this velocity, the particle then moves to a new solution. De-
pending on the solution quality, the particle’s best solution and the
swarm’s best solution is then updated. This strategy has four pa-
rameters of which the size of the swarm is most important. We
use the PySwarms [Mir18] library to implement this strategy. We
classify SIMULATED ANNEALING, DIFFERENTIAL EVOLUTION,
and PARTICLE SWARM OPTIMIZATION as meta-heuristics.

Gradient Descent-1/5 For differentiable objective functions, gra-
dient descent computes the derivative and ‘walks’ from a starting
position to an optimum. The learning rate parameter controls step
sizes during this walk. This strategy has 3 parameters; of these,
the starting viewpoint crucially influences whether the descent con-
verges into a global or local optimum. We use PyTorch [PGM∗19] to
implement this strategy with the Adam optimizer (Alg. 3⋆). Similar
to SIMULATED ANNEALING-1/5, we use two variations of this

strategy where we either take a random starting viewpoint (1) or use
p5 five fixed starting viewpoints (5).

Uniform Gradient Descent-V1/V2: This strategy combines UNI-
FORM SAMPLE and GRADIENT DESCENT and comes in two ver-
sions. Version 1 (V1) samples np = 10 starting viewpoints from the
half sphere using Fibonacci sampling. GRADIENT DESCENT is then
used from each starting viewpoint for Nmax/np iterations. Version 2
(V2) evaluates the np starting viewpoints, selects the best one, and
uses GRADIENT DESCENT for Nmax −np iterations (Alg. 4⋆).

Newton-Raphson-1/5: Like gradient descent, we use a derivative
to go from a starting viewpoint to an optimum. However, we now
use second-order derivatives instead of first-order ones. This can
reduce the number of steps needed to reach an optimum. Yet, as
known from numerical integration, this method can get stuck in so
called ‘saddle points’. This strategy has 5 parameters of which the
most important is the starting viewpoint – see the SciPy [VGO∗20]
implementation. Similar to SIMULATED ANNEALING-1/5, we use
two variations of this strategy where we either take a random starting
viewpoint (1) or use p5 five fixed starting viewpoints (5).

DeepGD: This Graph Neural Network (GNN) was originally de-
signed to create high-quality 2D drawings [WYHS21]. We reuse the
exact same architecture of DeepGD with a few modifications: We
modify DeepGD to predict the φ and θ angles defining the highest-
quality viewpoint for an unseen graph. For this, we change the input
layer’s dimensionality to accept 3D node coordinates. We add a
pooling layer at the model’s end to pool a predicted nx2 matrix of
node coordinates into a 1×2 viewpoint vector. We also remove the
ReLu activation from each layer in all blocks so that viewpoint pre-
diction angles can be negative. Last, we design loss functions based
on a quality metric Q and the perspective projection computation,
so that the loss models how the predicted viewpoint influences Q.
We train the model on the unstructured Rome graphs [GDT] for 25
epochs. We classify (UNIFORM) GRADIENT DESCENT, NEWTON-
RAPHSON, and DEEPGD as gradient strategies.

Ground Truth: We compare all above strategies with the ‘ground
truth’ acquired by running a very dense Iterative Resampling
(Nmax = 10000, L = 1). Note that, even with this very dense sam-
pling, we cannot guarantee that GROUND TRUTH captures the exact
optimum of the studied quality metrics.

3.4. Datasets

We use our strategies on a set G of 45 graphs. In detail, we handpick
a set of graphs from the SuiteSparse Matrix Collection [DH11],
as these graphs tend to have recognizable 3D structures. We also
use the graphs in Kruiger et al. [KRM∗17] which strongly vary in
size, density, and structure. Lastly, we use the Rome [GDT] graphs,
a widely used as benchmark for 2D graph drawing [WYHS21,
GLA∗21]. G is described in detail in Sec. 1⋆. The model used to
approximate the crossing number CN (see Sec. 3.1) is quite slow for
larger graphs. As such, we measure CN and the Linear combination
LC on a subset Gs ⊆ G of 19 graphs.

We create the 3D drawings for the graphs in G by adapting the
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ForceAtlas2 (FA2) [JVHB14] layout technique, implemented in
Python [Chi19], to output 3D coordinates. We run FA2 with the
parameter values gravity 1.0, scaling ratio 2.0, jitter tolerance 1.0,
and a maximum of 300 iterations, allowing us to produce layouts
within seconds on a commodity PC machine.

4. Results

We next show the results of the 14 optimization strategies from
Sec. 3.3 for the quality metrics in Sec. 3.1. We run each strategy for
Nmax = 500 evaluations of the functions defining our quality metrics
and record the obtained values at N ∈ {N10,N20, ...,Nmax}. As most
strategies use probabilistic elements, we average their results over
five runs for each graph in G or Gs. The exceptions are UNIFORM

SAMPLE and ITERATIVE RESAMPLING which are deterministic;
we run these once for each N. The GROUND TRUTH is run once,
whereas DEEPGD requires many function evaluations only during
training. Actual running times for each strategy are given in Sec. 2⋆.

We also study statistically significant differences between the
strategies. In this case, we compare the distribution of quality metric
values of viewpoints found by strategy A and B after 40 or 300
function evaluations. Since our data is non-normally distributed and
paired, we use the Wilcoxon Signed Rank test to test whether the
distribution of strategy A is significantly greater than the distribution
of strategy B. More details on all pairs of strategies and the exact
p-values are given in Sec. 4⋆ of the supplementary material.

Stress: Figure 4a shows Stress values over the number of function
evaluations (N) averaged over all graphs in G. We see that DEEPGD
performs worst, with a difference of 0.04 to GROUND TRUTH. GRA-
DIENT DESCENT-1 also performs poorly for N ≤ 200, but improves
to outperform NEWTON-RAPHSON-1 around N = 300. We next
exclude GRADIENT DESCENT-1 and DEEPGD to focus on differ-
ences between better performing strategies (Figure 4b). We see that,
for N ≤ 100, NEWTON-RAPHSON-5 has the steepest increase. We
also see that DIFFERENTIAL EVOLUTION converges towards the
same values as NEWTON-RAPHSON-5.

To ensure that averaging over several graphs does not hide in-
teresting facts, we next look at the distribution of ST values for
all strategies, all graphs in G, at a specific iteration N. Figures 5a
and 5b show these distributions for N = 40 and N = 300 respectively.
Matching previous findings, NEWTON-RAPHSON-5 produces on
average, already for N ≥ 40, much better viewpoints than all other
strategies. After N = 300, the differences of ST between strate-
gies become minimal. We also note some outliers – graphs with
very low ST values. For NEWTON-RAPHSON-5, these are grid and
grafo10235. These graphs have noticeably different structures; the
former has a grid-like structure; the latter is a quite unstructured
graph. Other graphs with similar structures did not pose a chal-
lenge for NEWTON-RAPHSON-5, so we can not hypothesize that
the difference in performance is due to graph structure.

While metric-value differences between strategies are small, we
stress that each metric has a different effective distribution in terms
of values it reaches over the theoretical range [0,1]. Hence, small
metric-value differences could mean large differences in drawings.
Figure 6a illustrates this. Some strategies such as UNIFORM SAM-
PLE, GRADIENT DESCENT-5, and NEWTON-RAPHSON-1/5 get

(a)

(b)

Figure 4: Strategies performance vs Ground Truth over the number
of function evaluations for Stress (ST) for all strategies (a), and all
strategies excluding DeepGD and Gradient Descent-1 (b).

quite close to the best viewpoint according to GROUND TRUTH.
However, Figure 6b shows that the differences between viewpoints
found at N = 300 are small, with most strategies (except DEEPGD)
yielding the same output. We do find subtle differences between
the clusters in the sierpinski3d graph vs crossings and occlusion at
N = 40. The viewpoints found by different strategies are much more
striking in the (lack of) symmetry for the dwt_1005 graph.

Edge length deviation: For the remaining metrics we exclude
GRADIENT DESCENT-1 and DEEPGD from the analysis due to
their consistently poor results seen so far when compared to other
strategies. For completeness, Sec. 3⋆ shows figures including GRA-
DIENT DESCENT-1, the distributions of viewpoints at N = 40 and
N = 300, and the viewpoint drawings.

The first observation we make in Figure 7a is that for N ≥ 250
NEWTON-RAPHSON-5 exceeds GROUND TRUTH. Also, similarly
to the ST results, NEWTON-RAPHSON-5 converges much faster in
the beginning compared to other strategies. We also see that the
second best strategy is DIFFERENTIAL EVOLUTION. Similar to ST,
Figures 18a⋆ and 18b⋆ show that these minor differences in ELD
can lead to noticeable visual differences in the drawings.

Crossing number: As explained in Sec. 3.1, the crossing number
CN is a discrete metric which we replace by a continuous approx-
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(a)

(b)

Figure 5: Distribution of best viewpoints (w.r.t. Stress) found by
each strategy after (a) N = 40 function evaluations and (b) N = 300
function evaluations. Black bars show mean values.

imation to enable the use of gradient strategies. Figure 7b shows
that, unlike its performance for the previous metrics, NEWTON-
RAPHSON-5 performs poorly compared to other strategies. In fact,
(meta-) heuristic and sampling strategies outperform gradient strate-
gies, as the latter stagnate for N ≥ 120. We also see that UNIFORM

GRADIENT DESCENT-V1/V2 perform well for N ≤ 60, after which
they are quickly overtaken by DIFFERENTIAL EVOLUTION and
PARTICLE SWARM OPTIMIZATION.

Figures 19a⋆ and 19b⋆ show that the viewpoints found for CN
vary much more compared to viewpoints found for other metrics.
We believe that this is due to the discrete nature of CN and the
inaccuracy of the approximation used for CN in gradient strategies.

Node-node occlusion: Figure 7c shows the results for Node-node
occlusion (NN). These are different from the previously discussed
metrics. We see that the two sampling strategies UNIFORM SAM-
PLE and ITERATIVE RESAMPLING perform better than other strate-
gies. UNIFORM SAMPLE leads until N = 50 and is then overtaken

by ITERATIVE RESAMPLING which contests with DIFFERENTIAL

EVOLUTION. Gradient strategies start off slow with only NEWTON-
RAPHSON-5 performing well for N ≤ 90.

The drawings shown in Figures 20a⋆ and 20b⋆ differ noticeably
from the viewpoint drawings of other metrics. For example, we see
that the optimization of NN leads to different viewpoint drawings
as compared to those of ST in Figure 6b. Additionally, the strate-
gies converge to different (local) minima leading to large visual
differences, see e.g. graphs GD96_c and can_96.

Node-edge occlusion: Even though the NN and NE metrics are
highly correlated, we find that strategies converge differently for
Node-edge occlusion (NE). Figure 7d shows that DIFFERENTIAL

EVOLUTION outperforms all other strategies for N ≥ 100, and even
outperforms GROUND TRUTH after roughly N = 350. However,
the performance of DIFFERENTIAL EVOLUTION and the gradient
strategies for N ≤ 100 is comparable to the results for NN.

The actual viewpoint drawings for NE and NN (see Figs. 21a⋆ and
21b⋆) show similar characteristics, which can be explained by the
high correlation between these metrics. We again see more visual
differences in the viewpoints found by our strategies for GD96_c
and can_96, and with a stronger effect for N = 40 than for N = 300.

Linear combination: Figure 8 shows the strategy performance for
LC. We see that meta-heuristic strategies outperform other strate-
gies and converge to better results. Also, gradient strategies are
outclassed by both meta-heuristic and sampling ones. We believe
that these results are caused by the discrete CN metric, for which
meta-heuristics work better than other strategies.

Figures 22a⋆ and 22b⋆ show the viewpoint drawings for Linear
combination. For most graphs, strategies converge to similar view-
points more than when only optimizing CN (see Figs. 19a⋆- 19b⋆).

Best strategies for all metrics: Since aggregating metrics into a
linear combination may prioritize optimization of certain metrics
due to a wider distribution of values, we also compare performance
of strategies over all metrics. This gives us an alternate way to select
a strategy that performs fairly well for multiple metrics. Figure 9
shows the performance of all strategies, except for DEEPGD and
GRADIENT DESCENT-1, across the five quality metrics. We see
that the results are in general consistent with the linear combination,
thus meta-heuristics in general and DIFFERENTIAL EVOLUTION in
particular tend to perform best.

5. Discussion

Exploration tactics: Our results show that strategies with more
exploration tactics tend to find better results. Strategies that start
from a single viewpoint have different issues: GRADIENT DESCENT-
1 advances too slowly even with high learning rates; NEWTON-
RAPHSON-1 advances faster but gets stuck in local minima. The
exception here is SIMULATED ANNEALING-1 which uses a local-
search algorithm to increase its search space. All other strategies
explore from multiple starting viewpoints or use some form of
information sharing, such as particles or population.

Discrete vs continuous metrics: Gradient strategies perform well

© 2025 The Author(s).
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(a) (b)

Figure 6: Drawings of the best viewpoints (w.r.t Stress) found by all strategies after (a) 40 and (b) 300 function evaluations. The drawings
outlined in red, blue, and green are metric-wise number 1, 2, and 3, respectively.
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(a)

(b)

(c)

(d)

Figure 7: Strategies performance vs Ground Truth over the number of function evaluations for Edge length deviation (ELD) in (a), Crossing
number (CN) in (b), Node-node occlusion (NN) in (c), Node-edge occlusion (NE) in (d), excluding Gradient Descent-1.

Figure 8: Strategies performance vs Ground Truth over the number
of function evaluations for a Linear combination (LC), excluding
Gradient Descent-1.

on continuous metrics but poorly on the discrete crossing number
CN. Meta-heuristic strategies perform equally well for discrete and
continuous metrics. We suspect that the effectiveness of gradient

strategies for CN (and thus also for LC) is strongly hindered by the
approximation we use for CN. Indeed, our MLP approximator has
an accuracy of only ∼ 98% for predicting if two edges cross. Even
though this is a high value, this allows predicting viewpoints with
fewer than optimal number of crossings which can be quite different
than the optimal ones.

Practical value: Let us consider the efficiency of different strate-
gies. NEWTON-RAPHSON-5 performs better than other strategies –
it finds the best viewpoint for all continuous metrics within N = 40
evaluations. DIFFERENTIAL EVOLUTION consistently finds the best
viewpoints for all metrics as N increases. Additionally, with the
runtime information in Table 2⋆ we can give guidance on what strat-
egy is best in different scenarios. We see that either DIFFERENTIAL

EVOLUTION or NEWTON-RAPHSON-5 is most ideal, when the goal
is to find a high-quality viewpoint for any continuous metric as
quickly as possible with the fewest number of evaluations. When
the metic to be optimized is discrete, such as CN, the simple strategy
ITERATIVE RESAMPLING is advised when speed is of importance.
Last, when the goal is to acquire the best viewpoint possible, re-
gardless of the metric and time cost, we see that DIFFERENTIAL

EVOLUTION performs best.

© 2025 The Author(s).
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Figure 9: Parallel coordinate plot of strategies performance vs
Ground Truth for all metrics for N = 300 evaluations, excluding LC
and Gradient Descent-1, averaged over all graphs and runs.

The viewpoint drawings at N = 40 and N = 300 show that the
graph and the optimized metric heavily influence how much the
drawing changes as N increases. For ‘simpler’ graphs, such as the
Rome ones, a good viewpoint can be found with as low as N = 40
evaluations. However, for more complex graphs, significantly better
viewpoints can be found for higher N. Even though the change the in
metric value may be small, the visual difference can be substantial,
especially for graphs with salient 3D structures. From a practical
perspective, we see that NEWTON-RAPHSON-5 and DIFFERENTIAL

EVOLUTION find a high-quality viewpoint within seconds (on a
commodity computer) even for graphs with more than 1000 nodes
and edges. To get comparable results, sampling strategies may need
many more function evaluations which leads to a large increase of
the runtime, depending on the metric and graph. To conclude, our
optimization proposal shows that one can fully automatically obtain
high-quality 2D drawings of a wide range of graphs within seconds
(atop the cost of running a 3D layout algorithm).

Limitations Our work is limited by a handful of factors. First, our
strategy comparison is hindered by fixed parameter settings, as cer-
tain strategies such as GRADIENT DESCENT-1 involve randomness
and may perform better or worse than others depending on their
starting point. Also, parameters such as learning rate, temperature,
population size, and mutation rate can alter the effectiveness of any
strategy. Hence, our results of which strategy is best should not be
taken as a definitive statement.

Second, the MLP used to approximate the crossing number limits
the quality of the viewpoints predicted for this metric by gradient
strategies. The metric space for the approximation of the cross-
ing number is distinctly different as a result of the MLP inaccu-
rately ‘thinking’ that a crossing is or isn’t present when it should
or shouldn’t be. Furthermore, the runtime of the MLP becomes
problematic as the size of the graph scales up. Lastly, our analysis is
limited to only metrics meant for straight-line drawings. While our
optimization strategies could perform well for drawings with curved
edges, this is strongly influenced by the exact quality metrics that
one would like to consider for such drawings. As such, and given

the very large design space of curved-edge node-link drawings (and
their quality metrics), we leave the study of viewpoint optimization
for 3D curved-edge graph drawings to future work.

Finally, we only consider a subset of all existing quality metrics
for (2D and 3D) graph drawing, chosen as Sec. 3.1 explains. Our
work did not aim to focus on a rich analysis of all strategies vs
all possible metrics. Rather, our goal was to check which strategies
perform best on a few (but widely used) graph quality metrics. These
best strategies can be next tested against additional quality metrics,
e.g. symmetry, cliques, or advanced stress [WWS∗17], in future
work.

Future work Several directions for future work exist. First, the
strategies used to search for best viewpoints could be improved. We
still see potential in using a trained deep learning model to predict
high-quality viewpoints for any 3D graph drawing. Its extremely
fast inference is of great practical added value. To do this, we envis-
age further adapting the DEEPGD model as the current architecture
seems excessive for a ‘simple’ problem as this. Moreover, building
a new large dataset with a collection of graphs of different sizes,
architectures, and characteristics is key to using such a model to pre-
dict viewpoints accurately for a wide variety of graphs. Additionally,
some strategies could be combined to increase convergence speed,
e.g. replacing gradient descent in UNIFORM GRADIENT DESCENT-
V1/V2 with NEWTON-RAPHSON. Second, more research can be
done towards finding more efficient approximation methods. The
current MLP architecture is limited due to its accuracy and time
complexity. Lastly, the perception of small metric changes is not
well understood. Viewpoints found after 40 and 300 function eval-
uations can be distinctly different, but is the metric difference of
these viewpoints important to a user? Do users perceive a viewpoint
drawing to be truly better than another when their metrics differ by
a small value? Answering this question is a topic for a user study.

6. Conclusion

We have presented an extensive evaluation of optimization strategies
to find the best viewpoint of 3D graph drawings from the perspective
or various well-known quality metrics. To our knowledge, this is
the first attempt to find such viewpoints by optimization in the
field of graph drawing. Our experiments show that certain strategies
perform significantly better than others depending on the metric.
Gradient strategies have subpar results for discrete metrics due to
being limited by the MLP approximation technique. Non-gradient
strategies perform well regardless of the metric nature. Out of all
strategies, NEWTON-RAPHSON converges quickly but often gets
stuck in local minima. The Differential Evolution strategy performs
best overall. Our work shows that we can compute high-quality
viewpoint drawings in less than 50 metric evaluations or, practically,
a few seconds on a commodity PC. Increasing the number of metric
evaluations can lead to improved drawings metric-wise. However,
future work in terms of a user study is needed to determine whether
these improved drawings correlate with increased human preference.
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