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Colorectal cancer is one of the main causes of cancer death worldwide. Early detection of its precursor

lesion, the polyp, is key to ensure patient survival. Despite its gold standard status, colonoscopy presents
some drawbacks such as polyp misses. While several computer-based solutions in this direction have been
proposed, there is no available solution tackling lesion detection, localization and segmentation at once. We
present in this paper a one-shot solution to characterize polyps in colonoscopy images. Our method uses
a fully convolutional neural network model for semantic segmentation. Next, we apply transfer learning
to provide detection and localization. We tested our method on several public datasets showing promising
results, including compliance with technical and clinical requirements needed for an efficient deployment in

the exploration room.

1 INTRODUCTION

Colorectal cancer (CRC) is the second leading cause
of cancer death in the USA and is estimated to
have caused 50260 deaths in 2017 only, according
to American Cancer Society (Siegel et al., 2017).
Most CRCs develop from adenomatous polyps that
can appear anywhere in the colon. Early detec-
tion and removal of polyps is of great significance
when performing colonoscopy for prevention and
timely treatment of CRC. However, the average polyp
miss-rate in colonoscopy is estimated to be up to
25% (Leufkens et al., 2012). Missing polyps can
lead to a late diagnosis of CRC with low survival
rates (Rabeneck et al., 2003).

Computational systems can assist clinicians in
polyp detection and thus decrease the polyp miss-rate.
However, automatic polyp detection in colonoscopy
videos is very challenging due to high variations in
polyp appearance (size, colour, shape, texture) and the
presence of other endoluminal scene structures (e.g.,
colon walls, specular highlights and air bubbles).

In the past few decades, many algorithms have
been developed to automate the detection, localiza-
tion, and segmentation of polyps in colonoscopy im-
ages. Significant progress has been made in recent
years. End-to-end learning methods seem to give the

best results for automatic detection and localization of
polyps (Bernal et al., 2017). Polyp segmentation has
not attracted yet the same level of attention. However,
segmentation has an advantage over detection and lo-
calization, as it also gives information about a polyp’s
shape and it could be used as a preliminary stage for
in-vivo diagnosis.

We propose in this paper to use polyp segmen-
tation as the main output from which polyp detec-
tion and localization can be derived. Our proposal
is based on a convolutional neural network (CNN), in
our case a residual network (ResNet50). We validate
our method against several publicly available datasets
for detection, localization and/or segmentation.

2 RELATED WORK

Existing algorithms for polyp characterization can
be grouped in three categories (Bernal et al., 2017):
hand-crafted features, end-to-end learning, and hy-
brid, as follows. For each method class, we also list
its comparative advantages and limitations.



2.1 Hand-crafted features

These methods are based on the extraction of features
(based on shape, color, or texture) from the image that
are explicitly defined by the user. Such features are
next fed into a ML system that provides the desired
inference (e.g., classification or segmentation) based
on a mix of user-specified and learned parameter val-
ues.

Advantages:

e 1o (large) training dataset is needed;

o if strongly discriminating features of an object are
explicitly known (e.g. colour or shape), extracting
the object is relatively easy and computationally
efficient;

Disadvantages:
e specialist experts are needed for feature design;

e no single hand-crafted feature might solve the
problem, so multiple hand-crafted features are
typically needed. Finding the right mix and set-
tings of such a feature set is challenging.

2.2 End-to-end learning

End-to-end learning systems, such as neural net-

works, merge all intermediate stages present in clas-

sical ML systems, such as data preprocessing, feature

engineering and extraction, and actual inference. In-

ference is done exclusively based on (internal) param-

eters which are learned from a training set.
Advantages:

e once correctly set up (trained), such systems can
deliver very high accuracy at high speed, and with
limited or no user intervention;

Disadvantages:
e large amounts of (labeled) training data is needed;
e little control exists over how the system learns to
infer;
e training can be computationally expensive;

e understanding how these systems infer can be
hard.

2.3 Hybrid approaches

Hybrid methods combine hand-crafted features
(mainly to provide a first rough object detection) with
end-to-end learning (to discriminate those detected
objects likely to be polyps).

Advantages:

e aim to get the best of ‘both worlds’ (hand-crafted
features and end-to-end learning), thus requiring
less training effort;

Disadvantages:

e the amount of required training data can still be
large;

e parameter tuning can be hard.

Following the above, we have produced a sur-
vey that organizes methods for polyp detection, local-
ization, and segmentation along the aforementioned
three method classes. Tables 1 and 2 show the identi-
fied methods. For each method, we indicate the types
of used features, ML technique it is based on, and
amount of data the method was tested with. Next, we
rank each method along two desirable criteria — val-
idation (V) and reproducibility (R) — using a 5-point
ordinal Likert scale (——,—,+/—,+,++). As visi-
ble from this survey, no single method scores well on
both criteria for all three tasks of polyp detection, lo-
calization, and segmentation.

3 PROPOSED METHOD

Architecture: For polyp semantic segmentation,
we propose to use Fully Convolutional Networks
(FCNs), implemented with Keras and TensorFlow.
In traditional CNNs, an operating block would
compute from am input x an output F(x) which is
a completely new representation that does not keep
any information about the input x. In contrast, FCNs
compute a ‘delta’ or slight change x + F(x) of the
original input x (Fig. 1). It is proved that training
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Figure 1: A residual block (He et al., 2016)

this form of networks (FCNs) is easier than training
general CNNs. Also, FCNs resolve better the issue
of degrading accuracy (He et al., 2016). We use
ResNet50 which specifically is a residual network
which consists of 50 layers. We next outline the
optimization and training of the network. Table 3
gives an overview of all relevant parameters.

Optimizer: To optimize our network, we use the
well-known Adam optimizer (Kingma and Ba, 2014).



POLYP DETECTION

Hand-crafted features

Method Descriptors Features Classification Database \ R
(Tjoa and Krishnan, Texture spectrum, color NN 12 images (no-polyp) and 54 images +
2003) histograms (polyp)
Number of regi ft
umbero .reglons atter 50 images (no-polyp) and 50 images
(Dhandra et al., 2006) morphological watershed - +/- +/-
. (polyps)
segmentation
H ¢ al., 2007) Curve direction, curvature, 27 (polyps)
wan; . ) . A - im:
angeta edge distance, intensity a8 (POYPS
RGB-vali d dinat
(Alexandre et al., 2007) values and cooramnates | gym 35 images +
of each pixel
(Alexandre et al., 2008) Color and position features SVM with REF kernel 4600 images from 35 videos + +
(Karargyris and Based on segmentation from 40 images without polyp, 10 images
X Curvature features i + +/-
Bourbakis, 2009) log-Gabor and SUSAM with polyp
(Hwang and Celebi, . X
Geometric feature Rule based 128 images +/-
2010)
(Eskandari et al., 2012) Geometric feature Rule based 18 images +-
(Wang et al., 2014) Edge profiles SVM, GLM 1513 images +/-
o . 359 VCE frames 294 for training and 65
(Zhou et al., 2014) Statistical information SVM K
for testing (performance)
Total 18968 i ith 18738 i
(Mamonov et al., 2014) Radios best fit ball Binary classifier (,) 4 1mages Wi X 1mages +/-
without and 230 images with polyps
Iakovidis and Color feat d SURF
(Takovi 1s' a.n o' or features arount SVM 137 images .
Koulaouzidis, 2014) points
HSV thresholding, Markovian X
(Ratheesh et al., 2016) . SVM 10 Videos of each 2100 frames +/-
Random Field
End-to-end learning
i i 7,000 frames with polyps and 28,000
(Tajbakhsh et al., 2015) Learned features (CNN) Voting ) +/-
frames with no polyps
(Yuetal., 2017) Learning features (3D - FCN ) - ASU-Mayo +-
(OUS) (Bernal et al., . > . CVC-CLINIC, ETIS-LARIB,
Learning features (CNN) Sliding-window strategy +
2017) ASU-Mayo
(CUMED) (Bernal et al., . | . CVC-CLINIC, ETIS-LARIB,
Learning features (CNN) Pixel-wise +
2017) ASU-Mayo
Hybrid methods
GLCM-feat d discret
(Maroulis et al., 2003) CATITES and AIserete A NN ;
wavelet transform in CoLD
X Color wavelet covariance 2 images (no-polyp) and 4 images
(Karkanis et al., 2003) -
(CWO) (polyp)
(Magoulas et al., 2004) GLCM-features NN -
- Color wavelet covariance .
(Iakovidis et al., 2005) LDA 1380 images

(CWO)

(Silva et al., 2014)
(ETIS-LARIB) (Bernal

RO, based on shape and size
features; hough transform

Ad-hoc classifier
(boosting-based learning
process (co-ocurrence

CVC-CLINIC, ASU-Mayo

tal., 2017 detection), Text lysi .
et al ) (detection), Texture analysis matrix))
POLYP SEGMENTATION Hand-crafted features
Method Descriptors Features Classification Database \ R
(Ganz et al., 2012) Boundary detection and Two datasets (58 images for training, 87 +
(Shape-UCM) segmentation images for testing)
End-to-end learning
CVC-ColonDB, CVC-ClinicDB,
(Véazquez et al., 2017) Learned features (CNN) Tune an existing classifier olon R e +
CVC-EndoSceneStill
. . CVC-ClinicDB, ETIS-LARIB,
(Brandao et al., 2017) Learned features (CNN) Tune an existing classifier +
ASU-Mayo

Table 1: Comparison of different methods for polyp detection

. 'V = Validation and R = Reproducibility



POLYP LOCALIZATION

Hand-crafted features

Method Descriptors Features Classification Database A\ R
(Park et al., 2012) Eigen-space representation CRF 35 videos (1.2-25 million frames) + +/-
i ID discrete cosine transform .
(Tajbakhsh et al., 2014) (DCT) Random Forest classifier CVC-ColonDB ++ +
(Bernal et al., 2015) Protruding surfaces, Continuity, completeness,
. . . CVC-CLINIC, ETIS-LARIB,
(CVC-CLINIC) (Bernal boundaries defined from concavity and robustness ASU-M: ++ +
-Mayo
etal., 2017) intensity valleys detection against spurious structures 4
ROI’s based on Gaussian
(Tarik et al., 2016) Mixture Model, Esperance - 100 images of different types of polyps + =
Maximization
End-to-end learning
(SNU) (Bernal et al., . R . CVC-CLINIC, ETIS-LARIB,
Learning features (CNN) Binary classifier ++ +
2017) ASU-Mayo
(UNS-UCLAN) (Bernal . X
Learning features (CNN) Multilayer perceptron (MLP) CVC-CLINIC ++ +
etal., 2017)
Hybrid methods
(Tajbakhsh et al., 2016) .
Geometric features, Ensemble i
(ASU) (Bernal et al., . Voting ETIS-LARIB ++ +/-
of CNNs
2017)
. Means of the maximum
Global image features i
. values in the energy map
- (PLS) (Bernal et al., (detection), Sequence of i . CVC-CLINIC, ASU-Mayo,
. computed using the elliptical ++ +/-
2017) preprocessing filters ETIS-LARIB
L. shape of the polyp’s usual
(localization)
appearance

Table 2: Comparison of different methods for polyp localization and segmentation. V = Validation and R = Reproducibility

Adam is an optimizer that converges fast due to using
a larger effective step size. The disadvantage with
this optimization algorithm, however, is that it is
computational expensive as it uses moving averages
of the parameters.

Parameter Value
Maximum epochs 250
Learning rate base 0.0001
Learning rate power 0.9
Batch size 5
Batchnorm momentum | 0.9

Table 3: Training parameters used by our network

Early stopping: We set the maximum number of
training epochs to max_epochs = 250. However, in
order to prevent the network from overfitting, we use
early stopping. This technique monitors a specified
metric and stops network training when its loss is
not decreasing. Early stopping requires two param-
eters: (1) the minimum change in the monitored met-
ric that qualifies as an improvement (min_delta) and
(2) the number of epochs with no improvement af-
ter which training is stopped (patience). In our ex-
periments, we set the metric to be monitored with
min_delta = 0.0001 and patience = 25.

Learning rate: During training, we slowly decrease

the learning rate [r as

current_epoch\ """
lr =Ir_base - <l> (D)
max_epochs
where [r_base, the starting learning rate, is set to
0.0001 and Ir_power = 0.9.

Data augmentation: We propose to apply data
augmentation as previous studies show that it leads
to better results in terms of mean Jaccard and mean
global accuracy (Vazquez et al., 2017). We use the
following types of data augmentation: (1) image
zoom (from 0.9 to 1.1), (2) image random cropping,
(3) image rotation (from Odeg to 180deg), and (4)
image shear (from 0 to 0.4).

Post-processing: As a last stage, we postprocess the
resulting segmentation masks aiming to increase the
quality of the results. We have tested two specific
methods: (1) fill holes in the resulting masks and (2)
compute convex hulls of the masks.

4 EXPERIMENTAL SETUP

We next describe the experimental setup used to
train and validate the FCN model. This consists of
metrics used for quality measurement (Sec. 4.1) and
datasets used for training and testing (Sec. 4.2). As



mentioned before, we address the problem of polyp
characterization as a segmentation problem, since
segmentation also gives information about the shape
of a polyp. Hence, our model outputs a binary seg-
mentation mask. From this mask, we derive polyp
detection and localization.

4.1 Performance metrics

We evaluate polyp segmentation using the Jaccard in-
dex (Vazquez et al., 2017) and the Sorensen-Dice co-
efficient (Vazquez et al., 2017). With respect to polyp
detection and localization, we follow the guidelines
in (Bernal et al., 2017): We compare the output of
the segmentation to the ground truth (labeled image):
For detection, we only care about the presence of a
mask in the ground truth to account for frame-based
metrics. For polyp localization, we also consider the
position of the output. A true positive in polyp de-
tection occurs when the segmentation output overlaps
with the ground-truth mask. A true positive in polyp
localization occurs when the centroid of the output
segmentation mask should falls within the ground-
truth mask. It is worth to mention that only one true
positive is accounted for each polyp, whereas many
false positives can appear in a single image. Once
frame-based metrics are defined, we can easily cal-
culate aggregated metrics such as Precision, Recall,
Specificity, Accuracy, and F-scores.

4.2 Datasets

We employ two criteria when considering the use of a
specific dataset for training/validation: (1) the dataset
should be publicly available and (2) the dataset should
have been properly annotated. Considering this,
we use in our experiments several public datasets
that have been presented in the context of MICCAI
challenges on Automatic Polyp Detection and Gas-
trointestinal Image Analysis. For standard defini-
tion (SD) images, we use the CVC-EndosceneStill
dataset (Vazquez et al., 2017) for still frame analy-
sis. With respect to video analyis, we use the training
subset of CVC-VideoClinicDB (Bernal et al., 2018)
for network training and the first 9 videos of the test-
ing set using the results provided by the online eval-
uation tool prepared by challenger organizers. For
high definition (HD) images, we use the ETIS-Larib
dataset (Bernal et al., 2017). It has to be noted that,
in the CVC-VideoClinicDB dataset, the ground truth
represents an approximation of the polyp in the image
using ellipses. Given this, the model trained by this
dataset is evaluated against detection and localization
metrics instead of segmentation ones.

S RESULTS

5.1 Polyp Segmentation

Table 4 overviews our experiments regarding polyp
segmentation. They consist of four experiments
(1..4). In each one, a different database is used for
training the network. In all experiments, we use 80%
of the dataset for training, and the remaining 20% for
validation. Note that the ETIS-Larib database is used
in two different ways: For experiment 1.2, we use the
original images. For experiment 2, we resize these to
50% while keeping the aspect ratio. This resizing is
performed aiming to avoid impact of image resolution
differences in method performance.

Figure 2 shows various resulting segmentations
given by the trained model. As visible, polyps of quite
different shapes, locations, orientations, colors, and
lighting are segmented well.

Figure 3 shows the Jaccard index boxplots for ex-
periments 1.1 and 2. We can infer that resizing has a
significant influence on the segmentation mask qual-
ity, as the resulting Jaccard index seems to be signif-
icantly higher than of the original size dataset. The
DICE coefficient follows the same trend. It should
be noted, however, that the standard deviation of the
resized results is also higher. This is probably due
to the fact that the network is trained with SD data,
whereas the testing HD data captures more texture,
which might interfere with the resulting segmenta-
tion.

Table 6 shows the overall localization results for
each applied post-processing method. We can observe
that the selection of the largest blob leads to a signifi-
cant improvement in precision and specificity, for the
paid price of a small decrease in recall results.

The input dataset is preprocessed in Experiment 2,
by a filter that enhance the image quality by removing
specular highlights. (Sanchez et al., 2017). As Figure
3 shows, it seems that this has a slight impact on the
quality of the final segmentation mask. In this case,
performance on the preprocessed dataset is slightly
lower than in the original one.

5.2 Polyp Detection and Localization

For polyp detection and localization we consider the
following three types of result mask post-processing:
(1) no post-processing, (2) small morphological open-
ing to remove small-scale noise, and (3) selection
of the largest connected component. Table 5 shows
the overall detection results for each applied post-
processing method. From this, we can see that the



Exp. Database Training & | Testing Post- Jaccard { Dice
Validation processing Mean std Mean std

CVC-EndoSceneStill 612 300 None 0.5819 | 0.2727 | 0.6905 | 0.2678

1.1 Fill holes 0.5820 | 0.2727 | 0.6906 | 0.2678
Convex hull | 0.5798 | 0.2733 | 0.6884 | 0.2692

CVC-EndoSceneStill 612 - None 0.2258 | 0.2111 | 0.3230 | 0.2672

1.2 ETIS-Larib - 196 Fill holes 0.2257 | 0.2111 | 0.3228 | 0.2672
Convex hull | 0.2250 | 0.2171 | 0.3198 | 0.2717

CVC-EndoSceneStill 612 - None 0.3694 | 0.3214 | 0.4579 | 0.3536

2 Resized ETIS-Larib - 196 Fill holes 0.3695 | 0.3215 | 0.4579 | 0.3537
Convex hull | 0.3759 | 0.3284 | 0.4623 | 0.3584

CVC-EndoSceneStill 300 612 None 0.4670 | 0.2889 | 0.5754 | 0.3153

3 Fill holes 0.4671 | 0.2890 | 0.5756 | 0.3154
Convex hull | 0.4782 | 0.2922 | 0.5853 | 0.3172

CVC-EndoSceneStill 612 300 None 0.5635 | 0.2631 | 0.6786 | 0.2559

4 (preprocessed) Fill holes 0.5635 0.2631 0.6787 0.2558
Convex hull | 0.5561 | 0.2658 | 0.6713 | 0.2597

Table 4: Experiments and results of polyp segmentation (Sec. 5.1)

Original &T Result Overlap Contour

Figure 2: Examples of resulting segmentations. Original = Original input image. GT = Ground-truth image. Result =
Resulting image. Overlap = Overlap between GT and Result with overlapping pixels between GT and Result in white; pixels
in GT but not in Result in magenta (true positives); and pixels in Result but not in GT in green (false positives). Contour =
Boundaries of the GT (red) and Result (blue) on the original image.

Post-processing TP FP | TN FN PR REC | SP ACC | RT

No post-processing | 4366 | 485 | 2879 | 2189 | 90.00 | 66.60 | 85.58 | 73.04 | 33.11
Small opening 4315 | 465 | 2899 | 2240 | 90.27 | 65.82 | 86.17 | 72.79 | 33.11
Table 5: Summary of resulting metrics for detection, for each post-processing method: True positives (TP), false positives

(FP), true negatives (TN), false negatives (FN), precision (PR), recall (REC), specificity (SP), accuracy (ACC), and mean
response time (RT).
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Post-processing TP FP TN FN PR REC | SP ACC | RT

No post-processing | 3953 | 1317 | 2879 | 2602 | 75.00 | 60.30 | 68.61 | 63.54 | 34.77
Small opening 3916 | 1225 | 2899 | 2639 | 76.17 | 59.74 | 70.29 | 63.81 | 33.66
Largest blob 3876 | 904 | 2899 | 2679 | 81.08 | 59.13 | 76.22 | 65.40 | 33.66

Table 6: Summary of resulting metrics for localization for each post-processing method. See Tab. 5 for legend.

small opening leads to a slight improvement in preci-
sion, specificity, and mean reaction time, and a small
decrease in recall and accuracy.

It is difficult to put these results in the context of
other methods, as quantitative results and full datasets
of GIANA 2017 and 2018 challenges are not public
yet and there are not other fully publicly available
datasets. Nevertheless, current performance shows
the ability of the proposed configuration to detect all
different polyps, regardless of their size and appear-
ance. Moreover, the use of computationally-light post
processing methods show a significant improvement
with respect to the reduction of false alarms, specially
for the case of polyp localization.

6 DISCUSSION

We have shown how our methodology is able to
provide good results for all the three tasks that have
been targeted. Several observations follow. We can
see that specific aspects of the different datasets be-
ing used can visibly affect the obtained results. For
video sequences, the lack of precisely annotated data
has impacted the performance of our method, as it is
asked to provide an accurate pixel-wise segmentation
while it is trained with some pixels that actually do
not belong to the polyp class. We predict that having
pixel-wise masks for the video dataset could lead to
an improvement in performance.

Performance metrics alone do not represent the
actual usefulness of a given system in a clinical envi-

ronment. Apart from frame-based metrics, we should
also consider the feasibility of our solution in both
technical and clinical contexts. Our proposed network
was trained and executed during inference on an Intel
Core i7 PC at 2.60GHz having a NVIDIA GeForce
GTX 960m GPU card with 2 GB RAM. This is a rea-
sonably affordable platform that could be deployed in
clinical practice at a relatively low cost.

In order for a detection method to be used in the
exploration room, it should process images in real-
time so the exploration is not delayed. Considering
that videos are recorded at 25 fps, processing time
should not exceed 40 ms. Table 7 shows the average
computational time in milliseconds for inferring a sin-
gle image on a trained model. As visible, the current
results are still slower than the 40 ms target. However,
we should note that, for HD images, if we are seeking
for a posterior in-vivo histology prediction, real-time
requirements could be relaxed. Separately, we note
that typical year-over-year performance increases of
GPUs will actually bring the computation time of SD
images well within the target range within likely one
year, without increasing the GPU price range.

Image type Average computation
time (ms)

Standard Definition (SD) | 125

High Definition (HD) 905

Table 7: Average computation time (ms)

With respect to clinical constraints, the most im-
portant metric here is the mean reaction time (RT),
i.e., the number of frames the method needs to accu-



rately detect a polyp. In our experiments, our method
achieves a RT of 33.11 frames for detection and a RT
of 33.66 seconds for localization, respectively (Ta-
bles 5 and 5). Good RT values in clinical practice
should range around one second, so the tool’s re-
sponse is perceived as instantaneous. Our current re-
sults are a little over a second though it has to be noted
that, for 7 out of 9 videos, RT is of O frames. Mean
RT is damaged by one specific video with a RT of 298
frames so, for the majority of the videos, the method
provides an instantaneous response.

6.1 LIMITATIONS

Figure 4 shows an example of a FP and a FN result.
Currently, it is hard to tell what is the reason behind
the appearance of such results, apart from the obvious
observation that, for FNs, there are polyps whose ap-
pearance, under the given lighting conditions, is very
similar to healthy surrounding gastrointestinal skin
texture. Concerning both FP and FN results, we be-
lieve that these can be improved by using a larger and
more diverse training set, as typical in deep learning.

Figure 4: An example of FP and FN result. Red shows the
(missed, FN) ground truth and blue shows our FP result.

7 CONCLUSIONS

Several computational methods for polyp character-
ization in colonoscopy have been proposed but, to
the best of our knowledge, none of them tackles the
complete polyp characterization task using the same
methodology. We have presented in this paper a
first approach to polyp characterization using a sin-
gle methodology, encoded by a single neural network

architecture (ResNet50).

We have tested our method on several public avail-
able datasets. Results shows that our method can de-
tect and locate various types of polyps appearing in
various types of input imagery, providing accurate
segmentation masks, especially when the method is
tested in still frames. Nevertheless, the actual config-
uration of our method does not comply with the tech-
nical constraints needed for an efficient deployment in
the exploration room. Efforts should be undertaken to
decrease processing time while keeping, and ideally
increasing, performance levels.

One of the reasons of the slightly lower perfor-
mance of segmentation network in video sequences is
the lack of pixel-wise masks for the available datasets.
Additional annotations might be gathered to improve
this data, which could also lead to an improvement of
the performance of the proposed method.
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